CN114938498B - 智能反射面辅助的无人机使能的无线传感网数据收集方法 - Google Patents

智能反射面辅助的无人机使能的无线传感网数据收集方法 Download PDF

Info

Publication number
CN114938498B
CN114938498B CN202210323126.7A CN202210323126A CN114938498B CN 114938498 B CN114938498 B CN 114938498B CN 202210323126 A CN202210323126 A CN 202210323126A CN 114938498 B CN114938498 B CN 114938498B
Authority
CN
China
Prior art keywords
ris
unmanned aerial
aerial vehicle
drone
uav
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210323126.7A
Other languages
English (en)
Other versions
CN114938498A (zh
Inventor
多滨
邵明谦
刘一凡
罗俊松
胡艳梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN202210323126.7A priority Critical patent/CN114938498B/zh
Publication of CN114938498A publication Critical patent/CN114938498A/zh
Application granted granted Critical
Publication of CN114938498B publication Critical patent/CN114938498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明请求保护一种智能反射面辅助的无人机使能的无线传感网数据收集方法,属于无线传感网技术领域,其具体包括以下步骤:将无人机派遣到地面空间分布的传感器节点SN上空收集数据,并借助智能超表面RIS提高通信质量;为了最大化最小的无人机从所有传感器节点的平均数据收集率,联合优化传感器节点通信调度、智能反射面相移和无人机轨迹;通过利用交替优化AO、逐次凸近似SCA和半正定松弛SDR来得到平均数据收集次优解,根据次优解进行无线传感网数据收集。

Description

智能反射面辅助的无人机使能的无线传感网数据收集方法
技术领域
本发明属于无线传感网领域,尤其涉及智能反射面辅助的无人机使能的无线传感网数据收集方法技术。
背景技术
随着无线通信、电子学和嵌入式微处理器的技术进步,无线传感器网络(WSN)在工业界和学术界引起了强烈的学术热情,实现了环境监测、医疗保健、应急救援和智能家居等应用的普及[1],[2],[3]。一般来说,WSN是由许多电量有限的传感器节点(SN)组成,传感数据通常由静态节点以多跳中继的方式收集[4]。因此,每个SN不仅传输自己的传感数据,而且还帮助中继其他SN的数据。在这种情况下,SN的电量容易耗尽,这可能导致WSN的覆盖率和吞吐量严重下降[5]。
最近,由于其高度灵活的移动性和视线(LoS)传输链路,无人机(UAV)已经被融合到地面无线网络中,以显著改善网络覆盖和***吞吐量[6],[7],从而产生了各种各样的创新应用,如无人机安全通信[8],[9],无人机辅助地面通信[10],无人机中继[11],[12],和无人机使能的WSN[13],[14]。特别是对于无人机使能的WSN,可以利用无人机的机动性,安排无人机按照一定的顺序与每个SN进行通信,以收集数据。因此,它可以靠近地面上的SN,建立LoS支配的通信链路,以提高通信质量[15]。最近的工作广泛地研究了无人机使能的WSN。具体来说,如[16]和[5]所示,通过联合设计无人机的速度、SN的发射功率和每个SN的数据收集间隔,无人机辅助的WSN的数据收集时间极大地降低。[17]和[18]中的作者考虑了一个无人机使能的年龄最优数据收集***,以最小化信息年龄(AoI)。基于最大AoI和平均AoI的指标,设计了两条年龄最优轨迹,以提高SN的信息新鲜度。此外,[19]和[20]还研究了基于深度强化学习(DRL)的无人机数据收集设计,以显著降低AoI。为了降低SN的功耗,[21]提出了一个由无人机辅助的节能数据收集***,作者联合优化了SN的唤醒调度和无人机轨迹。在[22]中,作者提出了一个最大化物联网(IoT)设备数量的问题建模,以改善网络覆盖。考虑到两种不同的信道模型,即莱斯信道和概率LoS信道,[23]和[24]分别设计了相应的无人机轨迹以提高数据收集率。
虽然无人机可以有效提高WSN的覆盖率和数据收集率,但其LoS传输也会受到高大建筑物的阻挡,尤其是在复杂的城市环境中,从而导致通信质量的严重下降。幸运的是,智能超表面(RIS)作为无线网络的一项革命性技术被提出,它可以有效地解决上述局限性[25],[26],[27]。一般来说,RIS是由大量可配置单元组成的。每个单元都可以通过操作数字信号引起相移和振幅的变化。通过优化其相移,传输信号可以聚焦于用户。它几乎是无源的,并具有成本和低功耗的特点,可以很容易地部署在适当的位置,以改善信号传播环境。因此,RIS可以有效地应用于无人机使能的WSN,通过在无人机和通信受阻的SN之间建立虚拟LoS传输,提高无人机的接收信号能量。具体而言,[28]研究了RIS辅助的无人机数据收集***,与没有RIS的方案相比,无人机的飞行时间以及数据收集延迟都大大缩短。考虑RIS使能的无人机支持同步无线信息和电力传输(SWIPT)传感器网络,[29]实现了数据收集总速率的显著改善。此外,在[30]中,作者考虑了一个RIS辅助的能量收集和信息传输***,其中研究了RIS单元和接入点(AP)天线的最佳数量,以及RIS的最佳部署策略。作者在[31]中研究了无人机飞行的两种情况,即悬停和移动,并提出了两种DRL算法以提高数据收集率。为了表征信息的新鲜度,[32]部署了一个空中RIS,被动地将信息从物联网设备转发到基站(BS),从而预期的AoI总和显著下降。此外,在[33]中提出了一个用于安全数据收集的无人机载RIS***,恶意窃听者潜伏在BS周围,通过推导RIS的最佳位置和反射系数,提高了BS的可达保密率。在[34]中,DRL算法被用来优化无人机的下一步行动以及物联网设备的调度,以实现物联网设备总数的最大化。
值得注意的是,上述文献大多假定SN-UAV通信链路采用简化的LoS信道模型(LCM)。然而,当SN分布在高楼大厦或障碍物附近时,特别是在城市地区,这种假设变得不准确,因为它没有获得无人机与SN或RIS之间的多路径衰减和阴影的关键影响。为了解决这个问题,莱斯衰减信道模型和概率LoS信道模型(PLCM)是两个可以准确地描述空地信道状态的复杂信道模型[35],[36]。具体来说,在无人机飞行高度足够高的条件下,阴影效应减弱,小尺度衰减主要来自于多径反射、散射以及衍射。因此,这种特性可以用莱斯衰减信道模型来描述。相比之下,当无人机的飞行高度相对较低时,由于信号的传播可能会受到随机障碍物的间歇性阻挡,阴影效应就会占据主导地位。一般来说,LoS和非LoS(NLoS)信道状态会受到不同类型的建筑以及无人机与SN或RIS之间的相对位置的影响。概率LoS信道模型(PLCM)可以充分地描述信道状态的这一特征[24],[37]。尽管作者在[34]中对IoT设备和无人机之间的链路采用了PLCM,并对RIS-UAV的链路假设了莱斯衰落信道模型,但该假设有以下局限性:1)无人机与地面设备的仰角是固定的,不能正确描述无人机飞行过程中空地链路LoS概率的变化;2)恒定的莱斯因子不能描述其与无人机轨迹的实际关系,这是由于莱斯因子随着RIS与无人机之间的仰角呈指数增长,而仰角也与无人机的轨迹紧密相关。因此,在RIS辅助的无人机使能的WSN中,还没有对无人机的仰角和与SN的距离的权衡以提高数据收集率进行充分研究。
[1]S.Ehsan and B.Hamdaoui,“A survey on energy-efficient routingtechniques with QoS assurances for wireless multimedia sensor networks,”IEEECommunications Surveys&Tutorials,vol.14,no.2,pp.265-278,Mar.2012.
[2]A.A.Kumar S.,K.Ovsthus,and L.M.Kristensen.,“An industrialperspective on wireless sensor networks-A survey of requirements,protocols,and challenges,”IEEE Communications Surveys&Tutorials,vol.16,no.3,pp.1391-1412,Jan.2014.
[3]R.Zhou,X.Zhang,X.Wang,G.Yang,H.-N.Dai,and M.Liu,“Device-orientedkeyword searchable encryption scheme for cloud-assisted industrial IoT,”IEEEInternet of Things Journal,pp.1-1,Nov.2021.
[4]J.Yick,B.Mukherjee,and D.Ghosal,“Wireless sensor network survey,”Computer Networks,vol.52,no.12,pp.2292-2330,Aug.2008.[Online].Available:
https://www.sciencedirect.com/science/article/pii/S1389128608001254
[5]J.Gong,T.-H.Chang,C.Shen,and X.Chen,“Flight time minimization ofUAV for data collection over wireless sensor networks,”IEEE Journal onSelected Areas in Communications,vol.36,no.9,pp.1942-1954,Sep.2018.
[6]Y.Zeng,R.Zhang,and T.J.Lim,“Wireless communications with unmannedaerial vehicles:Opportunities and challenges,”IEEE Communications Magazine,vol.54,no.5,pp.36-42,May 2016.
[7]Y.Zeng,Q.Wu,and R.Zhang,“Accessing from the sky:A tutorial on UAVcommunications for 5G and beyond,”Proceedings of the IEEE,vol.107,no.12,pp.2327-2375,Dec.2019.
[8]B.Duo,J.Luo,Y.Li,H.Hu,and Z.Wang,“Joint trajectory and poweroptimization for securing UAV communications against active eavesdropping,”China Communications,vol.18,no.1,pp.88-99,Jan.2021.
[9]X.Zhou,Q.Wu,S.Yan,F.Shu,and J.Li,“UAV-enabled securecommunications:Joint trajectory and transmit power optimization,”IEEETransactions on Vehicular Technology,vol.68,no.4,pp.4069-4073,Apr.2019.
[10]Q.Wu,Y.Zeng,and R.Zhang,“Joint trajectory and communicationdesign for multi-UAV enabled wireless networks,”IEEE Transactions on WirelessCommunications,vol.17,no.3,pp.2109-2121,Mar.2018.
[11]Y.Wu,W.Yang,X.Guan,and Q.Wu,“UAV-enabled relay communicationunder malicious jamming:Joint trajectory and transmit power optimization,”IEEE Transactions on Vehicular Technology,vol.70,no.8,pp.8275-8279,Aug.2021.
[12]Q.Song and F.Zheng,“Energy efficient multi-antenna UAV-enabledmobile relay,”China Communications,vol.15,no.5,pp.41-50,May 2018.
[13]S.K.Haider,M.A.Jamshed,A.Jiang,H.Pervaiz,and Q.Ni,“UAV-assistedcluster-head selection mechanism for wireless sensor network applications,”inProc.of UK/China Emerging Technologies(UCET),Glasgow,UK,Aug.2019.
[14]P.Sun,A.Boukerche,and Y.Tao,“Theoretical analysis of the areacoverage in a UAV-based wireless sensor network,”in Proc.of InternationalConference on Distributed Computing in Sensor Systems(DCOSS),Ottawa,ON,Canada,Jun.2017.
[15]D.Yang,Q.Wu,Y.Zeng,and R.Zhang,“Energy tradeoff in ground-to-UAVcommunication via trajectory design,”IEEE Transactions on VehicularTechnology,vol.67,no.7,pp.6721-6726,Jul.2018.
[16]J.Gong,T.-H.Chang,C.Shen,and X.Chen,“Aviation time minimizationof UAV for data collection from energy constrained sensor networks,”inProc.of IEEE Wireless Communications and Networking Conference(WCNC),Barcelona,Spain,Apr.2018.
[17]J.Liu,X.Wang,B.Bai,and H.Dai,“Age-optimal trajectory planning forUAV-assisted data collection,”in Proc.of IEEE Conference on ComputerCommunications Workshops(INFOCOM Workshops),Honolulu,HI,USA,Apr.2018.
[18]J.Liu,P.Tong,X.Wang,B.Bai,and H.Dai,“UAV-aided data collectionfor information freshness in wireless sensor networks,”IEEE Transactions onWireless Communications,vol.20,no.4,pp.2368-2382,Apr.2021.
[19]P.Tong,J.Liu,X.Wang,B.Bai,and H.Dai,“Deep reinforcement learningfor efficient data collection in UAV-aided internet of things,”in Proc.ofIEEE International Conference on Communications Workshops(ICC Workshops),Dublin,Ireland,Jun.2020.
[20]M.Yi,X.Wang,J.Liu,Y.Zhang,and B.Bai,“Deep reinforcement learningfor fresh data collection in UAV-assisted IoT networks,”in Proc.of IEEEConference on Computer Communications Workshops(INFOCOM WKSHPS),Toronto,ON,Canada,Jul.2020.
[21]C.Zhan,Y.Zeng,and R.Zhang,“Energy-efficient data collection inUAV enabled wireless sensor network,”IEEE Wireless Communications Letters,vol.7,no.3,pp.328-331,Jun.2018.
[22]M.Samir,S.Sharafeddine,C.M.Assi,T.M.Nguyen,and A.Ghrayeb,“UAVtrajectory planning for data collection from time-constrained IoT devices,”IEEE Transactions on Wireless Communications,vol.19,no.1,pp.34-46,Jun.2020.
[23]C.You and R.Zhang,“3D trajectory optimization in rician fadingfor UAV-enabled dataharvesting,”IEEE Transactions on Wireless Communications,vol.18,no.6,pp.3192-3207,Jun.2019.
[24]C.You,X.Peng,and R.Zhang,“3D trajectory design for UAV-enableddata harvesting in probabilistic LoS channel,”in Proc.of IEEE GlobalCommunications Conference(GLOBECOM),Waikoloa,HI,USA,Dec.2019.
[25]Q.Wu,S.Zhang,B.Zheng,C.You,and R.Zhang,“Intelligent reflectingsurface-aided wireless communications:A tutorial,”IEEE Transactions onCommunications,vol.69,no.5,pp.3313-3351,May 2021.
[26]Q.Wu and R.Zhang,“Towards smart and reconfigurable environment:Intelligent reflecting surface aided wireless network,”IEEE CommunicationsMagazine,vol.58,no.1,pp.106-112,Jan.2020.
[27]E.Basar,M.Di Renzo,J.De Rosny,M.Debbah,M.-S.Alouini,and R.Zhang,“Wireless communications through reconfigurable intelligent surfaces,”IEEEAccess,vol.7,pp.116753-116 773,Aug.2019.
[28]C.You,Z.Kang,Y.Zeng,and R.Zhang,“Enabling smart reflection inintegrated air-ground wireless network:IRS meets UAV,”2021.[Online].Available:https://arxiv.org/abs/2103.07151
[29]Z.Li,W.Chen,H.Cao,H.Tang,K.Wang,and J.Li,“Intelligent reflectingsurface empowered UAV SWIPT networks,”2021.[Online].Available:https://arxiv.org/abs/2107.11016
[30]A.A.Khalil,M.Y.Selim,and M.A.Rahman,“CURE:Enabling RF energyharvesting using cell-free massive MIMO UAVs assisted by RIS,”2021.[Online].Available:
https://arxiv.org/abs/2107.10412
[31]K.K.Nguyen,A.Masaracchia,T.Do-Duy,H.V.Poor,and T.Q.Duong,“RIS-assisted UAV communications for IoT with wireless power transfer using deepreinforcement learning,”2021.
[Online].Available:https://arxiv.org/abs/2108.02889
[32]M.Samir,M.Elhattab,C.Assi,S.Sharafeddine,and A.Ghrayeb,“Optimizing age of information through aerial reconfigurable intelligentsurfaces:A deep reinforcement learning approach,”IEEE Transactions onVehicular Technology,vol.70,no.4,pp.3978-3983,Apr.2021.
[33]C.O.Nnamani,M.R.A.Khandaker,and M.Sellathurai,“Joint beamformingand location optimization for secure data collection in wireless sensornetworks with UAV-carried intelligent reflecting surface,”2021.[Online].Available:https://arxiv.org/abs/2101.06565
[34]A.Al-Hilo,M.Samir,M.Elhattab,C.Assi,and S.Sharafeddine,“RIS-assisted UAV for timely data collection in IoT networks,”2021.[Online].Available:https://arxiv.org/abs/2103.17162
[35]C.You and R.Zhang,“Hybrid offline-online design for UAV-enableddata harvesting in probabilistic LoS channels,”IEEE Transactions on WirelessCommunications,vol.19,no.6,pp.3753-3768,Jun.2020.
[36]B.Duo,Y.Li,H.Hu,J.Luo,and Z.Wang,“Joint robust 3D trajectory andcommunication design for dual-UAV enabled secure communications inprobabilistic LoS channel,”Ad Hoc Networks,vol.121,no.5,Oct.2021.
[37]B.Duo,Q.Wu,X.Yuan,and R.Zhang,“Anti-jamming 3D trajectory designfor UAV-enabled wireless sensor networks under probabilistic LoS channel,”IEEE Transactions on Vehicular Technology,vol.69,no.12,pp.16 288-16 293,Dec.2020.
[38]A.Al-Hourani,S.Kandeepan,and S.Lardner,“Optimal LAP altitude formaximum coverage,”IEEE Wireless Communications Letters,vol.3,no.6,pp.569-572,Dec.2014.
[39]S.Li,B.Duo,X.Yuan,Y.-C.Liang,and M.Di Renzo,“Reconfigurableintelligent surface assisted UAV communication:Joint trajectory design andpassive beamforming,”IEEE Wireless Communications Letters,vol.9,no.5,pp.716-720,May 2020.
[40]M.Grant and S.Boyd,“CVX:Matlab Software for Disciplined ConvexProgramming,version 2.2,”(2020).[Online].Available:http://cvxr.com/cvx
[41]Q.Wu and R.Zhang,“Intelligent reflecting surface enhancedwireless network via joint active and passive beamforming,”IEEE Transactionson Wireless Communications,vol.18,no.11,pp.5394-5409,Aug.2019.
[42]Q.Wu,Y.Zeng,and R.Zhang,“Joint trajectory and communicationdesign for multi-UAV enabled wireless networks,”IEEE Transactions on WirelessCommunications,vol.17,no.3,pp.2109-2121,Mar.2018.
发明内容
本发明旨在解决以上现有技术的问题。提出了一种智能反射面辅助的无人机使能的无线传感网数据收集方法。本发明的技术方案如下:
一种智能反射面辅助的无人机使能的无线传感网数据收集方法,其包括以下步骤:
将无人机派遣到地面空间分布的传感器节点SN上空收集数据,并借助智能超表面RIS提高通信质量;
为了最大化最小的无人机从所有传感器节点的平均数据收集率,联合优化传感器节点通信调度、智能反射面相移和无人机轨迹;
通过利用交替优化AO、逐次凸近似SCA和半正定松弛SDR来得到次优解,根据次优解进行无线传感网数据收集。
进一步的,所述智能超表面RIS是由大量可配置单元组成的,每个单元都可以通过操作数字信号引起相移和振幅的变化,通过优化其相移,传输信号可以聚焦于用户。
进一步的,当无人机为智能超表面RIS附近的传感器节点SN提供通信服务时,它飞近智能超表面RIS,而对离智能超表面RIS远的传感器节点SN提供服务时,则飞近传感器节点SN。
进一步的,所述联合优化传感器节点通信调度、智能反射面相移和无人机轨迹,具体包括:
通过在整个时隙N内联合合优化无人机的水平轨迹通信调度和RIS相移/>然后,优化问题可以被表述为
(1)-(2),(4),(12),(16)-(17).
η表示最小用户平均数据收集速率,αk[n]为二元通信调度变量,Rk[n]分别表示用户期望速率和用户瞬时通信速率,θm[n]表示智能反射面的第m个元素的相移、/>表示智能反射面元素个数集合、/>表示任务飞行时隙集合、n表示当前的时隙、k表示当前传感器节点、/>分别传感器节点集合。
本发明的优点及有益效果如下:
本发明研究了在RIS的辅助下无人机使能的WSN,以提高数据收集速率,其优点是:
本发明将智能反射面融入无线传感器网络,以解决复杂城市环境中的通信质量下降问题;
本发明采用PLCM可以更好地描述复杂城市地区的不同信道状态,从而使无人机的轨迹设计更加精确;
在无人机轨迹、RIS的相移和SN通信调度的约束下,我们的目标是实现最小平均数据收集率的最大化。由于建模问题是非凸的,我们提出了一种有效的算法,通过利用AO、SCA和SDR技术来获得其次优解;
本发明融入RIS技术不仅可以显著提高数据收集率,而且可以实现全覆盖和全连接,以及为无人机使能的WSN提供低功耗的设计。
附图说明
图1是本发明提供优选实施例***图;
图2表示最大最小速率与迭代次数;
图3表示T=120s和M=1000,不同方案下的无人机轨迹;
图4表示不同方案实现的预期最大最小速率与时间T的关系;
图5表示当T=120秒时,不同M的无人机轨迹;
图6表示在不同的M下,可达的期望最大最小速率与时间T的关系;
图7表示当T=120秒和M=1000时的调度传输率;
图8表示当T=120秒和M=1000时的无人机速度;
图9表示可达的最大最小速率与SNs的数量;
图10智能反射面辅助的无人机使能的无线传感网数据收集方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、详细地描述。所描述的实施例仅仅是本发明的一部分实施例。
本发明解决上述技术问题的技术方案是:
本文研究了在实际的城市地区中RIS辅助的无人机使能的WSN,并采用PLCM。具体而言是,派遣无人机从一组地面空间分布的SN收集数据。为了提高无人机的数据收集率,一个RIS被部署在建筑物的外墙,以协助每个SN和无人机之间的通信。我们联合优化了通信调度、RIS的相移和无人机轨迹,目的是最大化最小的平均数据收集率。然而,由于其非凸性,问题建模难以求解。为了解决这样的困难,我们首先将问题分为3个子问题,即SN的通信调度、RIS的相移和无人机水平轨迹的优化。虽然每个子问题仍然包含非凸约束,但我们利用松弛变量、逐次凸近似(SCA)和半正定松弛(SDR)将其转化为凸形式。然后,通过应用交替优化(AO),开发了一种有效的算法来得出其次优解。数值结果表明,与采用传统LCM或不采用RIS的方案相比,我们提出的方案可以有效地提高数据收集率。特别是,当无人机为RIS附近的SN提供通信服务时,它趋向于飞近RIS,而对离RIS远的SN提供服务时,则飞近SN,这证实了仰角-距离的权衡对速率提高的影响。
***模型
在本文中,我们研究了一个城市地区的无人机使能的WSN,如图1所示。一架无人机被指派从K≥1个地面传感器节点(SN)收集数据,并在固定的飞行高度zU和给定的任务时间T内定期为它们服务。SN的水平位置用表示。为了提高无人机的数据收集性能,一个装有M=Mr×Mc可重构单元的均匀平面阵列(UPA)的RIS被部署在建筑物的外墙上,以协助每个SN和无人机之间的通信。以下各小节分别说明无人机轨迹模型、SN-UAV信道模型、SN-RIS-UAV信道模型和数据收集模型。
无人机轨迹模型
在这个***中,假设无人机在不同的时间间隔内为SN提供通信服务。为了便于分析,无人机的飞行任务持续时间T被分成N等效的时间段,有足够小的间隔δt,即T=δtN。让代表所有离散时隙的集合。那么,无人机水平轨迹可以用离散序列表示。为了定期为SN提供服务,无人机在完成任务后会返回其初始位置,从而导致以下约束条件
q[N]=q[1], (4)
其中q[1]为无人机的初始水平坐标。无人机可以根据最大的飞行速度Vxy控制它的水平速度。因此,无人机在一个时隙内的最大水平飞行距离由Sxy=Vxyδt给出,它们满足
SN-UAV信道模型
考虑到城市地区的路径损耗和阴影衰落的主导作用不能被忽略,我们假定SN-UAV信道遵循PLCM[38],这表明在每个时隙n的信道状态是LoS或NLoS。因此,SN-UAV信道的LoS概率可以表示为
其中
是SN k与无人机在时隙n的仰角,a和b是由城市环境决定的恒定参数。相应地,NLoS的概率可以得到为
那么,SN k和无人机在第n个时隙的LoS或NLoS状态的信道系数可以分别建模为
其中是第n个时隙中SNk到无人机的相应距离,ρ0是在d0=1m的参考距离上平均的信道增益,μ表示NLoS传播产生的额外信号衰减参数,/>相应地表示LoS和NLoS状态下的SN-UAV信道中的路径损耗指数。
SN-RIS-UAV信道模型
除了SN-UAV链路外,无人机还可以通过RIS与SN进行通信,即反射链路,其中包括SN-RIS和RIS-UAV信道。RIS可以配备一个处理器,智能地调整每个单元的相移。定义RIS的对角线相移矩阵为
其中θm[n]∈[0,2π)和βm∈[0,1],分别表示第m个元素的相移和振幅反射系数。为了便于分析,我们指定|βm|=1,/>以实现最大的反射信道增益。我们假设RIS设置在x-z平面上,与x轴平行。同时,我们将RIS的第一个元素视为参考点,其高度和水平坐标相应地表示为zR和wR=[xR,yR]T。因此,SN k与RIS之间的距离可以通过相应的SN与参考点之间的距离来估计[39]。
对于SN-RIS链路,假定它满足独立的瑞丽衰落信道模型,其SN k和RIS在第n时隙的信道增益可表示为
其中κ表示SN-RIS信道中的路径损耗指数,表示SN k与RIS之间的距离,/>是一个环形对称复数高斯(CSCG)随机变量,具有零均值和单位方差。因此,SN-RIS信道模型可以表示为
其中φkR和/>是信号从SN k到RIS的离开方位角和离开仰角(AoA),d和λ分别代表天线间距和载体波长。
与SN-UAV链路类似,我们假定RIS-UAV链路也符合PLCM。根据(3),我们可以得到RIS-UAV信道的LoS概率,即为
其中
相应地,NLoS的概率可以表示为
那么,在每个时隙n内,RIS和无人机之间的信道增益以LoS状态表示,被表征为
其中:
φRU[n]和/>[n]是第n时隙中从RIS到无人机的信号的到达方位角和到达仰角(AoD),表示每个时隙内无人机与RIS之间的距离。由于多路径效应,在RIS和无人机之间的NLoS状态条件下,信道增益可以被描述为
其中hss由CSCG分布建模,具有零均值和单位方差。和/>相应地表示LoS和NLoS状态下的RIS-UAV信道中的路径损耗指数。
数据收集模型
假设无人机以时分多址(TDMA)模式,为每个SN提供服务。定义αk[n]为二元通信调度变量,表示如果αk[n]=1,则SN k进行传输;否则,αk[n]=0。在每个时隙中,我们假定只有一个SN可以被安排与无人机进行通信,从而导致以下约束条件
如果SN k被安排与无人机进行通信,则在每个时隙内无人机的相应可达速率(比特/秒/赫兹)可以表示为
其中σ2是接收方的加性白高斯噪声(AWGN)功率,P是SN k的最大发射功率。
其中
代表SN-UAV信道和SN-RIS-UAV信道在LoS和NLoS状态下的可达速率,以及
问题建模
本文旨在使无人机最大化所有SN的最小平均数据收集率,通过在整个时隙N内联合合优化无人机的水平轨迹通信调度/>和RIS相移/>然后,优化问题可以被表述为
(1)-(2),(4),(12),(16)-(17).
尽管(1)-(2)、(16)和(22)中的约束条件是凸的,但由于以下三个原因,得到问题(20)最优解仍是一个挑战。首先,对于Q、A和Θ而言,约束条件(20)不是联合凸的。其次,二元变量约束(16)和(17)导致了解决混合整数优化问题的复杂。最后,非仿射约束(4)和(12)导致了问题(20)的非凸性。然而,在第4节中,我们提出了一种有效的算法来求解问题(20)的次优解。
本文算法
本节提出了一种有效的算法来解决问题(20),它基于AO、SCA和SDR技术得到问题的次优解。具体来说,问题(20)是通过交替求解三个子问题,即优化通信调度A、RIS的相移Θ、无人机水平轨迹Q。然后,我们对整个算法进行整合,并讨论其计算复杂性和收敛性。
通信调度优化
对于RIS的任何可行相移矩阵Θ,以及前次迭代得到的无人机轨迹Q,我们将(17)中的二元变量αk[n]松弛为连续变量,得到以下优化问题
(16),(21),
这是一个简单的线性规划问题,因此可以通过使用常用的优化求解器,如CVX来进行有效求解[40]。
RIS相位优化
对于任何可行的无人机轨迹Q和(23)中求解出的通信调度A,相移Θ的优化问题可以被表述为
/>
s.t.(21),(22).
然而,约束条件(21)包含Θ的对角元素,导致优化问题(25)是一个单位模数约束的非凸优化问题。为了解决这种困难,我们做出如下变换。定义
和ξ[n]=[ξ1[n],ξ2[n],,ξM[n],1]T 和/>可以被重新表述为
因此,问题(25)可以被写成
(21).
由于约束条件(28)不是一个凸形式,我们应用SDR方法来松弛它。然后,我们有
其中Ξ[n]=ξ[n]([n])H 以及Tr(X)代表X的迹。然后,我们可以重写问题(27)为
/>
其中
和/>
以上可以表明问题(30)是一个凸的半正定规划问题,因此可以利用CVX来解决它。尽管如此,可能不会产生一个秩为1的解。因此,可以用高斯随机化方法从Ξ[n]中恢复ξ[n],由于与[41]中的相似性,此处省略。
无人机轨迹优化
对于(23)中求解出的通信调度A,以及在(30)求解出的最优相移Θ,问题(20)可以被重新表述为
s.t.(1)-(2),(4),(12),(21).
然而,(14)中的对于无人机轨迹来说是复杂的、非线性的,这导致了无人机轨迹设计的困难性。为了解决这种难以解决的问题,我们使用(l-1)次迭代的无人机水平轨迹,以近似l次的迭代。
因此,和/>被重写为
其中定义
其中
gL[n]=1+aexp(-b(ψkU[n]-a)),
tL[n]=1+aexp(-b(ψRU[n]-a)),
问题(34)可以改写为
(1)-(2),(4),(12).
通过引入松弛变量和/>问题(37)可以表述为
(1),(2),(38),
其中
是辅助变量。
由于(40)-(41)和(46)-(49)中的约束条件对其相应的优化变量来说都不是凸的,所以要解决(39)问题的最优解仍然很困难。
尽管约束条件(40)不是凸的,但通过使用对数函数的单调性,它可以被重写为
ln(Ωfo[n])+ln(gf[n])+ln(to[n])≤ln(Λfo[n]). (54)
为了解决上述非凸约束(52),可以看到它的左侧包含三个项,每个项对其相应的优化变量都是凹的。因此,对于在第l次迭代中给定的局部点 我们可以用一阶泰勒展开来近似它的上界,即
根据凸函数的定义,我们可以得出(35)是凸函数。因此,我们可以使用SCA技术,通过其下界来近似速率函数。在局部点和/>使用一节泰勒扩展可以得到
其中
为了解决非凸约束(46)-(49),可以看到(46)和(48)的右侧是关于||q[n]-wk||和||q[n]-wR||的凸函数,(47)和(49)的右侧是与q[n]有关的凹函数。因此,使用相同的方法,在局部变量点可以得到
/>
其中
为了使(50)-(51)中的约束条件具有凸性,对于给定的局部点u2[n]和v2[n]的一阶泰勒展开和/>在第l次迭代中,由以下方式给出
-u2[n]≤(ul[n])2-2ul[n]u[n], (61)
-v2[n]≤(vl[n])2-2vl[n]v[n]. (62)根据(53)-(60),问题(39)可以被近似为
(1)-(2),(38),(53)-(58).
以上表明,问题(61)现在变成了一个凸优化,因此我们可以利用CVX来有效地获得其解。
总体算法和计算复杂度
根据前面的小节,我们可以通过交替优化三个子问题(23)、(30)和(61)来迭代得出问题(20)的次优解。算法1囊括了解决问题(20)的整体算法。此外,计算复杂度在下文中进行了阐述。由于CVX中使用了标准的内点法来求解优化通信调度、RIS的相移和无人机水平轨迹,在给定优化准确度>0时,计算复杂度分别为 以及/>因此,本文算法的总计算复杂度为/>此外,算法1的收敛性可以通过求解问题(20)的非递减值来保证,这可以在下一节的图2中得到验证。
算法1
数值仿真
在这一节中,我们提供了仿真结果,以证实我们在PLCM下提出的算法(表示为PA-PLCM)的有效性,并与以下三个基准方案进行比较:
·在LCM下提出的算法(表示为PA-LCM);
·在PLCM下没有RIS下提出的算法(表示为NR-PLCM);
·在PLCM下的固定轨迹设计(表示为FT-PLCM)。
具体来说,PA-LCM方案是在LCM下通过算法1联合优化SN的通信调度、无人机水平轨迹和RIS的相移来设计的,即,假设(3)和(11)的LoS概率被设定为 NR-PLCM方案在没有RIS的帮助下进行了优化,即假设反射单元的数量为M=0。对于FT-PLCM方案,固定轨迹是根据[42]中提出的圆形轨迹生成的。
为了便于说明问题,我们考虑K=4个SN随机分布在一个200×300m2的长方形区域,RIS的水平坐标和高度分别是(0,0)和zR=30m。其他仿真参数为Vxy=25m/s,δt=1s,zU=80m,β0=-30dB,μ=-20dB,ρ0=-20dB,a=11.95,b=0.14,κ=2.2,σ2=-80dBm,P=0.01W,/>∈=0.0001。
我们首先在图2中展示了所提出的PA-PLCM方案在不同飞行周期T下的收敛情况。可以看出,最大化最小速率在迭代中迅速增加,并在20次左右的迭代后收敛。此外,随着T的增加,该速率有了很大的提高,因为无人机可以在适当的位置悬停,有足够长的时间为每个SN提供服务,以达到最大的数据收集率。然而,预计当T接近无穷大时,例如120秒,速率的提高将放缓。这是因为,当T较大时,无人机的轨迹没有明显的变化。尽管无人机在每个SN上的悬停时间变长,但实现的最大最小速率受到性能最差的SN的限制。
在图3中,我们比较了T=120s和M=1000时,不同方案的无人机轨迹。可以看出,三种方案中的无人机轨迹存在明显的差异:
1)在NR-PLCM方案中,无人机直接飞往每个SN,并在其正上方悬停。这是由于在其悬停位置,无人机不仅可以获得与每个SN的最大仰角(即最大的LoS概率),而且是最小的路径损失,从而获得最大的数据收集率。
2)对于PA-LCM方案,无人机飞近SN 1和SN 4。然而,当为SN 2和SN 3服务时,无人机不是在它们上空悬停,而是逐渐飞向RIS。此外,无人机的飞行轨迹呈现出不规则的弧形。这揭示了PA-LCM方案中SN-UAV链路和SN-RIS-UAV链路之间的距离权衡。具体来说,当SN离RIS远(如SN 1和SN 4)时,RIS只能提供有限的帮助来提高数据收集率。因此,无人机只能靠近它们飞行,以减少路径损失,提高通信质量。然而,当SN位于RIS附近时,与SN-UAV链路相比,RIS提供的信道增益变得很重要。因此,为了获得由RIS提供的更大的信道增益,无人机被吸引到RIS附近飞行。
3)与PA-LCM方案相比,PA-LCM方案中的无人机轨迹显示出突出的仰角-距离权衡。具体来说,当无人机飞离RIS时,由于RIS的仰角低,RIS和无人机之间的路径损耗大,来自RIS的反射信号能量变得微不足道。在这种情况下,无人机可以在靠近SN 1和SN 4的地方悬停,以增大与相应SN的仰角,达到更高的LoS概率,同时减少路径损耗以获得更好的信道质量。然而,当在RIS附近飞行时,无人机直接飞向RIS,而不是花很多时间在SN 2和SN 3上方悬停。原因是,SN-RIS-UAV链路比SN-UAV链路提供了主导的信道增益,悬停在RIS附近无人机可以与RIS保持较大的仰角,同时遭受较低的路径损耗。
图4显示了不同方案在不同T下的可达最大最小速率。可以看出,PA-PLCM方案明显优于其他基准方案。特别是,随着T的增加,FT-PLCM方案的性能变得最差,因为它没有充分利用无人机的灵活机动性。这表明了无人机轨迹设计的实际意义。PA-LCM方案显示出比NR-PLCM方案更好的速率性能,这揭示了RIS的辅助在提高数据收集速率方面可以发挥重要作用。PA-PLCM方案与PA-LCM方案相比,在速率性能方面有明显的改善。这是因为使用更精确的PLCM可以更好地描述复杂城市地区的实际LoS和NLoS状态。
如图5所示,我们可以看到,随着反射单元数M的增加,当无人机访问每个SN时,PA-PLCM方案具有相似的轨迹,但不同的是,当为RIS附近的SN提供通信服务时,无人机会向RIS靠近。原因在于,在反射单元数量较少的情况下,RIS提供的速率增益可以忽略不计,所以无人机没有向RIS移动。然而,如果有足够大的M,RIS可以显著提高SN和UAV之间的通信质量,因此UAV在RIS上方悬停,以充分利用RIS带来的信号功率增强。图6显示了不同M下实现的预期最大最小速率与T的关系。表明在RIS中配备更多数量的反射单元时,由于更大的无源信道增益,可达速率性能将得到明显改善。
图7比较了T=120s和M=1000时在第n个时隙下的每个SN的通信调度传输率。对于NR-PLCM方案,每个SN占用的时隙数量几乎相同,这表明无人机在SN上方悬停的时间越长越好,以建立强LoS链路来更好地收集数据。在PA-PLCM方案中,可以看到SN 2和SN 3的传输速率有明显的提高,其他离RIS较远的SN被安排了更多的时隙供无人机收集数据。这是因为在RIS的协助下,无人机可以从每个SN获得额外的信道增益,特别是对于那些靠近RIS的SN。
图8是NR-PLCM和PA-PLCM方案在T=120s的每个时隙的无人机速度图。当无人机速度降低到零时,我们用标签指出无人机在哪里悬停。可以看出,NR-PLCM方案中的无人机在服务完一个SN后,以最大的飞行速度飞往下一个SN,这是因为在SN上方悬停可以保持最高的LoS概率和最低的路径损耗,以实现最大的数据收集率。在PA-PLCM方案中,无人机在RIS上方悬停的时间最长,而不需要花很多时间在SN 2和SN 3上方盘旋。这是因为,当飞到SN 2或SN 3时,无人机被吸引到靠近RIS,以获得RIS提供的主导被动增益,这与如图5所示的无人机的飞行轨迹一致。
最后,图9显示了不同方案中可达最大最小速率与SN数量的关系。我们可以观察到,所有方案的速率都随着SN数量的增加而下降。这是由于通信资源被分配给更多的SN,而具有最低速率的SN限制了最大最小速率的性能。此外,当SN的数量减少时,PA-PLCM和PA-LCM方案的速率趋于重合。这是因为较少的SN可以共享更多的通信资源,并且这两种方案的无人机轨迹相似。
结论
在本文中,我们研究了在RIS的辅助下无人机使能的WSN,以提高数据收集率。对于SN-UAV信道和RIS-UAV信道,我们考虑了与仰角有关的PLCM。在无人机轨迹、RIS的相移和SN通信调度的约束下,我们的目标是实现最小平均数据收集率的最大化。由于建模问题是非凸的,我们提出了一种有效的算法,通过利用AO、SCA和SDR技术来获得其次优解。数值结果表明,与基准方案相比,所提出的算法可以实现数据收集率的显著提高。特别是,采用PLCM可以更好地描述复杂城市地区的不同信道状态,从而使无人机的轨迹设计更加精确。此外,对于靠近RIS的SN来说,由于更大的级联信道增益,它们的通信调度传输率得到了很大的改善。对于远离RIS的SN,无人机可以在其上方盘旋,以安排更多的时间资源。因此,利用新兴的RIS技术不仅可以显著提高数据收集率,而且可以实现全覆盖和全连接,以及为以后的绿色无人机使能的WSN提供低功耗的设计。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。

Claims (1)

1.一种智能反射面辅助的无人机使能的无线传感网数据收集方法,其特征在于,包括以下步骤:
将无人机派遣到地面空间分布的传感器节点SN上空收集数据,并借助智能超表面RIS提高通信质量;
为了最大化最小的无人机从所有传感器节点的平均数据收集率,联合优化传感器节点通信调度、智能反射面相移和无人机轨迹;
通过利用交替优化AO、逐次凸近似SCA和半正定松弛SDR来得到其次优解,根据次优解进行无线传感网数据收集;
具体包括:一架无人机被指派从K≥1个地面传感器节点SN收集数据,并在固定的飞行高度zU和给定的任务时间T内定期为它们服务;SN的水平位置用表示;为了提高无人机的数据收集性能,一个装有M=Mr×Mc可重构单元的均匀平面阵列UPA的RIS被部署在建筑物的外墙上,以协助每个SN和无人机之间的通信;
被指派去收集地面传感器节点SN收集数据的无人机轨迹模型具体为:
在这个***中,假设无人机在不同的时间间隔内为SN提供通信服务;为了便于分析,无人机的飞行任务持续时间T被分成N等效的时间段,有足够小的间隔δt,即T=δtN;让代表所有离散时隙的集合;那么,无人机水平轨迹用离散序列表示;为了定期为SN提供服务,无人机在完成任务后会返回其初始位置,从而导致以下约束条件
q[N]=q[1], (1)
其中q[1]为无人机的初始水平坐标;无人机根据最大的飞行速度Vxy控制它的水平速度;因此,无人机在一个时隙内的最大水平飞行距离由Sxy=Vxyδt给出,它们满足
无人机轨迹模型的建立用于空地信道的建模,即包括SN-UAV信道模型和SN-RIS-UAV信道模型,以及方便优化问题的无人机飞行轨迹约束表征及相关优化变量的求解;
SN-UAV信道模型具体为:
考虑到城市地区的路径损耗和阴影衰落的主导作用不能被忽略,假定SN-UAV信道遵循PLCM,这表明在每个时隙n的信道状态是LoS或NLoS;因此,SN-UAV信道的LoS概率表示为
其中
是SN k与无人机在时隙n的仰角,a和b是由城市环境决定的恒定参数;相应地,NLoS的概率得到为
那么,SN k和无人机在第n个时隙的LoS或NLoS状态的信道系数分别建模为
其中是第n个时隙中SNk到无人机的相应距离,ρ0是在d0=1m的参考距离上平均的信道增益,μ表示NLoS传播产生的额外信号衰减参数,/>和/>相应地表示LoS和NLoS状态下的SN-UAV信道中的路径损耗指数;
SN-RIS-UAV信道模型具体为:
除了SN-UAV链路外,无人机还通过RIS与SN进行通信,即反射链路,其中包括SN-RIS和RIS-UAV信道;RIS配备一个处理器,智能地调整每个单元的相移;定义RIS的对角线相移矩阵为
其中θm[n]∈[0,2π)和分别表示第m个元素的相移和振幅反射系数;为了便于分析,指定/>以实现最大的反射信道增益;假设RIS设置在x-z平面上,与x轴平行;同时,将RIS的第一个元素视为参考点,其高度和水平坐标相应地表示为zR和wR=[xR,yR]T;因此,SN k与RIS之间的距离通过相应的SN与参考点之间的距离来估计;
对于SN-RIS链路,假定它满足独立的瑞丽衰落信道模型,其SN k和RIS在第n时隙的信道增益可表示为
其中κ表示SN-RIS信道中的路径损耗指数,表示SN k与RIS之间的距离,/>是一个环形对称复数高斯CSCG随机变量,具有零均值和单位方差;因此,SN-RIS信道模型表示为
其中φkR和/>是信号从SN k到RIS的离开方位角和离开仰角AoA,d和λ分别代表天线间距和载体波长;
与SN-UAV链路类似,假定RIS-UAV链路也符合PLCM;根据(3),得到RIS-UAV信道的LoS概率,即为
其中
相应地,NLoS的概率表示为
那么,在每个时隙n内,RIS和无人机之间的信道增益以LoS状态表示,被表征为
其中
φRU[n]和/>是第n时隙中从RIS到无人机的信号的到达方位角和到达仰角AoD,表示每个时隙内无人机与RIS之间的距离;由于多路径效应,在RIS和无人机之间的NLoS状态条件下,信道增益被描述为
其中hss由CSCG分布建模,具有零均值和单位方差;和/>相应地表示LoS和NLoS状态下的RIS-UAV信道中的路径损耗指数;
根据SN-UAV信道模型和SN-RIS-UAV信道模型,建立数据收集模型,具体为:
基于信道模型建模中获得的信道增益(6)、(7)、(9)、(10)、(14)和(15),以及相应的LoS和NLoS状态概率的表达形式(3)、(5)、(11)和(13),可以进一步实现数据收集模型的建立,从而获得数据收集可达速率表达式;
假设无人机以时分多址TDMA模式,为每个SN提供服务;定义αk[n]为二元通信调度变量,表示如果αk[n]=1,则SNk进行传输;否则,αk[n]=0;在每个时隙中,假定只有一个SN被安排与无人机进行通信,从而导致以下约束条件
如果SN k被安排与无人机进行通信,则在每个时隙内无人机的相应可达速率表示为
其中σ2是接收方的加性白高斯噪声AWGN功率,P是SN k的最大发射功率;
其中
代表SN-UAV信道和SN-RIS-UAV信道在LoS和NLoS状态下的可达速率,以及
以上可达速率表达式(19)用于对优化问题进行建模,从而实现所有SN的最小平均数据收集率的最大化目标;
根据可达速率表达式(19),对优化问题进行建模,问题建模具体为:
为了使无人机最大化所有SN的最小平均数据收集率,通过在整个时隙N内联合合优化无人机的水平轨迹通信调度/>和RIS相移然后,优化问题被表述为
(1)-(2),(4),(12),(16)-(17).
尽管(1)-(2)、(16)和(22)中的约束条件是凸的,但由于以下三个原因,得到问题(20)最优解仍是一个挑战;首先,对于Q、A和Θ而言,约束条件(20)不是联合凸的;其次,二元变量约束(16)和(17)导致了解决混合整数优化问题的复杂;最后,非仿射约束(4)和(12)导致了问题(20)的非凸性;提出了一种有效的算法来求解问题(20)的次优解;
基于AO、SCA和SDR技术得到问题的次优解;具体来说,问题(20)是通过交替求解三个子问题,即优化通信调度A、RIS的相移Θ、无人机水平轨迹Q;然后,对整个算法进行整合,并讨论其计算复杂性和收敛性;
通信调度优化具体为:
对于RIS的任何可行相移矩阵Θ,以及前次迭代得到的无人机轨迹Q,将(17)中的二元变量αk[n]松弛为连续变量,得到以下优化问题
(16),(21),
即,除了A和η外,问题(22)中的其它优化变量在问题(23)中均为固定的常量,故这是一个简单的线性规划问题,因此通过使用常用的优化求解器,如CVX来进行有效求解;
RIS相位优化具体为:
对于任何可行的无人机轨迹Q和(23)中求解出的通信调度A,相移Θ的优化问题被表述为
s.t.(21),(22).
即,除了Θ和η外,问题(22)中的其它优化变量在问题(25)中均为固定的常量,然而,约束条件(21)包含Θ的对角元素,导致优化问题(25)是一个单位模数约束的非凸优化问题;为了解决这种困难,做出如下变换;定义
其中
和ξ[n]=[ξ1[n],ξ2[n],…,ξM[n],1]T 和/>被重新表述为
因此,问题(25)被写成
(21).
由于约束条件(28)不是一个凸形式,应用SDR方法来松弛它;然后,有
其中Ξ[n]=ξ[n](ξ[n])H 以及Tr(X)代表X的迹;然后,重写问题(27)为
其中 和/>
以上表明问题(30)是一个凸的半正定规划问题,因此利用CVX来解决它;尽管如此,不会产生一个秩为1的解;因此,用高斯随机化方法从Ξ[n]中恢复ξ[n];无人机轨迹优化具体为:
对于(23)中求解出的通信调度A,以及在(30)求解出的最优相移Θ,问题(20)被重新表述为
s.t.(1)-(2),(4),(12),(21).
即,除了Q和η外,问题(22)中的其它优化变量在问题(33)中均为固定的常量,然而,限制(21)中平均可达速率表达式中涉及的对于无人机轨迹来说是复杂的、非线性的,这导致了无人机轨迹设计的困难性;为了解决这种难以解决的问题,使用(l-1)次迭代的无人机水平轨迹,以近似l次的迭代;
因此,和/>被重写为
其中定义
其中
gL[n]=1+aexp(-b(ψkU[n]-a)),
tL[n]=1+aexp(-b(ψRU[n]-a)),
问题(34)改写为
(1)-(2),(4),(12).
通过引入松弛变量问题(37)表述为
(1),(2),(38),
其中
是辅助变量;
由于(40)-(41)和(46)-(49)中的约束条件对其相应的优化变量来说都不是凸的,所以要解决(39)问题的最优解仍然很困难;
尽管约束条件(40)不是凸的,但通过使用对数函数的单调性,它被重写为
为了解决上述非凸约束(52),看到它的左侧包含三个项,每个项对其相应的优化变量都是凹的;因此,对于在第l次迭代中给定的局部点用一阶泰勒展开来近似它的上界,即
根据凸函数的定义,得出(35)是凸函数;因此,使用SCA技术,通过其下界来近似速率函数;在局部点和/>使用一节泰勒扩展得到
其中
为了解决非凸约束(46)-(49),看到(46)和(48)的右侧是关于||q[n]-wk||和||q[n]-wR||的凸函数,(47)和(49)的右侧是与q[n]有关的凹函数;因此,使用相同的方法,在局部变量点得到
其中
为了使(50)-(51)中的约束条件具有凸性,对于给定的局部点u2[n]和v2[n]的一阶泰勒展开和/>在第l次迭代中,由以下方式给出
-u2[n]≤(ul[n])2-2ul[n]u[n], (58)
-v2[n]≤(vl[n])2-2vl[n]v[n]. (59)
根据(53)-(60),问题(39)被近似为
(1)-(2),(38),(53)-(58).
以上表明,问题(61)现在变成了一个凸优化,因此利用CVX来获得其解。
CN202210323126.7A 2022-03-29 2022-03-29 智能反射面辅助的无人机使能的无线传感网数据收集方法 Active CN114938498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210323126.7A CN114938498B (zh) 2022-03-29 2022-03-29 智能反射面辅助的无人机使能的无线传感网数据收集方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210323126.7A CN114938498B (zh) 2022-03-29 2022-03-29 智能反射面辅助的无人机使能的无线传感网数据收集方法

Publications (2)

Publication Number Publication Date
CN114938498A CN114938498A (zh) 2022-08-23
CN114938498B true CN114938498B (zh) 2023-10-27

Family

ID=82861822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210323126.7A Active CN114938498B (zh) 2022-03-29 2022-03-29 智能反射面辅助的无人机使能的无线传感网数据收集方法

Country Status (1)

Country Link
CN (1) CN114938498B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115379598B (zh) * 2022-08-25 2024-02-27 广东电网有限责任公司 一种多模态通信***
CN116233791B (zh) * 2023-03-23 2024-05-24 重庆邮电大学 多机协同车联网中轨迹优化和资源分配方法
CN116878520B (zh) * 2023-09-06 2024-01-26 北京邮电大学 一种无人机路径规划方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113032932A (zh) * 2019-12-09 2021-06-25 中国科学院深圳先进技术研究院 一种智能反射面相移矩阵设计方法
CN113162679A (zh) * 2021-04-01 2021-07-23 南京邮电大学 基于ddpg算法的irs辅助无人机通信联合优化方法
CN113194488A (zh) * 2021-03-31 2021-07-30 西安交通大学 一种无人机轨迹和智能反射面相移联合优化方法及***
WO2021207748A2 (en) * 2020-08-13 2021-10-14 Futurewei Technologies, Inc. Methods and apparatus for channel reconstruction in intelligent surface aided communications
CN113746578A (zh) * 2021-08-18 2021-12-03 南京邮电大学 一种基于智能反射表面辅助的通信***传输方法
CN114051204A (zh) * 2021-11-08 2022-02-15 南京大学 一种基于智能反射面的无人机辅助通信方法
CN114124266A (zh) * 2022-01-24 2022-03-01 南京中网卫星通信股份有限公司 一种基于irs辅助无人机与无人船通信的信道建模方法
CN114124264A (zh) * 2021-11-26 2022-03-01 江苏科技大学 基于智能反射面时变反射相位的无人机信道模型建立方法
CN114124263A (zh) * 2021-11-25 2022-03-01 江苏科技大学 基于大规模智能反射单元的无人机信道模型建立方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113032932A (zh) * 2019-12-09 2021-06-25 中国科学院深圳先进技术研究院 一种智能反射面相移矩阵设计方法
WO2021207748A2 (en) * 2020-08-13 2021-10-14 Futurewei Technologies, Inc. Methods and apparatus for channel reconstruction in intelligent surface aided communications
CN113194488A (zh) * 2021-03-31 2021-07-30 西安交通大学 一种无人机轨迹和智能反射面相移联合优化方法及***
CN113162679A (zh) * 2021-04-01 2021-07-23 南京邮电大学 基于ddpg算法的irs辅助无人机通信联合优化方法
CN113746578A (zh) * 2021-08-18 2021-12-03 南京邮电大学 一种基于智能反射表面辅助的通信***传输方法
CN114051204A (zh) * 2021-11-08 2022-02-15 南京大学 一种基于智能反射面的无人机辅助通信方法
CN114124263A (zh) * 2021-11-25 2022-03-01 江苏科技大学 基于大规模智能反射单元的无人机信道模型建立方法
CN114124264A (zh) * 2021-11-26 2022-03-01 江苏科技大学 基于智能反射面时变反射相位的无人机信道模型建立方法
CN114124266A (zh) * 2022-01-24 2022-03-01 南京中网卫星通信股份有限公司 一种基于irs辅助无人机与无人船通信的信道建模方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Bin Duo.Joint trajectory and power optimization for securing UAV communications against active eavesdropping.《China Communications》.2021,全文. *
Mu Xidong.Intelligent Reflecting Surface Enhanced Multi-UAV NOMA Networks.《IEEE Journal on Selected Areas in Communications》.2021,全文. *
刘沛.智能反射面辅助的无线安全通信资源优化策略研究.《中国优秀硕士学位论文全文数据库》.2022,全文. *

Also Published As

Publication number Publication date
CN114938498A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
CN114938498B (zh) 智能反射面辅助的无人机使能的无线传感网数据收集方法
You et al. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels
You et al. Enabling smart reflection in integrated air-ground wireless network: IRS meets UAV
Mei et al. 3D-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement learning
Mei et al. Joint trajectory-task-cache optimization with phase-shift design of RIS-assisted UAV for MEC
Xie et al. UAV-enabled wireless power transfer: A tutorial overview
Gu et al. Energy-constrained completion time minimization in UAV-enabled Internet of Things
Kang et al. 3D placement for multi-UAV relaying: An iterative Gibbs-sampling and block coordinate descent optimization approach
Messaoudi et al. A survey of UAV-based data collection: Challenges, solutions and future perspectives
Zhai et al. Energy-efficient UAV-mounted RIS assisted mobile edge computing
Fan et al. RIS-assisted UAV for fresh data collection in 3D urban environments: A deep reinforcement learning approach
CN110062345B (zh) 一种无人机-物联网数据采集方法和***
Tran et al. Throughput maximization for backscatter-and cache-assisted wireless powered UAV technology
Hassan et al. Statistical-QoS guarantee for IoT network driven by laser-powered UAV relay and RF backscatter communications
Qin et al. Joint optimization of resource allocation, phase shift, and UAV trajectory for energy-efficient RIS-assisted UAV-enabled MEC systems
Yang et al. Energy-efficient UAV backscatter communication with joint trajectory and resource optimization
CN110072206B (zh) 一种基于最佳能量效率的无人机-物联网数据采集方法和***
Li et al. Learning-based data gathering for information freshness in UAV-assisted IoT networks
Zhan et al. Energy efficient estimation in wireless sensor network with unmanned aerial vehicle
Wang et al. Energy-efficient UAV-relaying 5G/6G spectrum sharing networks: Interference coordination with power management and trajectory design
CN116634544A (zh) 反向散射ris辅助无人机使能的mec能效最大化方法
Xu et al. Joint power and trajectory optimization for IRS-aided master-auxiliary-UAV-powered IoT networks
Barick et al. Multi-UAV assisted IoT NOMA uplink communication system for disaster scenario
CN110087204B (zh) 一种基于参数调节的无人机-物联网数据采集方法和***
Huynh et al. Envisioning edge computing in future 6G wireless networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant