CN114959699A - 一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法 - Google Patents

一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法 Download PDF

Info

Publication number
CN114959699A
CN114959699A CN202210918642.4A CN202210918642A CN114959699A CN 114959699 A CN114959699 A CN 114959699A CN 202210918642 A CN202210918642 A CN 202210918642A CN 114959699 A CN114959699 A CN 114959699A
Authority
CN
China
Prior art keywords
coating
metal
ultra
friction
uncd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210918642.4A
Other languages
English (en)
Other versions
CN114959699B (zh
Inventor
宋惠
江南
褚伍波
邓丽芬
李�赫
西村一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Hangzhou Bay New Materials Research Institute
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Hangzhou Bay New Materials Research Institute
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Hangzhou Bay New Materials Research Institute, Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Hangzhou Bay New Materials Research Institute
Priority to CN202210918642.4A priority Critical patent/CN114959699B/zh
Publication of CN114959699A publication Critical patent/CN114959699A/zh
Application granted granted Critical
Publication of CN114959699B publication Critical patent/CN114959699B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Abstract

本发明公开了一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法,属于复合涂层技术领域,制备方法具体包括以下步骤:(1)在基底表面通过热丝化学气相沉积超纳米金刚石,得到UNCD涂层;(2)利用磁控溅射技术在UNCD涂层表面沉积金属涂层,得到UNCD‑金属涂层;(3)对UNCD‑金属涂层进行热处理得到所述的低摩擦的金属/超纳米金刚石复合涂层。本发明利用高温热处理和摩擦热催化诱导有序碳纳米结构在UNCD涂层上生成,改善涂层的摩擦学性能;本发明方法制备得到的金属/超纳米金刚石复合涂层耐高温、硬度高且摩擦性能优异。

Description

一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法
技术领域
本发明涉及复合涂层技术领域,具体涉及一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法。
背景技术
金刚石具有优异的力、热、光、介电等性能,应用领域广泛。金刚石是目前所知矿物中硬度值最大的一种,兼具减磨耐磨的性能,已成为摩擦零部件表面防护材料的理想选择,其中超纳米金刚石(UNCD)薄膜由于具有极小的晶粒尺寸、成分组成特殊以及低的表面粗糙度更是受到了行业研究人员的广泛关注。然而如何进一步降低UNCD薄膜的摩擦系数以及提高其在苛刻环境中的使役行为,是扩大UNCD薄膜工程化应用范围亟需解决的技术问题。
近年来,碳纳米材料(碳纳米管、石墨烯、富勒烯)的深入研究与可控制备为减摩材料设计提供了一个新思路,上述二维材料作为优质的润滑相,不仅自身具有较低的摩擦系数,同时还可以与其他润滑相复配起到良好的协同润滑作用。
公开号为CN108753106A的中国专利文献公开了一种纳米杂化材料改性环氧树脂自润滑复合涂层,该发明首先制备碳纳米管/氧化石墨烯/二硫化钼纳米杂化材料,将该材料加入环氧树脂、固化剂与有机溶剂中,得到混合溶液,并将该混合溶液喷涂于基材上,固化成型,获得高减摩耐磨环氧树脂自润滑复合涂层。碳纳米管/氧化石墨烯/二硫化钼纳米杂化材料的加入充分地改善了涂层的摩擦学性能。
公开号为CN114015491A的中国专利文献公开了一种含改性纳米碳材料的润滑油添加剂,所述的改性纳米碳材料为改性碳纳米管,改性碳纳米管的比表面积大、分散性好,具有管壁空洞结构;其在润滑油添加剂中的加入能够改善润滑油的润滑性能和耐磨性能,降低机械摩擦面摩擦系数。
由于金刚石与其他碳纳米结构(如石墨烯、C60等)的生长条件存在极大的差异,设计制备UNCD薄膜与碳纳米结构结合力良好的复合涂层难度较大,公开号为CN112126906A的中国专利文献公开了一种石墨烯/类金刚石润滑薄膜的制备方法,该方法首先在基底上通过磁控溅射法制备氢掺杂类金刚石薄膜,然后再将石墨烯分散液喷涂至样品上得到石墨烯/类金刚石润滑薄膜。该发明的氢掺杂类金刚石薄膜中掺杂有碳化硼和非晶碳,能够提供硬度和低摩擦性能,复合薄膜具有更低的摩擦系数与更长的耐磨寿命。但是石墨烯与类金刚石薄膜之间的结合力有待进一步提高。
发明内容
本发明提供了一种低摩擦的金属/超纳米金刚石复合涂层的制备方法,制备工艺简单可控,制备得到的金属/超纳米金刚石复合涂层包含金属层、UNCD涂层和超纳米金刚石原位生成的有序碳纳米结构,耐高温、硬度高且摩擦性能优异。
具体采用的技术方案如下:
一种低摩擦的金属/超纳米金刚石复合涂层的制备方法,包括以下步骤:
(1)在基底表面通过热丝化学气相沉积超纳米金刚石,得到UNCD涂层;
(2)利用磁控溅射技术在UNCD涂层表面沉积金属涂层,得到UNCD-金属涂层;所述的金属涂层为连续涂层或非连续涂层;
(3)对UNCD-金属涂层进行热处理得到所述的低摩擦的金属/超纳米金刚石复合涂层。
优选的,所述的金属涂层为铜涂层、金涂层或镍涂层。本发明制得的产品涂层在摩擦过程中,UNCD涂层能够在不同金属的催化作用下原位形成不同的有序碳纳米结构,如在铜的作用下易催化形成石墨烯结构,在镍的作用下易形成石墨烯或富勒烯结构。铜、金或镍对有序碳纳米结构的生成具有良好的催化作用。
UNCD涂层中以sp3相为主,但存在一定的sp2相,在高温热处理过程中,UNCD涂层可以原位生成石墨烯、碳纳米管、富勒烯等有序碳纳米结构。UNCD涂层硬度较高,其在摩擦过程中最主要的失效形式为磨粒磨损,有序碳纳米结构对磨粒具有卷曲作用,能够进一步提高UNCD涂层的摩擦学性能。且后续的摩擦过程中,在金属的催化作用下,摩擦热也能够原位诱导有序碳纳米结构的生成,进一步提高摩擦性能。
优选的,所述的UNCD涂层的厚度为4~8 μm;所述的金属涂层的厚度为50~800 nm。金属涂层的厚度在上述范围内有利于其在退火和摩擦过程发挥催化作用。
优选的,所述的基底在沉积UNCD涂层前需进行预处理,预处理工艺为:用乙醇、丙酮依次清洗基底,去除基底表面的油污和杂质;为了利于涂层生长过程中形核,再将清洗后的基底置于超细纳米金刚石粉的乙醇悬浮液中超声振荡完成表面植晶处理,再在无水乙醇中超声清洗,取出,氮气吹干。
所述的超细纳米金刚石粉的粒径为8-10 nm,超细纳米金刚石粉的乙醇悬浮液的浓度为0.1-2 mol/L。
优选的,步骤(1)中,所述的热丝化学气相沉积分为第一阶段和第二阶段,第一阶段的参数为:甲烷流量为8-10 sccm、氢气流量为200-400 sccm,沉积气压为1-4 KPa,沉积时间为20-30 min;第二阶段的参数为:甲烷流量为2-10 sccm、氢气流量为100-400 sccm,沉积气压为1-4 KPa,沉积时间为5-20 h;其中,第一阶段的参数有利于金刚石形核,第二阶段的参数有利于金刚石生长。
在上述参数下制备得到的UNCD涂层的晶粒尺寸约为10 nm左右。
优选的,步骤(2)中,磁控溅射过程的条件为:沉积气压为0.5-1.5 Pa,氩气流量为30-45 scccm,金属靶溅射功率为10-200 W,沉积温度为100-300℃,沉积时间为5-10 min。
优选的,热处理过程中以惰性气体为保护气,热处理条件为:温度700-1000℃,时间1-3h。温度过低不利于有序碳纳米结构的生成,温度过高会影响UNCD涂层自身的功能和性质。
进一步优选的,所述的惰性气体为氩气。
热处理过程对所述的低摩擦的金属/超纳米金刚石复合涂层的制备至关重要,UNCD涂层耐高温,在相应条件下的热处理过程中,UNCD涂层中的部分sp3相会发生相转化,UNCD涂层原位生成石墨烯、碳纳米管、富勒烯等有序碳纳米结构,热处理后形成的有序碳纳米结构提高了复合涂层的摩擦性能。
本发明还提供了所述的低摩擦的金属/超纳米金刚石复合涂层的制备方法制得的低摩擦的金属/超纳米金刚石复合涂层,所述的低摩擦的金属/超纳米金刚石复合涂层包含金属层、UNCD涂层和超纳米金刚石原位生成的有序碳纳米结构,所述的有序碳纳米结构包括石墨烯结构、碳纳米管结构或富勒烯结构。
本发明方法制得的低摩擦的金属/超纳米金刚石复合涂层可以在摩擦过程中被金属原位催化进一步形成有序碳纳米结构;无论金属涂层连续与否,该金属/超纳米金刚石复合涂层都会有有序碳纳米结构生成。
所述的低摩擦的金属/超纳米金刚石复合涂层中的有序碳纳米结构既可以在高温热处理过程中生成,也可以在摩擦过程中生成;且该有序碳纳米结构与UNCD涂层结合力良好。
本发明还提供了所述的低摩擦的金属/超纳米金刚石复合涂层在摩擦零部件表面处理领域中的应用。本发明中的金属/超纳米金刚石复合涂层耐高温、硬度高且摩擦性能优异,非常适用于摩擦零部件的表面处理。
所述的低摩擦的金属/超纳米金刚石复合涂层在摩擦过程中能够生成有序碳纳米结构。
与现有技术相比,本发明的有益效果在于:
(1)本发明通过热丝气相化学沉积法制备UNCD层,利用磁控溅射技术制备金属层,随后对金属/UNCD复合涂层进行高温退火处理,UNCD涂层在高温热处理过程中可以原位生成有序碳纳米结构;有序碳纳米结构能够与UNCD复合起到协同减磨的作用,且后续的摩擦过程中,在金属的催化作用下,摩擦热也能够原位诱导有序碳纳米结构的生成,进一步提高摩擦性能。
(2)本发明采用CVD与PVD相结合的方式,制备方法简单可控;利用高温热处理和摩擦热催化诱导有序碳纳米结构在UNCD涂层表面的生成,一方面可以避免转移法制备复合结构的繁琐复杂方式,另一方面原位诱导生成的有序碳纳米结构与UNCD层的结合力强。
(3)本发明制备得到的低摩擦的金属/超纳米金刚石复合涂层包含金属层、UNCD层以及热处理过程中超纳米金刚石原位生成的有序碳纳米结构,不同于类金刚石基复合涂层或微米、纳米金刚石薄膜材料,本发明方法制得的复合涂层耐高温、硬度高且摩擦性能优异。
附图说明
图1为实施例1制得的所述的低摩擦的金属/超纳米金刚石复合涂层的摩擦系数图(5N,大气环境)。
图2为实施例1制得的所述的低摩擦的金属/超纳米金刚石复合涂层的截面形貌图。
图3为实施例1制得的所述的低摩擦的金属/超纳米金刚石复合涂层的表面形貌图。
具体实施方式
下面结合附图与实施例,进一步阐明本发明。应理解,这些实施例仅用于说明本发明,而不用于限制本发明的范围。
实施例1
(1)以陶瓷作为基底,将基底依次在乙醇、丙酮溶液中超声清洗后用氮气吹干备用。随后对基底进行植晶处理,将清洗后的基底置于0.5 mol/L超细纳米金刚石/乙醇溶液中超声30 min,随后在乙醇溶液中清洗15min,取出氮气吹干置入热丝CVD真空腔室中。
(2)利用热丝化学气相沉积进行UNCD涂层沉积,沉积过程分为形核和薄膜生长两个阶段。形核阶段的参数为:甲烷流量8 sccm,氢气流量200 sccm,沉积气压1.5 KPa,沉积时间20~30 min;UNCD薄膜生长阶段参数为:甲烷流量6 sccm、氢气流量200 sccm,沉积气压2 KPa,沉积时间6 h。
(3)在步骤(2)的UNCD涂层上利用磁控溅射法沉积非连续金属层,以99.99%的高纯Cu作为溅射靶材,沉积气压为0.5 Pa,氩气流量为35 scccm,金属靶溅射功率为150 W,沉积温度为100 ℃,沉积时间为10 min。
(4)将步骤(3)制得的带有Cu/UNCD复合涂层的基底置于真空炉中,抽真空后通入氩气作为保护气,1000℃下保温1小时,随后缓慢降至室温取出样品。
本实施例制得的低摩擦的金属/超纳米金刚石复合涂层的摩擦系数图(5N,大气环境)如图1所示,该复合涂层的平均摩擦系数为0.025,摩擦性能优异。
本实施例制得的低摩擦的金属/超纳米金刚石复合涂层的截面形貌图如图2所示,表面形貌图如图3所示,由图2和图3可知,所述的低摩擦的金属/超纳米金刚石复合涂层包含金属层、UNCD涂层和超纳米金刚石原位生成的有序碳纳米结构,且金属层为非连续涂层,高温热处理后石墨烯纳米结构在UNCD涂层上成功生成。
实施例2
(1)以高温合金钢作为基底,将基底依次在乙醇、丙酮溶液中超声清洗后用氮气吹干备用。随后对基底进行植晶处理,将清洗后的基底置于0.5 mol/L超细纳米金刚石/乙醇溶液中超声60 min,随后在乙醇溶液中清洗15min,取出氮气吹干置入热丝CVD真空腔室中。
(2)利用热丝化学气相沉积进行UNCD涂层沉积,沉积过程分为形核和薄膜生长两个阶段。形核阶段的参数为:甲烷流量8 sccm,氢气流量200 sccm,沉积气压1.5 KPa,沉积时间20~30 min;UNCD薄膜生长阶段参数为:甲烷流量10 sccm、氢气流量200 sccm,沉积气压2 KPa,沉积时间8 h。
(3)在步骤(2)的UNCD涂层上利用磁控溅射法沉积连续金属层,以99.99%的高纯Au作为溅射靶材,沉积气压为1.0 Pa,氩气流量为30 scccm,金属靶溅射功率为100 W,沉积温度为200 ℃,沉积时间为5 min。
(4)将步骤(3)制得的带有Au/UNCD复合涂层的基底置于真空炉中,抽真空后通入氩气作为保护气,800℃下保温1小时,随后缓慢降至室温取出样品。
实施例3
(1)以陶瓷作为基底,将基底依次在乙醇、丙酮溶液中超声清洗后用氮气吹干备用。随后对基底进行植晶处理,将清洗后的基底置于0.5 mol/L超细纳米金刚石/乙醇溶液中超声30 min,随后在乙醇溶液中清洗15min,取出氮气吹干置入热丝CVD真空腔室中。
(2)利用热丝化学气相沉积进行UNCD涂层沉积,沉积过程分为形核和薄膜生长两个阶段。形核阶段的参数为:甲烷流量10 sccm,氢气流量200 sccm,沉积气压1.5 KPa,沉积时间20~30 min;UNCD薄膜生长阶段参数为:甲烷流量8 sccm、氢气流量200 sccm,沉积气压2 KPa,沉积时间8 h。
(3)在步骤(2)的UNCD涂层上利用磁控溅射法沉积连续金属层,以99.99%的高纯Ni作为溅射靶材,沉积气压为1.5 Pa,氩气流量为35 scccm,金属靶溅射功率为150 W,沉积温度为200 ℃,沉积时间为8 min。
(4)将步骤(3)制得的带有Ni/UNCD复合涂层的基底置于真空炉中,抽真空后通入氩气作为保护气,800℃下保温1小时,随后缓慢降至室温取出样品。
对比例1
对比例1与实施例1的方法相同,区别在于只进行步骤(1)和步骤(2)得到带有UNCD涂层的基底,不进行金属涂层的沉积和后续的高温热处理步骤。
对比例2
对比例2与实施例1的方法相同,区别在于只进行步骤(1)-(3)得到带有Cu/UNCD复合涂层的基底,不进行后续的高温热处理步骤。
样品分析
实施例1-3中,UNCD涂层的厚度约为6~7μm;当制备的涂层是连续金属涂层时,金属涂层的厚度约为60-80 nm,当制备的涂层是非连续金属涂层时,金属涂层的厚度约为600~700nm。
采用CSM多环境摩擦试验机对实施例1和对比例1-2制得的涂层进行大气环境下的摩擦性能考察,加载力为5N、10N,选用往复滑动模式,结果如表1所示。
表1对比例1-2及实施例1中产品涂层的摩擦学性能测试
Figure 747749DEST_PATH_IMAGE001
从上表的数据可以看出,高温退火处理能够显著改善UNCD-金属涂层的摩擦学性能。
以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是以上所述的仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种低摩擦的金属/超纳米金刚石复合涂层的制备方法,其特征在于,包括以下步骤:
(1)在基底表面通过热丝化学气相沉积超纳米金刚石,得到UNCD涂层;
(2)利用磁控溅射技术在UNCD涂层表面沉积金属涂层,得到UNCD-金属涂层;所述的金属涂层为连续涂层或非连续涂层;
(3)对UNCD-金属涂层进行热处理得到所述的低摩擦的金属/超纳米金刚石复合涂层;
所述的金属涂层为铜涂层、金涂层或镍涂层;
热处理过程中以惰性气体为保护气,热处理条件为:温度700-1000℃,时间1-3 h;
所述的低摩擦的金属/超纳米金刚石复合涂层包含金属层、UNCD涂层和超纳米金刚石原位生成的有序碳纳米结构,所述的有序碳纳米结构包括石墨烯结构、碳纳米管结构或富勒烯结构。
2.根据权利要求1所述的低摩擦的金属/超纳米金刚石复合涂层的制备方法,其特征在于,所述的UNCD涂层的厚度为4-8 μm;所述的金属涂层的厚度为50~800 nm。
3.根据权利要求1所述的低摩擦的金属/超纳米金刚石复合涂层的制备方法,其特征在于,所述的基底在沉积UNCD涂层前需进行预处理,预处理工艺为:用乙醇、丙酮依次清洗基底,将清洗后的基底置于超细纳米金刚石粉的乙醇悬浮液中超声振荡完成表面植晶处理;再在无水乙醇中清洗。
4.根据权利要求1所述的低摩擦的金属/超纳米金刚石复合涂层的制备方法,其特征在于,步骤(1)中,所述的热丝化学气相沉积分为第一阶段和第二阶段,第一阶段的参数为:甲烷流量为8-10 sccm、氢气流量为200-400 sccm,沉积气压为1-4 KPa,沉积时间为20-30min;第二阶段的参数为:甲烷流量为2-10 sccm、氢气流量为100-400 sccm,沉积气压为1-4KPa,沉积时间为5-20 h。
5.根据权利要求1所述的低摩擦的金属/超纳米金刚石复合涂层的制备方法,其特征在于,步骤(2)中,磁控溅射过程的条件为:沉积气压为0.5-1.5 Pa,氩气流量为30-45 scccm,金属靶溅射功率为10-200 W,沉积温度为100-300℃,沉积时间为5-10 min。
6.根据权利要求1所述的低摩擦的金属/超纳米金刚石复合涂层的制备方法,其特征在于,所述的惰性气体为氩气。
7.根据权利要求1-6任一所述的低摩擦的金属/超纳米金刚石复合涂层的制备方法制得的低摩擦的金属/超纳米金刚石复合涂层。
8.根据权利要求7所述的低摩擦的金属/超纳米金刚石复合涂层在摩擦零部件表面处理领域中的应用。
9.根据权利要求7所述的低摩擦的金属/超纳米金刚石复合涂层在摩擦零部件表面处理领域中的应用,其特征在于,所述的低摩擦的金属/超纳米金刚石复合涂层在摩擦过程中能够生成有序碳纳米结构。
CN202210918642.4A 2022-08-02 2022-08-02 一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法 Active CN114959699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210918642.4A CN114959699B (zh) 2022-08-02 2022-08-02 一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210918642.4A CN114959699B (zh) 2022-08-02 2022-08-02 一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN114959699A true CN114959699A (zh) 2022-08-30
CN114959699B CN114959699B (zh) 2022-12-06

Family

ID=82969755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210918642.4A Active CN114959699B (zh) 2022-08-02 2022-08-02 一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114959699B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242214A (ja) * 2008-03-31 2009-10-22 Kobe Steel Ltd 高配向ダイヤモンド膜及びその製造方法
WO2013038130A1 (en) * 2011-09-14 2013-03-21 Aberystwyth University Method for producing graphene
CN107190246A (zh) * 2017-05-05 2017-09-22 太原理工大学 一种具有优良场发射性能的石墨烯/金刚石复合膜及其制备方法
CN109722642A (zh) * 2017-10-30 2019-05-07 深圳先进技术研究院 设有金刚石/石墨烯复合润滑膜的工件及其制备方法
US20200149151A1 (en) * 2018-11-08 2020-05-14 North Carolina State University Diamond nanofibers and methods of making diamond nanofibers and large-size diamonds
CN111647875A (zh) * 2020-07-09 2020-09-11 上海交通大学 高光洁度复杂形状超纳米金刚石涂层刀具批量制备方法
CN113832447A (zh) * 2021-09-08 2021-12-24 宁波杭州湾新材料研究院 一种导电自润滑复合涂层及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242214A (ja) * 2008-03-31 2009-10-22 Kobe Steel Ltd 高配向ダイヤモンド膜及びその製造方法
WO2013038130A1 (en) * 2011-09-14 2013-03-21 Aberystwyth University Method for producing graphene
CN107190246A (zh) * 2017-05-05 2017-09-22 太原理工大学 一种具有优良场发射性能的石墨烯/金刚石复合膜及其制备方法
CN109722642A (zh) * 2017-10-30 2019-05-07 深圳先进技术研究院 设有金刚石/石墨烯复合润滑膜的工件及其制备方法
US20200149151A1 (en) * 2018-11-08 2020-05-14 North Carolina State University Diamond nanofibers and methods of making diamond nanofibers and large-size diamonds
CN111647875A (zh) * 2020-07-09 2020-09-11 上海交通大学 高光洁度复杂形状超纳米金刚石涂层刀具批量制备方法
CN113832447A (zh) * 2021-09-08 2021-12-24 宁波杭州湾新材料研究院 一种导电自润滑复合涂层及其制备方法

Also Published As

Publication number Publication date
CN114959699B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
Chen et al. Tribological properties of Ni–P-multi-walled carbon nanotubes electroless composite coating
Chen et al. Electroless preparation and tribological properties of Ni-P-Carbon nanotube composite coatings under lubricated condition
Wu et al. Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering
Chen et al. Tribological application of carbon nanotubes in a metal-based composite coating and composites
US20210002579A1 (en) Low friction wear resistant graphene films
Meng et al. Effective lubricant additive of nano-Ag/MWCNTs nanocomposite produced by supercritical CO2 synthesis
Xu Prospects and research progress in nano onion-like fullerenes
CN104124022B (zh) 一种碳纳米管基磁性纳米复合材料及其制备方法
CN107058971A (zh) 石墨烯复合材料的制备方法及应用
CN101487121A (zh) 一种金刚石/w-c梯度结构复合涂层及其制备方法
Kinoshita et al. Two step floating catalyst chemical vapor deposition including in situ fabrication of catalyst nanoparticles and carbon nanotube forest growth with low impurity level
CN1660692A (zh) 一种复合纳米碳纤维薄膜的制备方法
Qu et al. Ultrasonic-assisted top-down preparation of NbSe2 micro/nanoparticles and hybrid material as solid lubricant for sliding electrical contact
Sun et al. Grown of superlubricity aC: H/MoS2 film on 9Cr18Mo steel for industrial application
CN105839070A (zh) 一种低摩擦纳米TaC增强炭基复相薄膜的制备方法
Yao et al. Fex-Co1-x bimetallic catalysts for highly efficient growth of carbon nanotubes on carbon fibers
Jin et al. Lubrication properties of graphene under harsh working conditions
CN114959699B (zh) 一种低摩擦的金属/超纳米金刚石复合涂层及其制备方法
CN113307252B (zh) 一种制备可纺丝超顺排碳纳米管阵列的方法
CN113564530A (zh) 一种宽温域自润滑Si、WC组元掺杂的非晶碳基薄膜及其制备方法
CN113278939A (zh) 一种类富勒烯纳米结构含氢碳膜及其制备方法
Veríssimo et al. Different carbon nanostructured materials obtained in catalytic chemical vapor deposition
Vaka et al. Carbon nanotubes and their composites: From synthesis to applications
Park et al. Tribological properties of metal doped aC film by RF magnetron sputtering method
CN111286707B (zh) 一种贵金属@洋葱碳杂化的TMC/a-C纳米复合涂层及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant