CN114944779B - 基于电流应力优化的隔离型并网三相变换器控制方法 - Google Patents

基于电流应力优化的隔离型并网三相变换器控制方法 Download PDF

Info

Publication number
CN114944779B
CN114944779B CN202210606418.1A CN202210606418A CN114944779B CN 114944779 B CN114944779 B CN 114944779B CN 202210606418 A CN202210606418 A CN 202210606418A CN 114944779 B CN114944779 B CN 114944779B
Authority
CN
China
Prior art keywords
voltage
bridge
phase
converter
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210606418.1A
Other languages
English (en)
Other versions
CN114944779A (zh
Inventor
任春光
李学进
郭东鑫
贾燕冰
韩肖清
孟祥齐
孔健生
武涵
王祎凡
秦月
杨镜司
张一�
邓浩男
尚江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202210606418.1A priority Critical patent/CN114944779B/zh
Publication of CN114944779A publication Critical patent/CN114944779A/zh
Application granted granted Critical
Publication of CN114944779B publication Critical patent/CN114944779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53846Control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及交直流微电网领域,具体是基于电流应力优化的隔离型并网三相变换器控制方法。本发明解决了传统控制策略开关管电流应力较大、两级式功率传输方式效率低,控制环节较难设计的问题。该隔离型并网三相变换器由双有源桥变换器和全桥逆变器构成。该方法基于扩展移相控制,增加了控制的灵活度;调节前级双有源桥变换器驱动脉冲信号使其输出电压与三相全桥逆变器工作在同步状态;通过电压反馈控制只需要输入电压和输出电压作为反馈量即可使输出电流和电压保持稳定,不需要额外的负载电流传感器。本发明基于电流应力优化的隔离型并网三相变换器控制方法,具有良好的实用性。

Description

基于电流应力优化的隔离型并网三相变换器控制方法
技术领域
本发明涉及交直流微电网领域,具体是基于电流应力优化的隔离型并网三相变换器控制方法。
背景技术
随着碳达峰和碳中和目标的提出,未来新能源会成为能源使用的主力。由于可再生能源供电不稳定的特性,其加入给大电网的稳定运行和***控制带来了极大的挑战。新型电力***结合了混合储能模块、可再生能源发电***、交直流负荷等多个单元,具有降低新能源出力间歇性和不确定性、提高电能质量等优点,是建设新型能源互联网的关键环节。双向隔离式AC/DC变换器在新型电力***建设中承担着能源在直流配网和交流电网***间传输的关键作用,例如分布式能源发电、电动汽车和储能***。由于宽范围电压输入和电气隔离的必要性,需在逆变器的前端级联一个隔离型DC/DC变换器。在隔离型AC/DC拓扑中,含双有源桥结构的三相变换器拓扑因其对称性、高功率密度和无需级联辅助开关即可实现零电压开通等优点,成为目前研究的重点。
针对隔离型并网三相变换器的控制策略中,传统两级式控制是常见的控制方式,包括前级DAB采用移相控制方式,后级三相全桥拓扑采用SPWM控制方式。该方案存在两个缺点:变换器拓扑采用两级式控制策略降低了功率传输效率,增加了控制环节设计难度;前级单移相调制方式控制灵活度较低,导致开关管电流应力较大,降低了***运行的可靠性。
发明内容
本发明为了解决传统隔离型并网三相变换器两级控制存在开关管电流应力大,控制环节复杂的技术问题,针对现有技术缺陷,设计了基于电流应力优化的隔离型并网三相变换器控制方法。
本发明是基于如下技术方案实现的:一种基于电流应力优化的隔离型并网三相变换器控制方法,所述隔离型并网三相变换器拓扑结构由双有源桥变换器DAB和三相全桥逆变器SI构成,DAB前端逆变全桥FB1由四个初级开关S1、S2、S3、S4组成,并通过一个高频变压器T和辅助电感L与四个次级开关S5、S6、S7、S8组成的后端整流全桥FB2连接,DAB输入直流侧通过稳压电容C1连接FB1,变压器变比为1:n,DAB输出侧通过电容C2级联后端三相逆变器,三相全桥逆变器SI包含六个开关器件Q1、Q2、Q3、Q4、Q5、Q6,SI通过交流侧滤波电感L 2和交流侧滤波电容C 3接入交流微网。所有驱动信号的占空比均为50%。其中T为半开关周期,满足T=1/2f sf s为实际开关频率。D 1代表S1和S4之间的相移比,D2代表S1和S5之间的相移比。功率正向传输时,D 1D 2的定义域均为[0,1]。直流电源大小为u dc,交流电源大小为u g,DAB前级桥臂中点电压差为v p,DAB后级桥臂中点电压差为v s,采用电压控制维持输出波形稳定,不需要额外的电流传感器。具体如下:
隔离型并网变换器电压闭环控制中u g_ref表示所需的输出电压。由于所设计方案是为了提高变换器在稳态时的性能,因此采用固定输入电压u g_ref代替电压转换比h计算时的实际输出电压u g,以避免在启动阶段因u g值非常小导致h计算不准确。与传统的电压电流双闭环方案相比,采用的简化电压闭环方案只需要输入电压u dc和输出电压u g作为反馈量,不需要额外的负载电流传感器,简化了控制复杂度。输出电压参考值u g_ref与实际输出电压的差值经PI控制器输出为***输出电流参考值I ac,已知变换器开关角频率w s、额定开关频率f N、辅助电感L、输入电压u dc的值,经最小电流应力优化方案求解得到的相移控制计算式得到主相移量相移量D 1D 2,从而输入驱动信号调制模块控制开关管导通使变换器在给定控制方式下运行。所述的电压调制比计算式为
(1)
相移控制量计算式为
(2)
式中f N为额定开关频率,L为外接辅助电感,w s为角频率。
进一步的,本发明还包括后继三相同步逆变桥六脉波控制方案:该方案通过调节开关管驱动信号使得DAB输出侧电压频率是电网频率的6倍,峰值电压与交流电网输出电压相同,呈直流六脉波波形,后级三相逆变全桥在任意时刻仅有一组桥臂处于PWM高频开关状态,其他两桥臂分别处于开通和关断状态。
本发明所提供的上述一种基于电流应力优化的隔离型并网三相变换器控制方法,与现有技术相比,所具有的优点与积极效果在于:(1)变换器采用单级功率变换,减少了功率转换次数,提升了变换器的传输效率;(2)通过扩展移相调制方式增加了控制灵活度,引入电流应力优化方案降低了电感电流应力,延长了设备的使用寿命;(3)简化电压闭环控制不需要额外的负载电流传感器,简化了控制复杂度。
附图说明
图1是本发明所涉及拓扑图基于电流应力优化的隔离型并网三相变换器结构图;
图2是本发明所涉及隔离型并网三相变换器简化电压闭环控制框图;
图3是本发明所涉及隔离型并网三相变换器功率正向传递波形图;
图4是本发明所涉及隔离型并网三相变换器功率反向传递波形图;
图5是本发明所涉及后级三相全桥变换器调制信号示意图;
图1中:隔离型并网三相变换器拓扑结构由双有源桥变换器DAB和三相全桥逆变器SI构成,DAB前端逆变全桥FB1由四个初级开关S1、S2、S3、S4组成,并通过一个高频变压器T和辅助电感L与四个次级开关S5、S6、S7、S8组成的后端整流全桥FB2连接,DAB输入直流侧通过稳压电容C 1连接FB1,变压器变比为1:n,DAB输出侧通过电容C 2级联后端三相逆变器,三相全桥逆变器SI包含六个开关器件Q1、Q2、Q3、Q4、Q5、Q6,SI通过交流侧滤波电感L 2和交流侧滤波电容C 3接入交流微网。双有源桥变换器开关管驱动信号和电感电压、电流波形如图2所示,所有驱动信号的占空比均为50%。其中T为半开关周期,满足T=1/2f sf s为实际开关频率。直流电源大小为u dc,交流电源大小为u g,FB1桥臂中点电压差为v p,FB2桥臂中点电压差为v s,SI输出侧交流电流为i ac
图2中:D 1代表S1和S4之间的相移比,D 2代表S1和S5之间的相移比。功率正向传输时,D 1D 2的定义域均为[0,1]。其中u g_ref表示所需的输出电压。由于所设计方案是为了提高变换器在稳态时的性能,固定输入电压u g_ref和输入电压u dc代入电压调制比计算式,得到电压转换比h。输出电压参考值u g_ref与实际输出电压的差值经PI控制器输出为***输出电流参考值I ac,已知变换器开关角频率w s、额定开关频率f N、辅助电感L、输入电压u dc的值,将hI ac的值输入最小电流应力优化方案求解得到的相移控制计算式得到主相移量相移量D 1D 2,从而输入驱动信号调制模块控制开关管导通使变换器在给定控制方式下运行。
图3中:D 1代表S1和S4之间的相移比,D 2代表S1和S5之间的相移比,v p为FB1桥臂中点电压差,v s为FB2桥臂中点电压差,T为半开关周期,i 1为DAB输出电流,i 2为三相逆变全桥输入电流。
图5中:V xy表示X、Y两节点间电压,V yz表示Y、Z两节点间电压,V zx表示Z、X两节点间电压。说明:将一个周期分为6个相等的时段T1~T6,在时间间隔T1期间,Q5和Q6开通,Q3和Q4关断。Q1和Q2通过使用V xy/V zy作为调制信号,将其与载波波形进行比较以获得器件的导通脉冲,其余五个时段的导通信号遵循类似的规律。
具体实施方式
推导控制模型,建立三相变换器等效模型的基础上,通过数学推导提出在并网三相变换器电压闭环控制中引入电流应力优化的方法。
并网三相变换器由双有源全桥变换器DAB和三相全桥逆变器SI组成,DAB和SI通过滤波电容C 2相连。基于电流应力优化控制的方法,实现单级功率控制,减小流过开关管的电流应力,同时通过简化电压闭环控制器实现母线电压稳定。
本发明基于电流应力优化的隔离型并网三相变换器控制方法,其所述方法具体展开如下:
控制方法包括基于电流应力优化的电压闭环控制、后级三相桥六脉波控制。
(1)基于电流应力优化的电压闭环控制
基于扩展移相调制原理建立并网三相变换器等效模型,计算得到传输功率与控制量D 1的表达式,使用拉格朗日方法计算得到电流应力最小时的相移量计算式,根据设备实际开关频率选择额定开关频率,一般的,可以选为100kHz。推导得到电压转换比计算式和相移计算式。
电压调制比计算式为
(1)
相移控制量计算式为
(2)
式中f N为额定开关频率,L为外接辅助电感,w s为角频率。
输入电压参考值u g_ref和输入电压u dc代入电压调制比计算式,得到电压转换比h。输出电压参考值u g_ref与实际输出电压的差值经PI控制器输出为***输出电流参考值I ac,已知变换器开关角频率w s、额定开关频率f N、辅助电感L、输入电压u dc的值,将hI ac的值输入最小电流应力优化方案求解得到的相移控制计算式得到主相移量相移量D 1D 2,从而输输入驱动信号调制模块控制开关管导通使变换器在给定控制方式下运行。
(2)三相桥六脉波控制方案
为降低后级三相逆变器开关管平均开关频率,该方案通过调节DAB开关管驱动信号使得其输出侧电压频率频率是电网频率的6倍,峰值电压与交流电网输出电压相同,呈直流六脉波波形,后级三相逆变全桥在任意时刻仅有一组桥臂处于PWM高频开关状态,其他两桥臂分别处于开通和关断状态。
本发明所述方法基于扩展移相控制,增加了控制的灵活度;调节前级双有源桥变换器驱动脉冲信号使其输出电压与三相全桥逆变器工作在同步状态;通过电压反馈控制只需要输入电压和输出电压作为反馈量即可使输出电流和电压保持稳定,不需要额外的负载电流传感器。本发明基于电流应力优化的隔离型并网三相变换器控制方法,具有良好的实用性。

Claims (3)

1.一种基于电流应力优化的隔离型并网三相变换器控制方法,隔离型并网三相变换器的拓扑结构由双有源桥变换器DAB和三相全桥逆变器SI构成,DAB前端逆变全桥FB1由四个初级开关S1、S2、S3、S4组成,并通过一个高频变压器T和辅助电感L与四个次级开关S5、S6、S7、S8组成的后端整流全桥FB2连接,DAB输入直流侧通过稳压电容C 1连接FB1,变压器变比为1:n,DAB输出侧通过电容C 2级联后端三相逆变器,三相全桥逆变器SI包含六个开关器件Q1、Q2、Q3、Q4、Q5、Q6,SI通过交流侧滤波电感L 2和交流侧滤波电容C 3接入交流微网;
其特征在于:包括基于电流应力优化的电压闭环控制方法,具体如下:
输入电压参考值u g_ref和输入电压u dc代入电压调制比计算式,得到电压转换比h;输出电压参考值u g_ref与实际输出电压的差值经PI控制器输出为***输出电流参考值I ac,已知变换器开关角频率w s、额定开关频率f N、辅助电感L、输入电压u dc的值,将hI ac的值输入最小电流应力优化方案求解得到的相移控制计算式得到主相移量相移量D 1D 2,从而输入驱动信号调制模块控制开关管导通使变换器在给定控制方式下运行,所述电压调制比计算式为
(1)
相移控制量计算式为
(2)
式中f N为额定开关频率,L为外接辅助电感,w s为角频率。
2.如权利要求1所述的基于电流应力优化的并网三相变换器控制方法,其特征在于,还包括三相桥六脉波控制方案:开关器件Q1、Q2、Q3、Q4、Q5、Q6构成三相全桥逆变器,开关管Q1的源极与开关管Q2的漏极连接构成第一桥臂,开关管Q3的源极与开关管Q4的漏极连接构成第二桥臂,开关管Q5的源极与开关管Q6的漏极连接构成第三桥臂,通过调节开关管驱动信号使得DAB输出侧电压频率频率是电网频率的6倍,峰值电压与交流电网输出电压相同,呈直流六脉波波形,后级三相逆变全桥在任意时刻仅有一组桥臂处于PWM高频开关状态,其他两桥臂分别处于开通和关断状态。
3.如权利要求2所述的基于电流应力优化的并网三相变换器控制方法,其特征在于:基于电流应力优化的电压闭环控制以及六脉波控制均通过DSP芯片实现。
CN202210606418.1A 2022-05-31 2022-05-31 基于电流应力优化的隔离型并网三相变换器控制方法 Active CN114944779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210606418.1A CN114944779B (zh) 2022-05-31 2022-05-31 基于电流应力优化的隔离型并网三相变换器控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210606418.1A CN114944779B (zh) 2022-05-31 2022-05-31 基于电流应力优化的隔离型并网三相变换器控制方法

Publications (2)

Publication Number Publication Date
CN114944779A CN114944779A (zh) 2022-08-26
CN114944779B true CN114944779B (zh) 2024-05-31

Family

ID=82910163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210606418.1A Active CN114944779B (zh) 2022-05-31 2022-05-31 基于电流应力优化的隔离型并网三相变换器控制方法

Country Status (1)

Country Link
CN (1) CN114944779B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612340A (zh) * 2017-09-18 2018-01-19 电子科技大学 一种低电压应力隔离全桥变换器电路装置
CN113659608A (zh) * 2021-09-01 2021-11-16 燕山大学 一种隔离级同步调制的混合多电平sst拓扑及控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8411473B2 (en) * 2010-12-20 2013-04-02 Allis Electric Co., Ltd. Three-phase power supply with three-phase three-level DC/DC converter
CN111064371B (zh) * 2019-12-26 2024-04-05 杭州电子科技大学 混合五电平双向dc/dc变流器及其电压匹配调制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612340A (zh) * 2017-09-18 2018-01-19 电子科技大学 一种低电压应力隔离全桥变换器电路装置
CN113659608A (zh) * 2021-09-01 2021-11-16 燕山大学 一种隔离级同步调制的混合多电平sst拓扑及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电力电子变压器的双有源全桥DC-DC变换器模型预测控制及其功率均衡方法;安峰;宋文胜;杨柯欣;;中国电机工程学报;20180426(13);全文 *

Also Published As

Publication number Publication date
CN114944779A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
US9960666B2 (en) Four-port power electronic transformer based on hybrid modular multilevel converter
CN113037117B (zh) 一种基于四有源桥的mmc-sst拓扑及控制方法
CN102522897A (zh) 大升降压比的双向直流变换器
CN112564080B (zh) 带有低损耗lc-pbu的iios变换器
CN111817566A (zh) 一种llct谐振型双向直流变换器
CN113437879B (zh) 一种直流变换器及其控制方法
CN114257097A (zh) 一种多模式切换的宽输出直流变换器及其切换控制
CN112865550A (zh) 一种输入并联输出串联的双有源桥变换器及其控制方法
Li et al. Design and Optimization of High-Gain Bidirectional DC–DC Converter for Electric Vehicles
CN111817412A (zh) 一种基于串联数字化稳压器的中高压充电***控制方法
CN114944779B (zh) 基于电流应力优化的隔离型并网三相变换器控制方法
CN108023496B (zh) 串联同时选择开关电压型单级多输入低频环节逆变器
Zhan et al. A high step-up bidirectional isolated dual-active-bridge converter with three-level voltage-doubler rectifier for energy storage applications
CN116388599A (zh) 同时供电型单级工频环节新能源多端口集成供电***
CN111342690B (zh) 一种***电容功率单元多电平变换器的调制方法
CN113708408A (zh) 自适应光照条件的多输出模式单相光伏逆变器及控制方法
CN113014089A (zh) 一种对分升压式高升压比dc/dc变换器
Pakkiraiah et al. Isolated Bi-directional DC-DC converter's performance and analysis with Z-source by using PWM control strategy
Liu et al. A Dual Active Bridge Converter Integrating Buck-Boost for Wide Voltage Range
CN117294149B (zh) 改进型的单向直流串联谐振变换器的脉冲调制***
CN111404381A (zh) 基于dab的电力电子变压器子模块拓扑及其控制方法
Ren et al. Selection of Bidirectional DC-DC Topology for DC Microgrid Energy Storage Systems
CN217469772U (zh) 一种用于能量路由器的t型三电平双有源桥式变换器
CN112993967B (zh) 一种基于脉宽调制的直流微网群母联变换器模型预测方法
CN216721204U (zh) 一种单相三电平逆变电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant