CN114930881A - 用于在无线***中增强mbms可靠性的方法 - Google Patents

用于在无线***中增强mbms可靠性的方法 Download PDF

Info

Publication number
CN114930881A
CN114930881A CN202080092163.0A CN202080092163A CN114930881A CN 114930881 A CN114930881 A CN 114930881A CN 202080092163 A CN202080092163 A CN 202080092163A CN 114930881 A CN114930881 A CN 114930881A
Authority
CN
China
Prior art keywords
wtru
harq
mbms
transmission
configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080092163.0A
Other languages
English (en)
Inventor
吉斯伦·佩尔蒂埃
Y·D·纳拉亚南桑加拉杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
IDAC Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDAC Holdings Inc filed Critical IDAC Holdings Inc
Publication of CN114930881A publication Critical patent/CN114930881A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1816Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种由无线发射/接收单元(WTRU)执行的方法,该方法包括接收被索引为混合自动重复请求(HARQ)过程的序列的多个调度配置;从无线电接入网络上的节点接收非单播下行链路发射,其中该非单播下行链路发射包含根据多个调度配置中的第一调度配置处理的信息单元;检测信息单元的错误接收;确定与HARQ过程相关联的至少第二调度配置的存在;请求信息单元的重发;以及使用第二调度配置接收信息单元的后续重发。

Description

用于在无线***中增强MBMS可靠性的方法
相关申请的交叉引用
本申请要求于2019年12月20日提交的第62/951,123号美国临时专利申请的权益,该美国临时专利申请出于所有目的以全文引用的方式并入本文中。
背景技术
多媒体广播多播***(MBMS)服务可根据多种方法经由无线递送,该方法包括经由单播蜂窝发射(UC)、多播广播单频网络(MBSFN)和单小区点到多点(SC-PTM)。为了有助于支持这些和其他场景,当用于新无线电(NR)环境中时,可增强MBMS服务。
发明内容
一种由无线发射/接收单元(WTRU)执行的方法包括接收被索引为混合自动重复请求(HARQ)过程的序列的多个调度配置;从无线电接入网络上的节点接收非单播下行链路发射,其中非单播下行链路发射包含根据多个调度配置中的第一调度配置处理的信息单元;检测信息单元的错误接收;确定与HARQ过程相关联的至少第二调度配置的存在;请求信息单元的重发;以及使用第二调度配置接收信息单元的后续重发。
由配置有非单播下行链路发射方法、来自无线电接入网络上的节点的下行链路发射的WTRU执行的另一种方法包括从节点接收协议数据单元(PDU)序列,产生状态报告(SR),将SR发射到节点,SR请求至少一个缺失PDU的2级(L2)重发,从节点接收L2重发,以及使用L2重发来解决来自PDU序列的至少一个缺失PDU。
尽管本文描述和/或要求保护了各种实施方案,其中装置、***、设备等和/或其任何元件执行操作、过程、算法、功能等和/或其任何部分,但应当理解,本文所述和/或受权利要求书保护的任何实施方案假定任何装置、***、设备等和/或其任何元件被配置为执行任何操作、过程、算法、功能等和/或其任何部分。
附图说明
从下面的详细描述中可以得到更详细的理解,该描述结合其附图以举例的方式给出。与详细描述一样,此类附图中的图是示例。因此,附图和具体实施方式不应被认为是限制性的,并且其他同样有效的示例是可能的和预期的。另外,附图中类似的附图标号(“ref.”)指示类似的元件,并且其中:
图1A是示出在其中一个或多个所公开的实施方案可得以实现的示例性通信***的***图;
图1B是根据实施方案的示出可在图1A所示的通信***内使用的示例WTRU的***图。
图1C是示出根据一个实施方案可在图1A所示的通信***内使用的示例性无线电接入网络(RAN)和示例性核心网(CN)的***图;
图1D是示出根据一个实施方案可在图1A所示的通信***内使用的另外一个示例性RAN和另外一个示例性CN的***图;
图2描绘根据本公开的一种方法的流程图;
图3描绘根据本公开的方法的示例描述性方法;并且
图4描绘根据本发明的一方面的示例信号图。
具体实施方式
现在将参考各种附图来描述例示性实施方案的详细描述。尽管本说明书提供了可能的具体实施的详细示例,但应当指出的是,细节旨在为示例性的,并且绝不限制本申请的范围。在以下详细描述中,阐述了许多具体细节以提供对本文所公开的实施方案和/或示例的透彻理解。然而,应当理解,此类实施方案和示例可在没有本文阐述的一些或所有具体细节的情况下被实践。在其他情况下,未详细描述熟知的方法、程序、部件和电路,以免模糊以下描述。此外,本文未具体描述的实施方案和示例可代替本文中明确、隐含和/或固有地描述、公开或以其他方式提供(统称为“提供”)的实施方案和其他示例来实践,或与这些实施方案和示例组合来实践。
图1A是示出在其中一个或多个所公开的实施方案可得以实现的示例性通信***100的示意图。通信***100可为向多个无线用户提供诸如语音、数据、视频、消息、广播等内容的多址接入***。通信***100可使多个无线用户能够通过***资源(包括无线带宽)的共享来访问此类内容。例如,通信***100可采用一个或多个信道接入方法,诸如码分多址接入(CDMA)、时分多址接入(TDMA)、频分多址接入(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字DFT扩展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、资源块滤波OFDM、滤波器组多载波(FBMC)等。
如图1A所示,通信***100可包括无线发射/接收单元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交换电话网(PSTN)108、互联网110和其他网络112,但应当理解,所公开的实施方案设想了任何数量的WTRU、基站、网络和/或网络元件。WTRU102a、102b、102c、102d中的每一者可以是被配置为在无线环境中操作和/或通信的任何类型的设备。作为示例,WTRU 102a、102b、102c、102d(其中任何一个均可被称为“站”和/或“STA”)可被配置为传输和/或接收无线信号,并且可包括用户设备(UE)、移动站、固定或移动用户单元、基于订阅的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型电脑、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴式显示器(HMD)、车辆、无人机、医疗设备和应用(例如,远程手术)、工业设备和应用(例如,在工业和/或自动处理链环境中操作的机器人和/或其他无线设备)、消费电子设备、在商业和/或工业无线网络上操作的设备等。WTRU 102a、102b、102c和102d中的任一者可互换地称为UE。
通信***100还可包括基站114a和/或基站114b。基站114a、114b中的每一者可为任何类型的设备,其被配置为与WTRU 102a、102b、102c、102d中的至少一者无线对接以促进对一个或多个通信网络(诸如CN106/115、互联网110和/或其他网络112)的访问。作为示例,基站114a、114b可为基站收发台(BTS)、节点B、演进节点B、家庭节点B、家庭演进节点B、gNB、NR节点B、站点控制器、接入点(AP)、无线路由器等。虽然基站114a、114b各自被描绘为单个元件,但应当理解,基站114a、114b可包括任何数量的互连基站和/或网络元件。
基站114a可以是RAN 104/113的一部分,该RAN还可包括其他基站和/或网络元件(未示出),诸如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等。基站114a和/或基站114b可被配置为在一个或多个载波频率(其可被称为小区(未示出))上传输和/或接收无线信号。这些频率可在许可频谱、未许可频谱或许可和未许可频谱的组合中。小区可向特定地理区域提供无线服务的覆盖,该特定地理区域可为相对固定的或可随时间改变。小区可进一步被划分为小区扇区。例如,与基站114a相关联的小区可被划分为三个扇区。因此,在一个实施方案中,基站114a可包括三个收发器,即,小区的每个扇区一个收发器。在一个实施方案中,基站114a可采用多输入多输出(MIMO)技术并且可针对小区的每个扇区利用多个收发器。例如,可使用波束成形在所需的空间方向上传输和/或接收信号。
基站114a、114b可通过空中接口116与WTRU 102a、102b、102c、102d中的一者或多者通信,该空中接口可为任何合适的无线通信链路(例如,射频(RF)、微波、厘米波、微米波、红外(IR)、紫外(UV)、可见光等)。可使用任何合适的无线电接入技术(RAT)来建立空中接口116。
更具体地讲,如上所指出,通信***100可为多址接入***,并且可采用一个或多个信道接入方案,诸如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,RAN 104/113中的基站114a和WTRU 102a、102b、102c可实现诸如通用移动电信***(UMTS)陆地无线电接入(UTRA)之类的无线电技术,其可使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可包括诸如高速分组接入(HSPA)和/或演进的HSPA(HSPA+)之类的通信协议。HSPA可包括高速下行链路(DL)分组接入(HSDPA)和/或高速上行链路(UL)分组接入(HSUPA)。
在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如演进的UMTS陆地无线电接入(E-UTRA)之类的无线电技术,其可使用长期演进(LTE)和/高级LTE(LTE-A)和/或高级LTE Pro(LTE-A Pro)来建立空中接口116。
在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如NR无线电接入之类的无线电技术,其可使用新无线电(NR)来建立空中接口116。
在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现多种无线电接入技术。例如,基站114a和WTRU 102a、102b、102c可例如使用双连接(DC)原理一起实现LTE无线电接入和NR无线电接入。因此,WTRU 102a、102b、102c所使用的空中接口可由多种类型的无线电接入技术和/或向/从多种类型的基站(例如,eNB和gNB)发送的传输来表征。
在其他实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如IEEE 802.11(即,无线保真(WiFi))、IEEE 802.16(即,全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、暂行标准2000(IS-2000)、暂行标准95(IS-95)、暂行标准856(IS-856)、全球移动通信***(GSM)、GSM增强数据率演进(EDGE)、GSM EDGE(GERAN)等无线电技术。
图1A中的基站114b可为例如无线路由器、家庭节点B、家庭演进节点B或接入点,并且可利用任何合适的RAT来促进诸如商业场所、家庭、车辆、校园、工业设施、空中走廊(例如,供无人机使用)、道路等局部区域中的无线连接。在一个实施方案中,基站114b和WTRU102c、102d可实现诸如IEEE 802.11之类的无线电技术以建立无线局域网(WLAN)。在一个实施方案中,基站114b和WTRU 102c、102d可实现诸如IEEE 802.15之类的无线电技术以建立无线个域网(WPAN)。在又一个实施方案中,基站114b和WTRU 102c、102d可利用基于蜂窝的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等)来建立微微小区或毫微微小区。如图1A所示,基站114b可具有与互联网110的直接连接。因此,基站114b可不需要经由CN106/115访问互联网110。
RAN 104/113可与CN 106/115通信,该CN可以是被配置为向WTRU102a、102b、102c、102d中的一者或多者提供语音、数据、应用和/或互联网协议语音技术(VoIP)服务的任何类型的网络。数据可具有不同的服务质量(QoS)要求,诸如不同的吞吐量要求、延迟要求、误差容限要求、可靠性要求、数据吞吐量要求、移动性要求等。CN 106/115可提供呼叫控制、账单服务、基于移动位置的服务、预付费呼叫、互联网连接、视频分发等,和/或执行高级安全功能,诸如用户认证。尽管未在图1A中示出,但是应当理解,RAN 104/113和/或CN 106/115可与采用与RAN 104/113相同的RAT或不同RAT的其他RAN进行直接或间接通信。例如,除了连接到可利用NR无线电技术的RAN 104/113之外,CN 106/115还可与采用GSM、UMTS、CDMA2000、WiMAX、E-UTRA或WiFi无线电技术的另一RAN(未示出)通信。
CN 106/115也可充当WTRU 102a、102b、102c、102d的网关,以访问PSTN 108、互联网110和/或其他网络112。PSTN 108可包括提供普通老式电话服务(POTS)的电路交换电话网络。互联网110可包括使用常见通信协议(诸如传输控制协议(TCP)、用户数据报协议(UDP)和/或TCP/IP互联网协议组中的互联网协议(IP))的互连计算机网络和设备的全球***。网络112可包括由其他服务提供商拥有和/或操作的有线和/或无线通信网络。例如,网络112可包括连接到一个或多个RAN的另一个CN,其可采用与RAN 104/113相同的RAT或不同的RAT。
通信***100中的一些或所有WTRU 102a、102b、102c、102d可包括多模式能力(例如,WTRU 102a、102b、102c、102d可包括用于通过不同无线链路与不同无线网络通信的多个收发器)。例如,图1A所示的WTRU 102c可被配置为与可采用基于蜂窝的无线电技术的基站114a通信,并且与可采用IEEE 802无线电技术的基站114b通信。
图1B是示出示例性WTRU 102的***图。如图1B所示,WTRU 102可包括处理器118、收发器120、发射/接收元件122、扬声器/麦克风124、小键盘126、显示器/触摸板128、不可移动存储器130、可移动存储器132、电源134、全球定位***(GPS)芯片组136和/或其他***设备138等。应当理解,在与实施方案保持一致的同时,WTRU 102可包括前述元件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心相关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、任何其他类型的集成电路(IC)、状态机等。处理器118可执行信号编码、数据处理、功率控制、输入/输出处理和/或任何其他功能,这些其他功能使WTRU 102能够在无线环境中工作。处理器118可耦合到收发器120,该收发器可耦合到发射/接收元件122。虽然图1B将处理器118和收发器120描绘为单独的部件,但是应当理解,处理器118和收发器120可在电子封装或芯片中集成在一起。
发射/接收元件122可被配置为通过空中接口116向基站(例如,基站114a)传输信号或从基站接收信号。例如,在一个实施方案中,发射/接收元件122可以是被配置为传输和/或接收RF信号的天线。在一个实施方案中,发射/接收元件122可以是被配置为传输和/或接收例如IR、UV或可见光信号的发射器/检测器。在又一个实施方案中,发射/接收元件122可被配置为传输和/或接收RF和光信号。应当理解,发射/接收元件122可被配置为传输和/或接收无线信号的任何组合。
尽管发射/接收元件122在图1B中被描绘为单个元件,但是WTRU102可包括任何数量的发射/接收元件122。更具体地讲,WTRU 102可采用MIMO技术。因此,在一个实施方案中,WTRU 102可包括用于通过空中接口116传输和接收无线信号的两个或更多个发射/接收元件122(例如,多个天线)。
收发器120可被配置为调制将由发射/接收元件122传输的信号并且解调由发射/接收元件122接收的信号。如上所指出,WTRU 102可具有多模式能力。因此,收发器120可包括多个收发器,以便使WTRU 102能够经由多种RAT(诸如NR和IEEE 802.11)进行通信。
WTRU 102的处理器118可耦合到扬声器/麦克风124、小键盘126和/或显示器/触摸板128(例如,液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元)并且可从其接收用户输入数据。处理器118还可将用户数据输出到扬声器/麦克风124、小键盘126和/或显示器/触摸板128。此外,处理器118可从任何类型的合适存储器(诸如不可移动存储器130和/或可移动存储器132)访问信息,并且将数据存储在任何类型的合适存储器中。不可移动存储器130可包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或任何其他类型的存储器存储设备。可移动存储器132可包括用户身份模块(SIM)卡、记忆棒、安全数字(SD)存储卡等。在其他实施方案中,处理器118可从未物理上定位在WTRU 102上(诸如,服务器或家用计算机(未示出)上)的存储器访问信息,并且将数据存储在该存储器中。
处理器118可从电源134接收电力并可被配置为向WTRU 102中的其他部件分配和/或控制电力。电源134可以是用于为WTRU 102供电的任何合适的设备。例如,电源134可包括一个或多个干电池组(例如,镍镉(NiCd)、镍锌(NiZn)、镍金属氢化物(NiMH)、锂离子(Li-ion)等)、太阳能电池、燃料电池等。
处理器118还可耦合到GPS芯片组136,该GPS芯片组可被配置为提供关于WTRU 102的当前位置的位置信息(例如,经度和纬度)。除了来自GPS芯片组136的信息之外或代替该信息,WTRU 102可通过空中接口116从基站(例如,基站114a、114b)接收位置信息和/或基于从两个或更多个附近基站接收到信号的定时来确定其位置。应当理解,在与实施方案保持一致的同时,该WTRU 102可通过任何合适的位置确定方法来获取位置信息。
处理器118还可耦合到其他***设备138,该其他***设备可包括提供附加特征、功能和/或有线或无线连接的一个或多个软件模块和/或硬件模块。例如,***设备138可包括加速度计、电子指南针、卫星收发器、数字相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发器、免提耳麦、
Figure BDA0003735133850000081
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏播放器模块、互联网浏览器、虚拟现实和/或增强现实(VR/AR)设备、活动***等。***设备138可包括一个或多个传感器,该传感器可为以下一者或多者:陀螺仪、加速度计、霍尔效应传感器、磁力计、方位传感器、接近传感器、温度传感器、时间传感器;地理位置传感器;测高计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物识别传感器和/或湿度传感器。
WTRU 102可包括全双工无线电台,对于该全双工无线电台,一些或所有信号的发射和接收(例如,与用于UL(例如,用于发射)和下行链路(例如,用于接收)的特定子帧相关联)可为并发的和/或同时的。全双工无线电台可包括干扰管理单元139,该干扰管理单元用于经由硬件(例如,扼流圈)或经由处理器(例如,单独的处理器(未示出)或经由处理器118)进行的信号处理来减少和/或基本上消除自干扰。在一个实施方案中,WTRU 102可包括全双工无线电台,对于该全双工无线电台,一些或所有信号的发射和接收(例如,与用于UL(例如,用于发射)和下行链路(例如,用于接收)的特定子帧相关联)可为并发的和/或同时的。
图1C是示出根据一个实施方案的RAN 104和CN 106的***图。如上所述,RAN 104可采用E-UTRA无线电技术通过空中接口116与WTRU102a、102b、102c通信。RAN 104还可与CN106通信。
RAN 104可包括演进节点B 160a、160b、160c,但是应当理解,RAN104可包括任何数量的演进节点B,同时保持与实施方案一致。演进节点B160a、160b、160c各自可包括一个或多个收发器以便通过空中接口116与WTRU 102a、102b、102c通信。在一个实施方案中,演进节点B 160a、160b、160c可实现MIMO技术。因此,演进节点B 160a例如可使用多个天线来向WTRU 102a发射无线信号和/或从WTRU 102a接收无线信号。
演进节点B 160a、160b、160c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL中的用户的调度等。如图1C所示,演进节点B 160a、160b、160c可通过X2接口彼此通信。
图1C所示的CN 106可包括移动性管理实体(MME)162、服务网关(SGW)164和分组数据网络(PDN)网关(或PGW)166。虽然前述元件中的每一者被描绘为CN 106的一部分,但应当理解,这些元件中的任何元件可由除CN运营商之外的实体拥有和/或操作。
MME 162可经由S1接口连接到RAN 104中的演进节点B 162a、162b、162c中的每一者,并且可用作控制节点。例如,MME 162可负责认证WTRU 102a、102b、102c的用户、承载激活/去激活、在WTRU 102a、102b、102c的初始附加期间选择特定服务网关等。MME 162可提供用于在RAN 104和采用其他无线电技术(诸如GSM和/或WCDMA)的其他RAN(未示出)之间进行切换的控制平面功能。
SGW 164可经由S1接口连接到RAN 104中的演进节点B 160a、160b、160c中的每一者。SGW 164通常可向/从WTRU 102a、102b、102c路由和转发用户数据分组。SGW 164可执行其他功能,诸如在演进节点B间切换期间锚定用户平面、当DL数据可用于WTRU 102a、102b、102c时触发寻呼、管理和存储WTRU 102a、102b、102c的上下文等。
SGW 164可连接到PGW 166,该PGW可向WTRU 102a、102b、102c提供对分组交换网络(诸如互联网110)的访问,以促进WTRU 102a、102b、102c和启用IP的设备之间的通信。
CN 106可有助于与其他网络的通信。例如,CN 106可为WTRU102a、102b、102c提供对电路交换网络(诸如,PSTN 108)的访问,以有利于WTRU 102a、102b、102c与传统传统陆线通信设备之间的通信。例如,CN 106可包括用作CN 106与PSTN 108之间的接口的IP网关(例如IP多媒体子***(IMS)服务器),或可与该IP网关通信。另外,CN 106可向WTRU 102a、102b、102c提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。
尽管WTRU在图1A至图1D中被描述为无线终端,但是可以设想到,在某些代表性实施方案中,这种终端可(例如,临时或永久)使用与通信网络的有线通信接口。
在代表性实施方案中,其他网络112可为WLAN。
处于基础结构基本服务集(BSS)模式的WLAN可具有用于BSS的接入点(AP)以及与AP相关联的一个或多个站点(STA)。AP可具有至分配***(DS)或将流量携带至和/或携带流量离开BSS的另一种类型的有线/无线网络的接入或接口。源自BSS外部并通向STA的流量可通过AP到达并且可被传递到STA。源自STA并通向BSS外部的目的地的流量可被发送到AP以被传递到相应目的地。BSS内的STA之间的流量可通过AP发送,例如,其中源STA可向AP发送流量,并且AP可将流量传递到目的地STA。BSS内的STA之间的流量可被视为和/或称为点对点流量。可利用直接链路建立(DLS)在源和目的地STA之间(例如,直接在它们之间)发送点对点流量。在某些代表性实施方案中,DLS可使用802.11e DLS或802.11z隧道DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且IBSS内或使用IBSS的STA(例如,所有STA)可彼此直接通信。IBSS通信模式在本文中有时可称为“ad-hoc”通信模式。
当使用802.11ac基础结构操作模式或相似操作模式时,AP可在固定信道(诸如主信道)上传输信标。主信道可为固定宽度(例如,20MHz宽带宽)或经由信令动态设置的宽度。主信道可为BSS的操作信道,并且可由STA用来建立与AP的连接。在某些代表性实施方案中,可例如在802.11***中实现载波侦听多路访问/冲突避免(CSMA/CA)。对于CSMA/CA,STA(例如,每个STA)(包括AP)可侦听主信道。如果主信道被特定STA侦听/检测和/或确定为繁忙,则特定STA可退避。一个STA(例如,仅一个站)可在给定BSS中在任何给定时间传输。
高吞吐量(HT)STA可使用40MHz宽的信道进行通信,例如,经由主20MHz信道与相邻或不相邻的20MHz信道的组合以形成40MHz宽的信道。
极高吞吐量(VHT)STA可支持20MHz、40MHz、80MHz和/或160MHz宽的信道。40MHz和/或80MHz信道可通过组合连续的20MHz信道来形成。可通过组合8个连续的20MHz信道,或通过组合两个非连续的80MHz信道(这可被称为80+80配置)来形成160MHz信道。对于80+80配置,在信道编码之后,数据可通过可将数据分成两个流的段解析器。可单独地对每个流进行快速傅里叶逆变换(IFFT)处理和时间域处理。可将这些流映射到两个80MHz信道,并且可通过发射STA来传输数据。在接收STA的接收器处,可颠倒上述用于80+80配置的操作,并且可将组合的数据发送到介质访问控制(MAC)。
802.11af和802.11ah支持低于1GHz的操作模式。相对于802.11n和802.11ac中使用的那些,802.11af和802.11ah中减少了信道操作带宽和载波。802.11af支持电视白空间(TVWS)频谱中的5MHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。根据代表性实施方案,802.11ah可支持仪表类型控制/机器类型通信,诸如宏覆盖区域中的MTC设备。MTC设备可具有某些能力,例如有限的能力,包括支持(例如,仅支持)某些带宽和/或有限的带宽。MTC设备可包括电池寿命高于阈值(例如,以保持非常长的电池寿命)的电池。
可支持多个信道的WLAN***以及诸如802.11n、802.11ac、802.11af和802.11ah之类的信道带宽包括可被指定为主信道的信道。主信道可具有等于由BSS中的所有STA支持的最大公共操作带宽的带宽。主信道的带宽可由来自在BSS中操作的所有STA的STA(其支持最小带宽操作模式)设置和/或限制。在802.11ah的示例中,对于支持(例如,仅支持)1MHz模式的STA(例如,MTC型设备),主信道可为1MHz宽,即使AP和BSS中的其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽操作模式。载波侦听和/或网络分配向量(NAV)设置可取决于主信道的状态。如果主信道繁忙,例如,由于STA(仅支持1MHz操作模式)正在向AP传输,即使大多数频段保持空闲并且可能可用,整个可用频段也可被视为繁忙。
在美国,可供802.11ah使用的可用频段为902MHz至928MHz。在韩国,可用频段为917.5MHz至923.5MHz。在日本,可用频段为916.5MHz至927.5MHz。802.11ah可用的总带宽为6MHz至26MHz,具体取决于国家代码。
图1D是示出根据实施方案的RAN 113和CN 115的***图。如上文所指出,RAN 113可采用NR无线电技术以经由空中接口116与WTRU102a、102b、102c通信。RAN 113还可与CN115通信。
RAN 113可包括gNB 180a、180b、180c,但是应当理解,在与实施方案保持一致的同时,RAN 113可包括任何数量的gNB。gNB 180a、180b、180c各自可包括一个或多个收发器以便通过空中接口116与WTRU 102a、102b、102c通信。在一个实施方案中,gNB 180a、180b、180c可实现MIMO技术。例如,gNB 180a、108b可利用波束成形来向gNB 180a、180b、180c传输信号和/或从gNB 180a、180b、180c接收信号。因此,gNB180a例如可使用多个天线来向WTRU102a传输无线信号和/或从WTRU102a接收无线信号。在一个实施方案中,gNB 180a、180b、180c可实现载波聚合技术。例如,gNB 180a可向WTRU 102a(未示出)传输多个分量载波。这些分量载波的子集可在免许可频谱上,而其余分量载波可在许可频谱上。在一个实施方案中,gNB 180a、180b、180c可实现协作多点(CoMP)技术。例如,WTRU 102a可从gNB 180a和gNB180b(和/或gNB 180c)接收协作传输。
WTRU 102a、102b、102c可使用与可扩展参数集相关联的传输来与gNB 180a、180b、180c通信。例如,OFDM符号间隔和/或OFDM子载波间隔可因不同传输、不同小区和/或无线传输频谱的不同部分而变化。WTRU 102a、102b、102c可使用各种或可扩展长度的子帧或传输时间间隔(TTI)(例如,包含不同数量的OFDM符号和/或持续变化的绝对时间长度)来与gNB180a、180b、180c通信。
gNB 180a、180b、180c可被配置为以独立配置和/或非独立配置与WTRU 102a、102b、102c通信。在独立配置中,WTRU 102a、102b、102c可与gNB 180a、180b、180c通信,同时也不访问其他RAN(例如,诸如演进节点B 160a、160b、160c)。在独立配置中,WTRU 102a、102b、102c可将gNB180a、180b、180c中的一者或多者用作移动性锚定点。在独立配置中,WTRU 102a、102b、102c可在未许可频带中使用信号与gNB180a、180b、180c通信。在非独立配置中,WTRU 102a、102b、102c可与gNB 180a、180b、180c通信或连接,同时也与其他RAN(诸如,演进节点B 160a、160b、160c)通信或连接。例如,WTRU 102a、102b、102c可实现DC原理以基本上同时与一个或多个gNB 180a、180b、180c和一个或多个演进节点B 160a、160b、160c通信。在非独立配置中,演进节点B160a、160b、160c可用作WTRU 102a、102b、102c的移动性锚点,并且gNB 180a、180b、180c可提供用于服务WTRU 102a、102b、102c的附加覆盖和/或吞吐量。
gNB 180a、180b、180c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL中的用户的调度、网络切片的支持、双连接、NR和E-UTRA之间的互通、用户平面数据朝向用户平面功能(UPF)184a、184b的路由、控制平面信息朝向接入和移动性管理功能(AMF)182a、182b的路由等。如图1D所示,gNB180a、180b、180c可通过Xn接口彼此通信。
图1D所示的CN 115可包括至少一个AMF 182a、182b、至少一个UPF 184a、184b、至少一个会话管理功能(SMF)183a、183b以及可能的数据网络(DN)185a、185b。虽然前述元件中的每一者被描绘为CN 115的一部分,但是应当理解,这些元件中的任一者可由除CN运营商之外的实体拥有和/或操作。
AMF 182a、182b可在RAN 113中经由N2接口连接到gNBs 180a、180b、180c中的一者或多者,并且可用作控制节点。例如,AMF 182a、182b可负责认证WTRU 102a、102b、102c的用户、网络切片的支持(例如,具有不同要求的不同PDU会话的处理)、选择特定SMF 183a、183b、注册区域的管理、非接入层(NAS)信令的终止、移动性管理等。AMF 182a、182b可使用网络切片,以便基于WTRU 102a、102b、102c所使用的服务的类型来为WTRU 102a、102b、102c定制CN支持。例如,可针对不同的用例(诸如,依赖超高可靠低延迟(URLLC)接入的服务、依赖增强型移动宽带(eMBB)接入的服务、用于机器类型通信(MTC)接入的服务等)建立不同的网络切片。AMF 162可提供用于在RAN 113和采用其他无线电技术(诸如LTE、LTE-A、LTE-APro和/或非3GPP接入技术,诸如WiFi)的其他RAN(未示出)之间进行切换的控制平面功能。
SMF 183a、183b可经由N11接口连接到CN 115中的AMF 182a、182b。SMF 183a、183b还可经由N4接口连接到CN 115中的UPF 184a、184b。SMF 183a、183b可选择并控制UPF184a、184b,并且配置通过UPF184a、184b进行的流量路由。SMF 183a、183b可执行其他功能,诸如管理和分配WTRU/UE IP地址、管理PDU会话、控制策略实施和QoS、提供下行链路数据通知等。PDU会话类型可以是基于IP的、非基于IP的、基于以太网的等。
UPF 184a、184b可经由N3接口连接到RAN 113中的gNB 180a、180b、180c中的一者或多者,这些gNB可向WTRU 102a、102b、102c提供对分组交换网络(诸如互联网110)的访问,以促进WTRU 102a、102b、102c和启用IP的设备之间的通信。UPF 184、184b可执行其他功能,诸如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲下行链路分组、提供移动性锚定等。
CN 115可有利于与其他网络的通信。例如,CN 115可包括用作CN115与PSTN 108之间的接口的IP网关(例如,IP多媒体子***(IMS)服务器)或者可与该IP网关通信。另外,CN115可向WTRU 102a、102b、102c提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。在一个实施方案中,WTRU 102a、102b、102c可通过UPF 184a、184b经由至UPF 184a、184b的N3接口以及UPF 184a、184b与本地数据网络(DN)185a、185b之间的N6接口连接到DN 185a、185b。
鉴于图1A至图1D以及图1A至图1D的对应描述,本文针对以下一者或多者描述的一个或多个或所有功能可由一个或多个仿真设备(未示出)执行:WTRU 102a-d、基站114a-b、演进节点B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-ab、UPF 184a-b、SMF183a-b、DN 185a-b和/或本文所述的任何一个或多个其他设备。仿真设备可以是被配置为模仿本文所述的一个或多个或所有功能的一个或多个设备。例如,仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计为在实验室环境和/或运营商网络环境中实现其他设备的一个或多个测试。例如,该一个或多个仿真设备可执行一个或多个或所有功能,同时被完全或部分地实现和/或部署为有线和/或无线通信网络的一部分,以便测试通信网络内的其他设备。该一个或多个仿真设备可执行一个或多个功能或所有功能,同时临时被实现/部署为有线和/或无线通信网络的一部分。仿真设备可直接耦合到另一个设备以用于测试目的和/或可使用空中无线通信来执行测试。
该一个或多个仿真设备可执行一个或多个(包括所有)功能,同时不被实现/部署为有线和/或无线通信网络的一部分。例如,仿真设备可在测试实验室和/或非部署(例如,测试)有线和/或无线通信网络中的测试场景中使用,以便实现一个或多个部件的测试。该一个或多个仿真设备可为测试设备。经由RF电路(例如,其可包括一个或多个天线)进行的直接RF耦合和/或无线通信可由仿真设备用于传输和/或接收数据。
本文提供的示例不限制主题对其他无线技术的适用性,例如,使用可能适用的相同或不同原理。
如本文所解释的,无线传输接收单元(WTRU)可以是用户设备(UE)的示例。因此,术语UE和WTRU在本文中可互换使用。
以下描述是出于示例性目的,并且并不旨在以任何方式限制本文中所描述的方法对其他无线技术和/或在适用情况下的无线技术的适用性。本公开中的术语网络可指一个或多个gNB,该一个或多个gNB又可与一个或多个发射/接收点(TRP)相关联;或可指无线电接入网络中的任何其他节点。
多媒体广播多播***(MBMS)
多媒体广播多播***(MBMS)服务可根据多种方法经由无线***递送,该方法包括经由单播蜂窝发射(UC)、多播广播单频网络(MBSFN)和单小区点到多点(SC-PTM)。
SC-PTM支持单个小区上的广播/多播服务,并且广播/多播区域可根据用户的分布逐小区地动态调整。SC-PTM使用LTE下行链路共享信道(例如物理下行链路共享信道(PDSCH))传输广播/多播服务,并且其使用一组用户的公共无线电网络临时标识符(RNTI)(例如Group-RNTI)来调度。SC-PTM调度非常灵活,并且无线电资源可基于可能的每个发射时间间隔(TTI)的实时流量负载通过物理下行链路控制信道(PDCCH)在时域和频域中进行动态分派。SC-PTM可特别适用于例如由于用户兴趣而预期将广播/多播服务递送到有限数量的小区的场景,并且相关小区可由于用户移动而动态变化。SC-PTM允许有效无线电利用和多种应用的灵活部署,例如关键通信、汽车的交通信息和按需TV服务等。
在MBSFN的实例中,来自不同小区的发射被布置成相同并且时间对准,使得从WTRU的角度看,发射呈现为单个发射。为了实现eNB之间的时间同步,定义MBSFN同步区域的概念。MBSFN区域由网络的MBSFN同步区域内被协调以实现MBSFN发射的一组小区组成。MBMS架构定义各种逻辑实体以执行适用于MBMS发射的网络功能。MCE(多小区/多播协调实体)执行许可控制,决定是否针对MBMS服务使用SC-PTM或MBSFN、暂停和恢复等。MBMS网关(MBMS-GW)执行会话控制信令,并且经由IP多播将MBMS用户数据转发到eNB。
长期演进(LTE)中的MBMS
在LTE中,MBMS支持单播、SC-PTM或MBSFN发射。当MBMS发射占用整个带宽(BW)时,不支持频域资源分配。这种设计在具有较大带宽的部署中可能变得低效。LTE MBMS资源分配是相当半静态的。在依序接收配置和/或在***信息块(SIB)SIB 2上,随后在SIB13上,随后在多播控制信道(MCCH)上调度信息,并且最终接收到多播流量信道(MTCH)之后,WTRU获取MBMS信息。
新无线电(NR)中的MBMS
发射模式-WTRU配置方面,例如当配置MBMS时
虽然不限制对类似无线递送方法的范围或适用性,但本文中的发射模式是指包括诸如单播、多播(例如SC-PTM)和广播(例如SFN)、混合模式(WTRU可接收单播以及多播或广播中的至少一个)的发射方法。仅接收模式(ROM)可以是非单播模式的特殊情况。例如,用于直接WTRU到WTRU通信的侧链路接口可以是发射模式的特殊情况。发射模式可用于递送具有不同服务质量(QoS)的服务,例如增强的移动宽带(eMBB)、超可靠低延迟通信(URLLC)和/或MBMS服务。发射模式可用于向一个(例如单播)或多个接收器(多播、组播或广播)递送服务。针对多个用户的服务的示例包括车辆到万物(V2X)服务(例如组播)、MBMS服务(例如多播、广播)。MBMS模式或MBMS发射模式也可用以指本文中的WTRU的发射模式。
MBMS服务的递送-用于发射MBMS数据服务的WTRU的配置方面
虽然不限制对用于MBMS数据和/或控制信息的类似递送方法的范围或适用性,但被配置成以给定发射模式操作以交换MBMS相关数据的WTRU可具有用于递送MBMS服务的其他配置方面。一个这种方面可以是对所配置发射方法的数据(或信令)承载进行映射以交换MBMS相关数据,例如MBMS的层2(L2)承载配置。例如,WTRU可被配置成用于混合模式发射(例如单播和多播),其中仅使用例如多播(和/或广播)发射以及经由单播发射的其他服务(例如eMBB、URLLC)执行MBMS数据的递送。例如,WTRU可被配置成用于混合模式发射(例如单播和多播),其中使用单播和多播发射两者执行MBMS数据的递送,而不管WTRU是否例如使用单播发射(例如eMBB、URLLC)与其他服务一起被激活。
MBMS NR的可能使用案例和部署
预期NR支持以下使用案例中的一个或多个
-V2X、侧链路和公共安全。诸如在3GPP TS 22.185中,“V2X服务的服务要求”要求“3GPP***应能够以资源有效方式将信息分发给支持V2X应用的大量WTRU”。
-IoT(窄带(NB)IoT和增强型MTC(eMTC))设备(例如用于软件更新)、智能电网/实用程序。
-5G-线性TV、直播、智能TV、管理和OTT内容分发、无线电服务中的TV视频和无线电服务。诸如在以下中:
a.视频分发(当多个用户同时观看同一直播流时)。
b.经由单播媒体流同时消耗OTT服务的大峰。
c.沉浸式六自由度(6DoF)体积流远大于传统平面或甚至360度视频。
-推送服务(例如广告和天气广播)
-用于工厂自动化的以太网广播/多播
-扩展现实、团体游戏。
支持新启用项和NR中的要求
NR预期包括以下启用项中的一个或多个
在单播、多播/广播和混合模式操作之间切换的服务
归因于以下原因中的一个或多个,可触发服务的变化:
-WTRU移动性:这包括模式切换的不同场景:
a.单播(UC)<->SC-PTM
b.UC<->MBSFN
c.SC-PTM<->SC-PTM
d.eNB内/MBMS内区域小区间移动性
e.eNB间/MBMS内区域小区间移动性
f.MBMS间区域移动性
g.具有发射模式变化的RAT间移动性
h.没有发射模式变化的RAT间移动性
以上全部可具有或没有服务连续性、有损或无损。
i.实现服务连续性的主要挑战可用于空闲/非活动WTRU。
-用户活动:
a.用户可与播放功能交互,并且对媒体流具有一定控制。
b.借助于上行链路信道与实时或共享内容进行终端用户交互,以增加用户接合和单层化可能性。例如,使用案例是视频分发、广告和公共安全使用案例。
-WTRU密度:
a.可满足获取和接收MBMS服务(例如阈值)的用户数量的变化,进而可通过改变MBMD发射模式来提高***效率。
b.对于区域内的V2X接近度/WTRU范围
-链路条件:
a.例如对于给定WTRU,给定多播发射与单播发射之间的资源的不同特性,一个的质量可能变得比另一个更低。
发射区域和/或发射资源的动态控制
发射资源和/或递送区域的动态控制可由以下原因中的至少一个促动:
-在当天的某些时间发生的地区TV/无线电服务。
-在支持上行链路数据或在支持更高可靠性方面的服务中,按需MBMS服务的波动/变化。
-用于群组通信和直播视频的目标区域可能在特定地点周围或由事件触发。这种区域可能由于所关注用户的移动性而变化。
在时标方面,SFN区域的变化可能比调整UC/MB/BC之间的资源更慢。
发射的可靠性
MBMS服务可支持应用程序级重发。然而,应用程序级方法所提供的可靠性和效率折衷在频谱效率方面可能是昂贵的。此外,那些方法可能不足以满足较低延迟要求。不同MBMS服务可能具有不同延迟、效率和可靠性要求。最后,先前MBMS释放的一个缺点是严重多普勒(doppler)衰减,这使得难以在高速环境中使用。
还可考虑以下使用案例:
-电网分布(3GPP TR 22.804),延迟为5ms,并且分组错误率为10-6。
-V2X(3GPP TR 22.186):即使对于此表中没有值的单元,也应提供“充足可靠性(未明确定义)”。对于延迟,WTRU与路侧单元(RSU)之间的信息共享需要20ms。
-还应考虑关键任务一键通(MCPTT)的要求(例如关键性能指示符(KPI)KPI3、300ms的口耳延迟)。
范围内的设备类型
可部署为MBMS接收器的设备类型可从不能和/或预期执行上行链路发射以用于获取和接收MBMS发射的只读模式(ROM)WTRU到实现更复杂的功能——包括需要上行链路发射的功能和程序——的WTRU的范围内。另外,更复杂的WTRU可支持载波聚合、双重连接、同时激活多个无线电接口以及(有可能同时)在不同频率范围(FR)(例如FR1和FR2)上操作。
用于在无线MBMS***中增强可靠性的方法
本文中所描述的方法基于MBMS服务的发射和递送来示例。那些方法不限于这类场景、***和服务,并且可适用于任何类型的发射和/或服务,包括但不限于V2X、扩展现实、游戏、物联网/机器类型通信(IoT/MTC)、工业使用案例等。
被配置成用于接收MBMS服务的数据的WTRU可配置有专用于MBMS接收(例如mDRB)的数据无线电承载(DRB)。当从本文中的L2和L3的角度讨论时,MBMS服务和mDRB可被视为等效的。MBMS服务可配置有零个、一个或多个mDRB。
未决问题
可使用新的启用功能来增强NR***的不同功能和程序,以实现先前章节中列出的目标,例如MBMS发射模式的无缝变化、针对任何MBMS发射模式的资源动态分配以及对较高发射和服务可靠性的支持。
下文列出的方面被进一步分类为“基线”启用项和“任选”启用项;虽然不限制任何MBMS***内的相关方法的个别适用性和/或替代组合,但标记为“基线”的方法的组合可以表示可满足一些或所有上述目标的示例性实施方案。然而,术语“基线”不旨在指示所需特征。除非另外特别陈述,否则来自“基线”和“任选”特征的益处可以任何形式进行组合,以实现或增强NR中的能力。
MBMS可在应用层处支持重发和不同的编码稳健性等级。然而,任何基于重发的方法都增加端到端延迟和/或降低服务递送的频谱效率。另外,虽然MBMS传统上聚焦于容错媒体服务、用于流式传输应用的发射错误的感知隐藏以及用于延迟容许应用的重发机制,但对较高可靠性和较低延迟的支持(例如将旨在与URLLC服务对等和/或支持该服务)可能对MBMS服务仍然是个挑战,特别是在保持频谱有效时。
因此,本文中解决的一个问题涉及对混合自动重复请求(HARQ)重发的支持,而不管以下各项:
-用于MBMS服务的发射模式,例如支持多播、组播、广播和混合模式;
-WTRU的无线电资源控制(RRC)连接状态,例如支持空闲、非活动或连接模式;
-WTRU执行上行链路发射的能力,例如支持ROM设备。
这包括用于启用HARQ寻址(HARQ ID空间)、软组合、对MBMS发射进行处理的特定启用项,包括在经由不同数据信道、小区等进行接收时。在多播和广播发射的上下文中,WTRU特定HARQ反馈程序和发射也在范围内。HARQ处理也可被视为MBMS服务监督的组成部分,例如以触发物理层恢复程序(例如类似于无线电链路故障(RLF))和/或MBMS PDU重发请求/状态报告(SR)程序。这对于实现MBMS服务的较高可靠性或较大MBMS覆盖面积可能是有用的。
本文中解决的另一问题还涉及对L2重发的支持,针对:
-发射模式的无损变化,没有L3移动性;
-发射模式的无损变化,具有L3移动性。
这可以包括用于以下的特定启用项:L2定序、状态报告格式(例如时间窗、最后一个依序接收等)和触发、累积重发(例如作为经由任何发射模式的可能默认行为)或选择性重发(例如作为经由单播发射的可能优化)。MBMS协议数据单元(PDU)定序也可被视为用于MBMS服务监督的组成部分,例如类似于物理层无线电链路监测(RLM)的同步/失步计数。也可考虑分流DL MBMS承载操作。可考虑基于MAC的分组数据会聚协议(PDCP)或基于RRC的PDU重发和/或状态报告。可考虑可能的复本的处置。
这对于实现MBMS区域/小区之间的无损MBMS模式变化和/或移动性可能是有用的。
本文中解决的另一问题还涉及MBMS服务连接和恢复,针对:
-无线电链路监测和恢复,没有L3连接;
-无线电链路监测和恢复,具有L3连接;
-具有条件切换的L3移动性。
当WTRU改变正在进行的MBMS服务的发射模式和/或L2配置时,这可以包括用于MBMS服务的连续性的特定启用项。
WTRU能力和/或MBMS操作的配置方面
WTRU能力
WTRU可支持MBMS操作。这种支持的一个或多个方面可以是给定WTRU的能力。例如,支持MBMS操作的WTRU还可支持以下中的至少一个的不同能力:
-发射模式,例如WTRU可支持一个或多个模式,例如单播发射、多播发射(例如SC-PTM)和/或广播发射(例如MBSFN)和/或混合模式发射。换句话说,WTRU可报告支持所有MBMS模式的全部或子集的能力。可能的是,WTRU可报告针对DL、UL或两者的给定MBMS模式是否支持波束成形。此能力可包括对特定发射模式的支持和/或对特定L2配置的支持,例如,诸如承载配置和到相应发射方法的映射;
-频率范围(FR)操作,例如WTRU可支持针对例如每个FR的特定频率范围的MBMS操作。这可以根据WTRU的能力的其他方面来支持,例如WTRU可仅针对给定FR报告对特定MBMS模式的支持。
-MBMS转变,例如WTRU可支持发射模式之间的一个或多个转变,有可能作为WTRU的所支持发射模式的函数。换句话说,WTRU可支持其所支持的发射模式的所有可能转变的全部或子集。可能的是,WTRU可支持特定FR之间的特定转变;
-可靠操作,例如WTRU可支持与以下相关的一个或多个方面和/或程序:块错误率(BLER)的管理、传送块(TB)的丢失(例如HARQ处理)、分组丢失的管理(例如累积或选择性重发)、服务连续性(例如移动性相关程序)和可能的上行链路反馈,以支持那些方面(例如物理上行链路控制信道(PUCCH)反馈、物理上行链路共享信道(PUSCH)上的上行链路控制信息(UCI)、用户平面状态报告和/或控制平面上行链路信息)中的一个或多个;
-频率范围(FR)操作,例如WTRU可支持针对例如每个FR的特定频率范围的MBMS操作。这可以根据WTRU的能力的其他方面来支持,例如WTRU可仅针对给定FR报告对特定MBMS模式的支持。
-混合模式操作,例如WTRU可针对一个或多个发射模式和单播服务/发射支持同时操作。这种支持可用于连接的无线电资源控制(RRC)、非活动RRC或两种RRC操作模式。这种支持还可根据以下中的至少一个来定义:
a.在相同小区(例如单个小区)内或跨不同小区(例如使用载波聚合和/或双重连接(DC))支持的混合模式。对于双重连接(DC),支持可以是针对特定双重连接组合(如果适用),例如新无线电双重连接(NR DC)、NR-RAN-E-UTRA双重连接(NE-DC)和/或EN-DC(E-UTRAN新无线电-双重连接)。这可以翻译成WTRU是否可使用单个或多个MAC实例来与混合模式操作一起操作;
b.在相同频带内或跨不同频带支持的混合模式。这可以翻译成WTRU是否可使用单个或多个收发器链来与混合模式操作一起操作;
c.在相同FR内或跨不同FR支持的混合模式。当配置有混合模式操作时,这可以翻译成WTRU是否可针对一种操作模式而不针对另一模式使用波束成形;
d.使用时分复用(TDM)支持的混合模式。这可以翻译成WTRU是否可与MBMS服务和单播服务同时配置,但不是在发射(例如WTRU不预期调度在时域中重叠的两种类型的发射)和/或发射机会(例如WTRU不能使用在时域中重叠的两种类型的发射来调度)方面;
例如,WTRU可以能够同时操作单播服务/发射和多播(例如SC-PTM操作),但其可能不支持与广播例如MBSFN操作的同时操作。
本文中所描述的方法的其他方面还可以是WTRU的能力方面。可以是WTRU对MBMS的能力的部分的方面还可以是WTRU的配置方面。
MBMS的WTRU配置
可基于物理发射属性来表征发射模式,该物理发射属性还可以是WTRU的配置方面。例如,物理发射属性可包括以下中的一个或多个:
-与发射相关联的波形,例如正交频分复用(OFDM)、离散傅里叶(Fourier)变换扩展OFDM(DFT-S-OFDM)等。
-与发射相关联的参数,例如子载波间隔(SPS)、循环前缀(CP)、发射时间间隔(TTI)等。
-物理下行链路控制信道:与发射相关联的物理控制信道类型(例如PDCCH或专用于MBMS调度的控制信道)、到时间/频率资源元素的映射、下行链路控制信息(DCI)格式等。
-物理下行链路数据信道:与发射相关联的物理信道类型(例如PDSCH或专用于MBMS发射的信道)、到时间/频率资源元素的映射、加扰、MCS等。
-控制信道结构:控制信道配置方面,包括控制信道格式、CORESET、搜索空间、聚集等级、调度周期性、调度偏移等。
-小区或多小区发射:MBMS发射的覆盖范围是否限于单个小区,或是否可在由两个或更多个小区组成的预配置区域中假设同步发射。
-物理上行链路控制信道:与针对控制信息的上行链路发射相关联的物理控制信道类型(例如PUCCH或专用于MBMS上行链路控制信息的控制信道)、到时间/频率资源元素的映射、UCI格式等。
-物理上行链路数据信道:与针对数据类信息的上行链路发射相关联的物理信道类型(例如PUSCH或专用于MBMS上行链路发射的信道)、到时间/频率资源元素的映射、加扰、调制和编码方案(MCS)等。这种信道可适用于例如MBMS会话控制、经验质量报告、UCI、“用户平面”发射状态报告等。
-数据无线电承载(mDRB):WTRU可配置有数据无线电承载,并且与MBMS服务相关联。这种mDRB可例如配置有无线电链路控制未确认模式(RLC UM)和PDCP。mDRB可以是DRB的实例,例如其可继承单播DRB的一个或多个特性,例如用于上行链路发射的优先级、逻辑信道(LCH)限制以及用于DL状态报告的PDCP状态报告(SR)配置。mDRB可具有来自其他(m)DRB的单独安全性上下文,即诸如特定于给定MBMS服务和/或MBMS模式的安全性上下文。
-信令无线电承载(mSRB):WTRU可配置有信令无线电承载,并且与MBMS服务相关联。mSRB可具有来自其他(m)SRB的单独安全性上下文,即诸如特定于给定MBMS服务和/或MBMS模式的安全性上下文。mSRB可支持与MBMS服务连续性相关的程序,例如重发请求、MBMS模式的变化和/或重新配置、安全密钥更新、移动性相关方面。当与网络RRC实体分离的网络实体管理MBMS操作的MBMS特定方面(例如使用群组公共MBMS控制平面信令)时,这可能是有用的。
-反馈:与MBMS发射相关联的上行链路(UL)反馈的需求和类型。在一种解决方案中,WTRU可被配置成不发射UL反馈。在另一解决方案中,WTRU可被配置成发射发射相关反馈,例如信道状态信息(CSI)、HARQ等。在又另一解决方案中,WTRU可被配置成发射数据平面相关反馈,例如无线电链路控制(RLC)状态报告、分组数据会聚协议(PDCP)状态报告(SR)等。
例如,WTRU可被配置成使用单播发射接收MBMS发射。例如,WTRU可被配置成基于单小区点到多点(SC-PTM)发射来接收MBMS发射。例如,WTRU可被配置成经由单频率网络(SFN)发射来接收MBMS发射。例如,WTRU可被配置成接收具有不同于单播发射的至少一个物理发射属性的多播发射。例如,WTRU可被配置成使用非单播发射(例如每个数据分组的初始发射)以及单播发射(例如针对重发和/或上行链路控制和/或会话信息)来接收MBMS发射。
用于对MBMS***进行HARQ处理的方法
本章节描述支持用于MBMS服务或类似地用于mDRB的HARQ处理的方法。
该方法源于设备可借以使用针对每个层的调度方法、配置和/或参数来获取用于服务的不同发射层,以满足服务要求和/或设备能力(如应用于本文中的HARQ处理)的原理。如本文中所使用,HARQ“层”或“分层”是用于HARQ发射与WTRU调度配置或其他WTRU配置相关参数的关联性或相关性的术语,该参数可用于解决改进的数据接收或在WTRU处接收数据重建。在一个示例中,分层可以是与被索引为过程(诸如HARQ过程)的序列的WTRU调度配置的关联或关系。在定义WTRU的层时,其他关系是可能的。由于针对不同WTRU的不同需求可以不同方式定义“分层”,因而术语“层”或“分层”用以传达WTRU调度配置或其他WTRU配置相关参数的各种关联性,该参数可有助于各种环境中的WTRU数据接收;诸如,例如MBMS环境。
关于HARQ处理的背景
HARQ处理支持对给定传送块的所有HARQ发射的软组合。可使用增量冗余(IR)或追赶组合来执行软组合。利用IR,每个重发不必与原始发射相同。相反,产生各自表示相同信息位集的多个编码位集。
利用追赶组合,重发由与原始发射相同的编码位集组成。由于每个重发是原始发射的相同拷贝,因而具有追赶组合的重发充当额外重复编码。因此,由于没有发射新的冗余,因而追赶组合不会给出任何额外编码增益,而是仅增加每个重发的累积接收的Eb/编号。追赶组合是增量冗余的特殊情况。
MBMS的基线调度信息
WTRU可配置有用于接收下行链路数据的一个或多个调度参数。这种数据可与MBMS服务相关联。这种数据可与mDRB相关联。可根据发射模式发射这种数据。例如,WTRU可配置有以下中的至少一个:
-一个或多个控制信道资源集,诸如PDCCH资源,例如该控制信道资源集由以下中的至少一个表征:CORESET、搜索空间、周期性、DCI格式和/或类型、一个或多个聚集等级、一个或多个控制信道元素(CCE);
-一个或多个RNTI,诸如MBS-RNTI;
-用于接收MBMS服务和/或用于接收mDRB的数据的发射模式的配置,例如用于单播、多播(例如SC-PTM)、广播(例如SFN)或混合模式(WTRU可接收单播以及多播或广播中的至少一者)的配置。
WTRU可能已通过接收应用等级信息、针对***信息的接收或从配置MBMS服务的专用信令的接收中获取必要配置方面。
MBMS的基线HARQ处理
WTRU还可配置有用于与MBMS服务相关联的发射模式的HARQ处理。WTRU可被配置成执行HARQ处理(例如软组合)。WTRU可配置有用于发射模式的一个或多个HARQ过程。WTRU可识别用于例如在PDSCH(或用于MBMS的等效物理数据信道)上接收到的每个发射的适用HARQ过程。WTRU可被配置成确定软组合过程的结果是否已成功。
其他一般化适用性
在HARQ处理方面描述本文中所描述的方法,但可将类似程序应用于应用层数据,诸如以分层方式编码和/或结构化的媒体(例如音频、视频、增强现实或类似物)。
例如,可根据图像分辨率、累积添加(例如小波)编码、帧类型、场景元素和组成等将数据编码为分层视频。
例如,自解码(独立)I帧可表示第一层,需要先前帧来进行解码的(预测)P帧可表示第二层,并且需要先前帧和前向帧两者来进行解码的(双向)B帧可表示用于视频递送的第三层。
例如,场景组成的增强现实流也可在层中进行组织。
可相对于设备的容量执行不同层的采集,例如根据处理、数据速率、屏幕分辨率、用户偏好等。
用于HARQ分层的方法
在一种方法中,WTRU可被配置成使用分层原理执行HARQ发射的软组合。例如,层可对应于用于给定传送块的HARQ处理的序列中的一个HARQ发射。例如,给定TB的初始发射可对应于发射0,并且第一重发可对应于HARQ过程的序列中的发射1等。在一个一般示例中,第一TB发射(发射0)可调用HARQ层0过程以用于确认(ACK)或否定确认(NACK)。如果产生NACK,并且请求HARQ重发(发射1),则HARQ过程的下一实例可以是可能不同于HARQ层0过程的HARQ层1过程。可将不同HARQ过程建立为发射到WTRU的不同配置。
设备适用性
本文中的方法对于未配置有上行链路发射的设备尤其有用。这类设备可包括仅接收模式(ROM)设备、具有能力约束的设备、已被配置成用于单播服务的上行链路操作但不作为具有混合模式能力的WTRU进行管理的设备等。
用于对HARQ发射进行定序的分层。
HARQ层的配置
WTRU可配置有一个或多个层,例如至多X个层。这种配置可根据与MBMS服务的其他方面类似的机制来接收,并且/或者可以是MBMS服务的配置的部分。例如,WTRU可针对给定MBMS区域例如通过接收***信息来接收用于MBMS服务的配置,该配置包括HARQ分层配置。例如,WTRU可在特定于MBMS服务的SIB中接收HARQ分层配置。例如,WTRU可被配置成使用按需SIB接收HARQ分层配置。
WTRU可作为用于HARQ发射的层的函数来执行HARQ处理/软组合
具有增量冗余的软组合
例如,层可对应于使用增量冗余(IR)进行软组合的特定HARQ冗余版本(RV)。
具有追赶组合的软组合
例如,层可对应于例如使用追赶组合的软组合的相同编码位的额外重发。
用于软组合的方法可以是每个服务、过程ID、层等的配置方面
例如,HARQ过程(例如给定TB的所有HARQ发射)是否使用软组合,并且如果是,则其是使用具有IR还是追赶组合的软组合可以是发射模式和/或MBMS服务的配置的方面。
例如,一个(或全部)HARQ过程的HARQ层(例如对于给定TB的每个不同HARQ发射)是否将进行软组合,并且如果是,则其是应使用IR还是追赶组合进行软组合可以是发射模式、MBMS服务、HARQ过程和/或HARQ层的配置的方面。例如,这种配置方面可与特定HARQ过程标识(PID)或其范围相关联。
调度和HARQ层确定
WTRU作为一个或多个调度配置方面的函数来获取和/或接收HARQ层
WTRU可配置有用于接收每个HARQ层的不同调度参数。如上文所陈述,HARQ层可基于或定义成与WTRU的调度配置或调度参数相关联。
例如,WTRU可配置有一个或多个层。WTRU可被配置成使特定发射与给定HARQ处理层相关联。层(和/或其范围)可与以下中的一个或多个相关联:
-PDCCH配置:如果WTRU使用第一PDCCH配置成功解码DCI,则WTRU可确定针对给定过程标识符(PID)的发射对应于第一层,并且其他层以此类推。更一般来说,PDCCH配置(i)可对应于用于给定HARQ过程(或TB)的HARQ处理的序列中的HARQ发射(i),其中i可对应于单层或一系列层,例如从i=0直到可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)。
-一个或多个CCE的集合:如果WTRU使用第一CCE集合成功解码DCI,则WTRU可确定针对给定PID的发射对应于第一层,并且其他层以此类推。更一般来说,CCE集合(i)可对应于用于给定HARQ过程(或TB)的HARQ处理的序列中的HARQ发射(i),其中i可对应于单层或一系列层,例如从i=0直到可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)。
-DCI的第一控制信道元素(CCE)的索引:WTRU可确定针对给定PID的发射对应于作为成功解码的DCI中的第一DCI的起始索引的函数的特定层。例如,如果索引是偶数,则WTRU可确定发射是针对第一层,并且否则是针对第二层。例如,如果索引满足特定数学关系,例如使用模运算,诸如CCE索引模(i)=0,则WTRU可确定发射是针对第一层,其中i是由可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)界定的层,并且CCE索引是所解码DCI的第一CCE的起始索引。可能的是,不同层可配置有不同数学关系,诸如以创建范围。更一般来说,WTRU可根据成功解码的DCI的第一CCE的起始索引来确定用于给定HARQ过程(或TB)的HARQ处理的序列中的对应HARQ发射(i),其中i可对应于单层或一系列层,例如从i=0直到可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)。
-控制资源集(CORESET):如果WTRU使用第一CORESET成功解码DCI,则WTRU可确定针对给定PID的发射对应于第一层,并且其他层以此类推。更一般来说,CORESET(i)可对应于用于给定HARQ过程(或TB)的HARQ处理的序列中的HARQ发射(i),其中i可对应于单层或一系列层,例如从i=0直到可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)。
-搜索空间:如果WTRU使用第一搜索空间成功解码DCI,则WTRU可确定给定针对PID的发射对应于第一层,并且其他层以此类推。更一般来说,搜索空间(i)可对应于用于给定HARQ过程(或TB)的HARQ处理的序列中的HARQ发射(i),其中i可对应于单层或一系列层,例如从i=0直到可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)。例如,公共搜索空间(CSS)可对应于层i=0,并且WTRU特定搜索空间(WTRUSS)可对应于层i=1(并且有可能高于1)。在另一示例中,可使用与WTRUSS类似的方法,但使用与MBMS服务、会话和/或区域相关联的标识来确定MBMS搜索空间(使用WTRU的标识)。
-时间/周期性:
如果WTRU使用第一解码时机和/或时间周期成功解码DCI,则WTRU可确定针对给定PID的发射对应于第一层,并且使用不同解码时机和/或时间周期的其他层以此类推。这种解码时机可基于***帧数(例如,如使用模运算导出)、与控制信道方面相关的时序,诸如CORESET周期性、DRX启用持续时间或以类似方式导出的时机集。可能的是,WTRU可使用与基于WTRU的标识导出的寻呼时机类似的方法,但替代地使用与MBMS服务、会话和/或区域相关联的标识。
在一种方法中,DCI可另外包括从接收针对此HARQ过程的初始HARQ发射的DCI的时间开始的每个层的每个PDCCH时机之间的周期。例如,WTRU可在时间t=t1处接收针对HARQPID=X0的TB的初始发射的DCI,该DCI可包括周期的层间调度。T周期可以任何时间单位来表述,例如根据一个或多个符号、时隙、子时隙、子帧、us、ms等。对于可用(例如X中的Y)和/或所配置(例如X)层的总数,WTRU可使用,随后确定针对给定HARQ过程的序列中的所有重发的所有可能的调度时机,作为从时间t1开始的每个T周期的时机。因此,发射0在时间t1处发生,发射1在时间t1+T周期处发生,并且更一般来说,发射X将在时间t1+X*T周期处发生。在另一种方法中,T周期可以是WTRU的配置方面。
-RNTI:如果WTRU使用第一RNTI成功解码DCI,则WTRU可确定针对给定PID的发射对应于第一层,并且其他层以此类推。更一般来说,CORESET(i)可对应于用于给定HARQ过程(或TB)的HARQ处理的序列中的HARQ发射(i),其中i可对应于单层或一系列层,例如从i=0直到可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)。例如,公共MBS-RNTI可对应于层i=0,并且WTRU特定C-RNTI可对应于层i=1(并且有可能高于1)。
-为发射调度的资源(例如在PDSCH上):如果WTRU成功解码指示用于调度发射的第一资源集的DCI,则WTRU可确定针对给定PID的发射对应于第一层,并且其他层以此类推。更一般来说,调度(例如PDSCH)资源集(i)可对应于用于给定HARQ过程(或TB)的HARQ处理的序列中的HARQ发射(i),其中i可对应于单层或一系列层,例如从i=0直到可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)。例如,资源集可对应于为DCI格式内的发射调度的物理资源块(PRB)。例如,资源集可对应于与相关DCI的调度发射相关联的带宽部分(BWP),例如,在基于BWP的建模用以指示给定小区和/或跨WTRU配置的多个小区的HARQ层的情况下(例如在聚集的情况下)。例如,资源集可对应于与相关DCI的调度发射相关联的小区标识,例如,在基于小区的建模用以指示作为逻辑建构的给定小区内和/或跨WTRU配置的多个小区的HARQ层的情况下(例如在聚集的情况下)。例如,资源集可对应于与相关DCI的调度发射相关联的CG,例如,在基于小区组的建模用以指示MBMS区域和/或跨WTRU配置的多个小区的HARQ层的情况下(例如在双重连接和/或聚集的情况下)。
-DCI格式/大小:如果WTRU使用第一DCI格式成功解码DCI,则WTRU可确定针对给定PID的发射对应于第一层,并且其他层以此类推。更一般地,DCI格式(i)可对应于用于给定HARQ过程(或TB)的HARQ处理的序列中的HARQ发射(i),其中i可对应于单层或一系列层,例如从i=0直到可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)。
-一个或一系列聚集等级(AL):如果WTRU使用第一AL成功解码DCI,则WTRU可确定针对给定PID的发射对应于第一层,并且其他层以此类推。更一般来说,AL(i)(或其多个值,例如针对i=0为[4,16],针对i=1为[2,8])可对应于用于给定HARQ过程(或TB)的HARQ处理的序列中的HARQ发射(i),其中i可对应于单层或一系列层,例如从i=0直到可用(例如X中的Y)和/或所配置(例如X)层的最大数量(例如分别是Y-1或X-1)。这可以适用于追赶组合。
相同或不同方法可用于初始发射和重发
可能的是,WTRU根据第一配置方面/调度参数(例如通过在第一PDCCH上接收DCI)接收初始HARQ发射(例如发射0),并且根据第二配置方面/调度参数(例如通过在第二PDCCH上接收DCI)与上述方面中的另一方面组合接收后续HARQ重发。例如,WTRU可使用不同RNTI(例如MBMS-R-RNTI_1)(例如针对发射1)等直到MBMS-R-RNTI_X(例如发射X)来确定在第二PDCCH上针对给定HARQ过程的每个HARQ重发的层。
可用HARQ分层的确定
可用层的数量的动态变化,例如X个所配置层中的Y个可用层
在一种方法中,WTRU可接收可用于MBMS服务的层的数量的动态指示。例如,WTRU可接收控制信息(例如DCI)中用于调度给定TB(例如发射0)的初始发射的这种指示。举例来说,WTRU可接收可用层的数量(例如X个所配置层中的Y个)的指示。这种指示可适用于相关HARQ过程(例如发射TB),或适用于所有HARQ过程(例如用于发射与服务相关联的所有TB)。这种指示对于给定周期可以是有效的。这种周期可以是WTRU的配置方面,或可包括在指示可用层的数量的DCI中。在一个示例中,该指示发信HARQ处理的总可用层。在另一示例中,该指示发信用于相关HARQ处理的重发的总数。
针对作为另一层的结果的函数的给定层的盲解码活动
WTRU可对第一层执行盲解码。在成功对第一层的DCI进行盲解码后,WTRU可开始对第二层进行盲解码。例如,第一层可对应于针对给定HARQ过程(例如发射0)的初始发射。第二层可对应于第一重发(例如发射1)。在一个替代方案中,在被配置成用于重发的所有层之间,例如在HARQ重发i的层与HARQ重发i+1的层之间可存在类似关系。在另一替代方案中,被配置成用于HARQ重发的任何层可被处置为第二层,例如在成功对给定HARQ过程的初始发射进行盲解码后,WTRU可开始针对HARQ重发的所有可用和/或所配置层进行盲解码活动。这种盲解码处理还可称为HARQ层的分层解码。可能的是,层可配置有最大时间,在该最大时间期间,针对相关层的发射可例如从接收到初始发射的DCI的时间和/或从接收到针对HARQ过程的初始发射开始发生。例如,当WTRU接收到针对被配置成用于HARQ分层操作的给定HARQ过程调度新的TB的DCI时,WTRU可开始(或重新开始)定时器maxBlindDecodingTime。可能的是,maxBlindDecodingTime的起始值可对应于以下的值:被配置成用于具有最高发射索引的可用层的最大时间、被配置成用于具有最高发射索引的可配置层的最大时间和/或被配置成用于具有最高发射索引(WTRU当前正在监测该最高发射索引例如作为目标HARQ操作点)的层的最大时间。目标HARQ操作点可以是针对TB的HARQ发射的所需数量和/或可能需要满足所需服务要求的层数量(例如HARQ层)。
HARQ层的激活/去激活
HARQ层的WTRU-自主采集/激活
WTRU可例如使用***信息广播获取MBMS服务的配置。WTRU可确定HARQ分层可用于给定服务。WTRU可针对用于服务的初始HARQ发射开始对第一层进行盲解码。WTRU还可自主确定是否发起针对额外层的盲解码,并且如果是,则可自主确定发起针对多少个额外层的盲解码。例如,WTRU最初可针对其配置的所有可用层执行盲解码。可能的是,仅当存在尚未成功完成的至少一个HARQ过程时才如此进行。可能的是,仅高达具有最高发射索引的层的最大盲解码时间,WTRU正在监测例如对应于maxBlindDecodingTime(或等效物)的该最高发射索引。
WTRU可自主并且动态地确定其应根据给定HARQ过程的最后一次软组合尝试的结果来尝试接收对应于序列中的下一HARQ发射的层。可替代地,WTRU可自主确定将根据所观测操作点接收的层的数量(例如针对TB的HARQ发射的目标数量),例如,诸如基于成功解码某个百分比(例如95%)的发射和/或实现服务的某个PLR所必需的HARQ发射的平均数量。这种目标操作点、百分比和/或分组丢失速率(PLR)可以是服务的配置方面。在一个示例中,所观测目标HARQ操作点可以是针对TB的HARQ发射的所观测或当前所发生的数量和/或可能需要满足所需服务要求的层数量(例如HARQ层)。
HARQ层的网络控制(NW控制)激活/去激活
WTRU可接收指示哪个层激活和/或去激活的配置和/或信令。例如,这种信令可对应于L3/RRC信令、L2信令(例如MAC CE)或L1信令(例如在PDCCH上使用DCI)。这种信令可包括层数量的指示,或针对过程的HARQ发射的序列中的最后一次发射的层的标识。
例如,WTRU可接收具有用以激活和/或去激活一个或多个层的显式指示的DCI,例如DCI可包括指示层的激活状态的位图。WTRU还可根据位图中的激活层来确定HARQ处理中的序列,例如,位图可指多个索引HARQ层配置(例如调度参数),并且WTRU可确定来自位图中的序列的HARQ处理中的层的适用序列。例如,指示层配置0、3和5被激活的位图还将指示配置0是针对给定TB的初始发射(或第一次重发),并且随后HARQ应使用配置3,并且随后使用配置5处理发射。
例如,WTRU可针对给定层接收具有零大小授权的DCI。WTRU可确定对应层被去激活,例如有可能直到WTRU确定该层使用如上文所描述的另一种方法被激活。可能的是,WTRU根据这种信令来确定对应于HARQ处理的序列中的后续发射相的其他层也被去激活。
用于支持上行链路控制信息(UCI)的HARQ的方法
WTRU可被配置成用于接收例如使用混合模式发射的MBMS服务。WTRU可配置有用于例如在PUCCH上发射UCI的资源。WTRU可处于连接模式。对于被配置成用于MBMS的PUCCH资源,WTRU可具有有效上行链路定时提前(例如TA定时器正在运行)。
WTRU可确定使用MBMS调度配置(例如MBMS-RNTI)针对给定发射的给定PID的HARQ解码不成功。WTRU可选择用于发射指示NACK的UCI的PUCCH资源。在一个示例中,资源WTRU可根据WTRU特定配置来确定资源。在另一示例中,WTRU可例如基于调度初始发射的DCI的特性(例如DCI的第一CCE的起始索引)来动态地确定资源。
非单播初始发射、单播UCI、单播重发-不需要分层
在一种方法中,WTRU还可例如使用C-RNTI监测针对专用重发的DCI。WTRU可成功地解码指示相关PID的重发并且执行HARQ软组合的DCI。如果WTRU确定发射不成功,则其可指示类似于先前发射的NACK。WTRU可配置有针对MBMS(DL HARQ)的最大数量的HARQ发射。如果WTRU确定PID已达到HARQ发射的最大数量,则可避免发送任何UCI。
非单播初始发射、单播UCI、基于层的非单播重发
在另一种方法中,WTRU可替代地在针对NACK发射UCI之后开始尝试例如使用与上文针对HARQ分层所描述类似的方法接收下一层。如果HARQ过程不成功,则WTRU随后可尝试从下一层接收有可能高达如在先前章节中所描述的最大层数量、尝试和/或时间。
HARQ反馈的配置和/或适用性可以是WTRU的配置方面,例如针对给定服务和/或发射模式。可以每层、每组层或针对所有层(例如针对零个、一个或多个层)应用HARQ反馈的配置。
用于对HARQ处理进行故障处置的方法
可能的是,WTRU可被配置成指示上层的MBMS链路问题
WTRU可被配置成指示上层的MBMS无线电链路问题和/或故障。当HARQ过程不成功时,例如WTRU没有其它手段来接收重发,并且/或者已达到HARQ重发机会的最大数量,并且/或者从针对HARQ过程的初始发射起已过去最大时间,则WTRU可确定存在无线电链路问题。WTRU有可能采取其他恢复动作,例如,诸如发起对L2重发的请求、发起旨在改变发射模式的程序、发起可引起移动性事件(例如条件切换或类似事件)的程序,或发起对与HARQ处理相关的信息进行发信的程序,诸如下文所描述。
WTRU可基于与用于Uu RLM的同步/失步程序类似的程序使用阈值来确定MBMS无线电链路问题,其中例如同步是成功的HARQ过程的数量,并且失步是针对给定MBMS服务不成功的HARQ过程的发生。阈值可以是WTRU的配置方面。
可能的是,WTRU可被配置成指示目标/所观测HARQ操作点
WTRU可被配置成发送指示与HARQ处理相关的额外信息的上行链路控制信息(UCI),诸如,例如目标HARQ操作点、所观测HARQ操作点和/或对应于满足服务要求可能需要的层数量。WTRU可使用MAC CE或使用L3/RRC信令经由PUCCH使用UCI发射这种信息。当根据适用度量检测到HARQ发射的数量的单位变化时,WTRU可触发这种信令。WTRU可配置有禁止定时器,该禁止定时器可在包括和/或发射信令时启动,并且在定时器运行时避免发送任何这种信令。可能的是,WTRU可被配置成周期性地发射这种信息,例如使得其也可充当保活器(keep-alive)。这对于网络确定针对给定服务激活多少个层以及/或者确定给定MBMS区域的最优发射模式配置可能是有用的。
用于HARQ处理的示例性程序
在一个示例程序中,WTRU可执行用于HARQ处理(例如用于非单播、侧链路和/或用于混合模式发射)的以下步骤中的至少一个:
-WTRU可支持HARQ处理,例如被组织为与HARQ定序相关的层,并且例如用于MBMS服务和/或mDRB和/或mSRB和/或用于给定发射模式,包括使用如上文的解决用于HARQ分层的 方法的章节中所描述的一种或多种方法的分层和调度方面;
-WTRU可接收用于发射模式的HARQ配置,包括例如以下中的一个或多个:软组合的类型、HARQ层的数量、对上行链路UCI的支持,例如HARQ反馈、用于上行链路发射的方法的配置(如果适用)、使用如上文的章节用于对HARQ发射进行定序的分层中所描述的一种或多种方法来调度参数;
-WTRU可配置有多达X个HARQ层,其中每个层可与调度配置相关联。根据上文的章节调度和HARQ层确定中所描述的一种或多种方法,WTRU可根据HARQ层的调度配置来确定如何接收和识别针对给定TB(例如针对给定PID)的序列中的HARQ发射。
-根据上文的章节可用HARQ分层的确定中所描述的方法中的一种或多种,WTRU可通过执行控制信道的盲解码来接收针对给定HARQ过程的控制调度;
-可能的是,WTRU可使用上文的章节HARQ层的激活/去激活中所描述的隐式方法中的至少一种来动态地确定有多少个层可用。如果网络不对配置的所有层执行发射,例如以最大化资源使用,并且仅根据服务要求来发射,则这可能是适用的。
-可能的是,WTRU可使用上文的章节HARQ层的激活/去激活中所描述的显式方法中的至少一种来动态地确定有多少个层可用。WTRU可接收以半静态方式修改可用于WTRU的确定的层数量的显式信令。与隐式方法相比,这可以适用于帮助WTRU最小化其盲解码复杂度。如果网络不对配置的所有层执行发射,例如以最大化资源使用,并且仅根据服务要求来发射,则这可能是适用的。
-可能的是,WTRU可配置有用于发射HARQ反馈的上行链路资源。WTRU可例如使用上文的章节用于支持UCI的HARQ的方法中所描述的方法中的一种或多种来针对给定层发射HARQ反馈。
-可能的是,当例如WTRU已成功解码HARQ PID的最后一个可用层的TB时,WTRU可根据上文的章节用于对HARQ处理进行故障处置的方法中所描述的方法中的至少一种来执行针对HARQ处理的故障处理。
用于MBMS***的L2重发的方法
WTRU可被配置成用于接收MBMS服务。WTRU可被配置成使得其可执行稀疏上行链路发射,例如WTRU可在RRC连接模式中配置有混合模式发射,并且/或者WTRU可在RRC空闲模式和/或RRC非活动模式中支持小数据发射,而不需要转变到RRC连接模式,并且/或者WTRU可在RRC连接模式中支持小数据发射。
MBMS状态报告
WTRU可确定使用MBMS调度配置(例如MBMS-RNTI)针对给定发射的给定PID的HARQ解码不成功。WTRU可发起上行链路发射,该上行链路发射包括与给定MBMS服务的接收状态相关的信息,在适用情况下包括mDRB状态。这种信息在下文可称为MBMS状态报告(MSR)。
MSR的格式和/或内容
假设WTRU具有用以识别MBMS服务的所接收PDU的序列内的服务数据单元(SDU)(例如IP分组)的装置。例如,给定mDRB的每个PDU可与序列编号(SN)相关联。如果PDCP被配置成用于mDRB,则这种SN可对应于PDCP SN。可替代地,可将定序信息引入MBMS的MAC中。在这种情况下,可对每个MBMS服务应用定序信息。
MSR可指示和/或包括以下信息中的一个或多个。
-对用于MBMS服务的一个或多个SDU的重发的请求;
-MBMS服务和/或会话(MBMS ID)的标识,例如可唯一地标识用于MBMS服务的数据流的身份;
-用于验证WTRU作为访问MBMS服务的权限的标识,可能是WTRU特定访问令牌(WTRUMBMS ID)。这种令牌可唯一地标识WTRU、WTRU上下文和/或MBMS服务;
-mDRB标识,在被配置成用于MBMS服务的情况下;
-描述例如在MBMS ID的IP分组方面的接收缓冲状态的定序信息,诸如以下中的至少一个;
a.例如时间窗内的非连续SDU的确认和/或SDU的数量,例如使用
-最后一个所接收序列内序列编号(SN)-LRSN。这对于仅实施针对MBMS的累积重发的网络可能是有用的,例如使用非单播发射;或
b.第一缺失SN PDU(SN)-FMS;以及
-后续SN的接收状态的位图。位图可具有可变长度,这取决于用于MBMS服务的WTRU缓冲区中是否存在至少一个序列外PDU。位图的长度可能受到缺失PDU的数量的限制(PDU数量的深度)和/或时间方面(延迟限制)。这对于实施针对MBMS的选择性重发的网络可能是有用的,例如使用单播发射;
支持可以是例如每个MBMS服务、每个mDRB、每个发射模式的WTRU配置方面
针对给定MBMS服务和/或区域的MSR的支持可以是WTRU的配置方面。MSR的格式(例如仅针对累积重发,针对累积重发和/或选择性重发)也可以是WTRU的配置方面。
用于MBMS状态报告的触发
当WTRU确定以下中的至少一个时,WTRU可发起MSR的发射:
-WTRU确定PDU的序列中缺失至少一个PDU,例如针对给定MBMS服务、MBMS ID和/或mDRB(如果已配置);
a.可能的是,在可配置大小的接收窗内(以SDU为单位和/或以时间为单位);
-WTRU确定针对给定HARQ过程的TB发射已失败;
-WTRU确定其经历MBMS链路问题;
-WTRU将其用于MBMS服务的发射模式重新配置成支持L2重发的模式;
-WTRU执行移动性相关重新配置,并且发起目标小区中的访问;
-WTRU执行改变MBMS区域的移动性相关重新配置,并且发起目标小区中的访问;
-WTRU配置有用于MBMS服务的服务连续性和/或无损操作。
使用上述的组合的示例性触发
例如,WTRU可例如在即使在相同MBMS区域内的移动性事件时发起发射MSR,该移动性事件将WTRU的发射模式从仅广播重新配置成混合模式操作,并且WTRU确定来自与目标小区中的mDRB相关联的数据接收的给定MBMS ID的PDU的序列中缺失至少一个PDU。WTRU随后可使用适用(有可能已配置)资源(例如PUSCH上的MSR、PUCCH上的MSR)执行MSR发射,或使用物理随机接入信道(PRACH)资源执行MSR发射。
MSR的发射资源的示例性优先化和/或选择
例如,WTRU可首先通过在这种PUSCH资源例如在与WTRU触发MSR时的相同周期(例如TTI、子帧等)中可用(从动态调度或从半静态配置)的情况下选择PUSCH资源来执行MSR发射,否则其可选择PUCCH资源(如果已配置,有效和/或可用),否则WTRU随后可执行程序以例如使用调度请求程序,或通过使用PRACH资源或类似物发起小数据传送来获取PUSCH资源,否则WTRU随后可使用PRACH资源执行MSR发射。
用于MSR发射的示例性程序,例如经由物理上行链路共享信道(PUSCH)使用MSR
在一种方法中,WTRU可使用PUSCH资源发起MSR发射。在这种情况下,当WTRU确定应发射MSR时,有可能仅在WTRU不具有可用于MSR发射的资源的情况下,WTRU可触发SR。WTRU可使用半静态(例如已配置)授权、动态授权和/或使用小数据传送程序,例如使用针对小数据发射的2步骤或4步骤RACH经由例如PUSCH来执行MSR发射。例如,MSR可包括在使用MAC CE(例如MAC MSR CE)的TB发射中。例如,MSR可包括在使用PDCP控制消息(例如PDCP MSR)的TB发射中。
WTRU随后可执行用于接收L2重发的步骤。
用于MSR发射的示例性程序,例如经由物理上行链路控制信道(PUCCH)使用MSR
在一种方法中,WTRU可使用PUCCH资源执行MSR发射。在连接模式中以及/或者当WTRU具有有效上行链路定时对准时,这种资源可以是有效的(例如可用的)。
WTRU还可配置有以下中的至少一者:
-接收窗;接收窗可与特定MBMS服务、MBMS ID和/或mDRB相关联。窗可以SDU为单位表述,例如,在从基于服务的定序信息的最后一个所接收SDU(例如SN)起的SDU的数量方面,或其可以时间单位表述。
-MSR的PUCCH资源;资源可与特定MBMS服务、MBMS ID和/或mDRB相关联。
例如,如果WTRU确定移动窗中缺失至少一个SDU,则WTRU可确定应执行MSR发射。WTRU可在PUCCH上执行MSR发射,例如以与针对单播发射在PUCCH上进行的调度请求-SR发射类似的方式。
WTRU随后可执行用于接收L2重发的步骤。
用于MSR发射的示例性程序,例如经由物理随机访问信道(PRACH)使用MSR
在一种方法中,WTRU可使用PRACH资源执行MSR发射。
WTRU还可配置有以下中的至少一者:
-接收窗;接收窗可与特定MBMS服务、MBMS ID和/或mDRB相关联。窗可以SDU为单位表述,例如,在从基于服务的定序信息的最后一个所接收SDU(例如SN)起的SDU的数量方面,或其可以时间单位表述。
-MSR的前导码;前导码可与特定MBMS服务、MBMS ID和/或mDRB相关联。例如,如果WTRU使用不专用于MBMS服务的PRACH资源,则这可能是适用的。
-MSR的PRACH资源;资源可与特定MBMS服务、MBMS ID和/或mDRB相关联。例如,如果WTRU使用不专用于MBMS服务的PRACH资源,或否则如果PRACH资源专用于MBMS L2重发程序,同时前导码与特定MBMS ID相关联,则这可能是适用的。
例如,如果WTRU确定移动窗中缺失至少一个SDU,则WTRU可确定应执行MSR发射。WTRU可在与MBMS服务相关联的PRACH资源上执行MSR发射,有可能通过选择与MBMS ID以及/或者MSR所触发和/或发起的mDRB相关联的前导码。
WTRU随后可执行用于接收L2重发的步骤。
用于接收L2重发的示例性程序
监督功能启动
WTRU可在发射MSR时启动定时器T刷新。当定时器超时时,其可将包括无序PDU的所有PDU释放到上层,并且将最后一个序列内所接收SN设置成最后一个所接收PDU。当WTRU接收到序列内的所有缺失PDU时,WTRU可停止定时器T刷新。
非单播初始发射、单播MSR、单播重发-不需要分层
在一种方法中,在发射MSR之后,WTRU可例如使用C-RNTI监测针对专用重发的DCI。WTRU可成功解码DCI,并且接收MBMS服务的数据。如果适用,则WTRU检测并且舍弃复本(例如在累积重发的情况下),并且释放序列内PDU(例如在累积或选择性重发的情况下)。
非单播初始发射、单播MSR、基于层的非单播重发
在另一种方法中,WTRU可配置有用于SDU重发的层。这可以代替HARQ层或作为HARQ层的补充。WTRU可替代地在发射MSR之后开始尝试接收下一层,例如使用与上文针对使用HARQ分层接收HARQ重发所描述类似的用以接收PDU重发的层的方法。WTRU可尝试从PDU重发层接收持续给定的有可能已配置的周期。这种周期可对应于上述定时器T刷新。
WTRU可确定PDU重发不成功,例如当定时器T刷新超时时。
用于不成功L2重发程序的故障处置
可能的是,WTRU可被配置成指示上层的MBMS链路问题
WTRU可被配置成指示上层的MBMS无线电链路问题和/或故障。如果例如定时器T刷新超时以及/或者在发射MSR之后的某个周期之后仍然缺失PDU,则WTRU可确定存在无线电链路问题。WTRU随后可采取其他恢复动作,例如,诸如发起旨在改变发射模式的程序、发起可引起移动性事件(例如条件切换或类似事件)的程序,或发起对与HARQ处理相关的信息进行发信的程序,诸如下文所描述。
WTRU可基于与用于Uu RLM的同步/失步程序类似的程序使用阈值来确定MBMS无线电链路问题,其中例如,同步是在没有显著无序PDU时接收到的发射的数量,并且失步是给定MBMS服务的无序PDU的发生。阈值可以是WTRU的配置方面。
用于L2重发的示例性程序-基线
在一个示例程序中,WTRU可执行用于支持L2重发(例如用于非单播侧链路和/或混合模式重发)的以下步骤中的至少一个:
-WTRU可支持用于MBMS服务和/或mDRB和/或mSRB和/或用于给定发射模式的L2重发处理,包括使用如上文的章节用于MBMS***的L2重发的方法中所描述的一种或多种方法的调度方面;
-WTRU可接收用于L2重发(例如对于发射模式)的配置,包括例如以下中的一个或多个:重发的类型(选择性、累积)和/或WTRU是否应当应用重新排序和/或重复检测、用于上行链路发射(如果适用)的方法的用以发射MSR的配置(例如使用PUCCH、PUSCH、PRACH和/或小数据发射)、用于发射MSR的资源(如果适用的话)、使用哪些资源来进行MSR发射(如果适用)、使用上文的章节用于MBMS***的L2重发的方法中所描述的一种或多种方法来调度参数;
-WTRU可确定其应根据上文的章节MBMS状态报告用于MBMS状态报告的触发中所描述的触发中的至少一个来发射MSR。
-WTRU可根据上文的章节MBMS状态报告中所描述的可能格式中的一种格式来发射MSR;
-WTRU可使用上文的章节MBMS状态报告用于MBMS状态报告用于MSR发射的示例 性程序,例如经由PUSCH使用MSR用于MSR发射的示例性程序,例如经由PUCCH使用MSR和/或用于MSR发射的示例性程序,例如经由PRACH使用MSR中所描述的方法中的至少一种来发射MSR。
-WTRU可使用上文的章节用于接收L2重发的示例性程序中描述的方法中的至少一种来执行L2重发的接收。
-可能的是,当例如WTRU已成功接收序列内的一个或多个数据单元时,例如当至少一个L2重发层可用时和/或在发射MSR以后的周期之后,WTRU可根据上文的章节用于不成功 L2重发程序的故障处置中所描述的方法中的至少一种来执行用于L2重发的故障处置。
用于L2重发分层方法的示例性程序
在一个示例程序中,WTRU可执行用于支持使用分层来进行L2重发(例如用于非单播侧链路和/或混合模式重发)的以下步骤中的至少一个:
-WTRU可支持L2重发,例如,被组织为层,其中第一层可对应于针对TB的初始发射,并且第二层可对应于针对TB的L2重发。WTRU可针对给定MBMS服务和/或mDRB和/或mSRB和/或用于给定发射模式接收针对每个层的配置,包括使用与上文的章节用于HARQ分层的方法和其子章节中针对HARQ分层所描述的方法类似的一种或多种方法的分层和调度方面;
-WTRU可接收用于L2重发配置(例如对于发射模式),包括例如以下中的一个或多个:重发的类型(选择性、累积)和/或WTRU是否应当应用重新排序和/或重复检测、重发层的数量、对上行链路发射(例如MSR)的支持、用于上行链路发射(如果适用)的方法的用以发射MSR的配置(例如使用PUCCH、PUSCH、PRACH和/或小数据发射)、用于发射MSR的资源(如果适用的话)、使用哪些资源来进行MSR发射(如果适用)、使用与上文的章节用于对HARQ发射进 行定序的分层中所描述的方法类似的一种或多种方法来调度参数;
-WTRU可配置有多达X个HARQ层,其中每个层可与调度配置相关联。WTRU可确定如何根据用于层的调度配置来接收针对给定服务mDRB、sDRB的L2发射,并且使用与上文的章节调度和HARQ层确定中所描述的方法类似的一种或多种方法来识别针对该流的数据单元的序列中的给定PUD/SDU;
-根据与上文的章节可用HARQ分层的确定中所描述的方法类似的方法中的一种或多种,WTRU可通过执行控制信道的盲解码来接收针对给定L2重发的控制调度;
-可能的是,WTRU可使用与上文的章节HARQ层的激活/去激活中所描述的方法类似的隐式方法中的至少一种来动态地确定有多少个层可用。如果网络不对所有数据单元的给定层执行L2重发,例如以最大化资源使用,并且仅根据服务要求来发射,则这可能是适用的。
-可能的是,WTRU可使用与上文的章节HARQ层的激活/去激活中所描述的方法类似的显式方法中的至少一种来动态地确定有多少个层可用。WTRU可接收以半静态方式修改可用于WTRU的确定的层数量(和/或接通/断开L2重发)的显式信令。与隐式方法相比,这可以适用于帮助WTRU最小化其盲解码复杂度。如果网络不对所有数据单元的给定层执行L2重发,例如以最大化资源使用,并且仅根据服务要求来发射,则这可能是适用的。
-可能的是,WTRU可确定其应根据上文的章节MBMS状态报告用于MBMS状态报告的 触发中所描述的触发中的至少一个来发射MSR。
-可能的是,WTRU可使用上文的章节MBMS状态报告用于MBMS状态报告用于MSR发 射的示例性程序,例如经由PUSCH使用MSR用于MSR发射的示例性程序,例如经由PUCCH使用 MSR和/或用于MSR发射的示例性程序,例如经由PRACH使用MSR中所描述的方法中的至少一种来发射MSR。
WTRU可使用上文的章节用于接收L2重发的示例性程序中描述的方法中的至少一种来执行L2重发的接收。
可能的是,当例如WTRU已成功接收序列内的一个或多个数据单元时,例如当至少一个L2重发层可用时和/或在发射MSR以后的周期之后,WTRU可根据上文的章节用于不成功 L2重发程序的故障处置中所描述的方法中的至少一种来执行用于L2重发的故障处置。
用于服务连续性和移动性的方法
本章节描述用于监测(例如无线电链路监测)、检测(例如MBMS问题的声明)以及针对支持不同MBMS模式/可靠性的MBMS服务的恢复的启用项。
WTRU可被配置成在监测数据接收方面和/或在用于满足必要数据接收目标的必要机制的支持方面执行MBMS服务的监督,例如在满足具有或没有L2重发的分组丢失率(PLR)目标方面,在满足延迟要求方面,以及/或者在充足数量的HARQ层的可用性/接收方面。监测功能可特定于给定MBMS服务、发射模式、mDRB配置和/或RRC连接模式(例如空闲、连接或非活动)。
连接性和服务监督
WTRU可监测MBMS服务以确定是否存在MBMS连接性和/或无线电链路的问题。这类方法可基于本文中所描述的其他错误确定。
发射模式的变化
WTRU可被配置成用于进行以下操作和/或获取用于进行以下操作的配置:给定资源集和/或例如MWP的区域、小区、小区组、MBMS区域和/或非活动状态的区域中的MBMS服务。
WTRU可在以下中的至少一个时发起发射模式的变化:
-WTRU处于CONNECTED模式,并且接收RRC重新配置消息:
a.RRC重新配置WTRU配置的一个或多个方面(有可能排除WTRU的MBMS配置);和
b.WTRU通过符合重新配置来确定WTRU的能力(例如其MBMS相关能力)将超过当前MBMS发射模式;
-这种能力可对应于上文所描述的能力。
-WTRU处于连接模式,并且接收不具有移动性控制的RRC重新配置消息,并且以下中的至少一个发生:
a.RRC重新配置针对MBMS的WTRU发射模式:
b.RRC重新配置WTRU的mDRB中的至少一个:
c.WTRU执行重新配置程序,但未能访问辅小区组(SCG)的主小区(例如SCG的T304超时);
-WTRU处于连接模式,并且接收具有移动性控制的RRC重新配置消息(例如指示目标小区的变化),并且以下中的至少一个发生:
a.RRC未明确重新配置针对MBMS的WTRU发射模式;
b.针对MBMS服务和/或mDRB的单播发射的WTRU配置不再适用;
c.WTRU执行移动性程序,但未能访问目标小区(例如T304到期);
d.重新配置是针对RAT间HO;
-WTRU处于连接模式,并且确定RLF已发生和/或WTRU启动T310;
-WTRU处于连接模式,并且确定连接重建程序已失败(例如T310到期);
WTRU处于空闲模式,并且:
a.WTRU执行小区重选,该小区重选指示用于暂驻的不同小区;
-并且WTRU确定小区不支持正在进行的MBMS服务的当前发射模式;或者
-并且WTRU确定小区属于不同MBMS区域,其中正在进行的MBMS服务可用。不同区域在发射模式方面可能不支持服务连续性;
b.WTRU例如由于区域的变化而执行跟踪区域更新(TAU)程序;
c.WTRU确定小区具有对MBMS相关发射(例如小数据发射)的上行链路资源、PRACH资源和/或MSR的前导码的不同支持和配置。
WTRU处于非活动模式,并且:
a.WTRU执行小区重选,该小区重选指示用于暂驻的不同小区;
-并且WTRU确定小区不支持正在进行的MBMS服务的当前发射模式;或者
-并且WTRU确定小区属于不同MBMS区域,其中正在进行的MBMS服务可用。不同区域在发射模式方面可能不支持服务连续性;
b.WTRU确定小区属于用于在非活动状态时的目的的不同区域。
c.WTRU确定小区具有对MBMS相关发射(例如小数据发射)的上行链路资源、PRACH资源和/或MSR的前导码的不同支持和配置。
-WTRU执行到连接模式的转变,并且
a.RRC重新配置发射模式。重新配置可指示是否支持MBMS服务、配置和/或mDRB的L2重发。
-WTRU执行到空闲模式的转变,并且
a.针对MBMS服务和/或mDRB的单播发射的WTRU配置不再适用;
-WTRU执行到非活动模式的转变,并且
a.针对MBMS服务和/或mDRB的单播发射的WTRU配置不再适用;
WTRU重置MAC,并且:
a.RRC随后未明确地例如根据接收到专用信令来重新配置MBMS服务。
当WTRU自主确定其可改变针对MBMS的发射模式时,WTRU可选择满足WTRU的能力、MBMS服务要求以及/或者从网络接收到和/或根据所接收MBMS配置的配置的发射模式。
WTRU可在发射模式改变时发起用于L2重发的程序(例如MSR发射)以实现无损模式变化。如果WTRU可符合配置以及/或者如果WTRU确定重新配置成功,则WTRU可根据适用配置,例如根据所接收配置来发起用于L2重发的程序。
WTRU-自主移动性
在以下中的至少一个的情况下,处于RRC空闲或RRC非活动模式的WTRU可重新选择合适的小区,该小区满足(有可能可配置)小区选择阈值,但WTRU另外将尚未选择该小区用于暂驻:
-所选小区的MBMS配置适用于满足MBMS服务要求;
-所选小区的MBMS配置在用于接收MBMS服务的WTRU的能力范围内;
-具有更好质量的另一合适的小区不支持或不具有用于WTRU的MBMS服务的充足MBMS配置。不充足的MBMS配置可例如与对HARQ、分层、L2重发或类似操作的支持有关;
-具有更好质量的另一合适的小区具有将超过WTRU用于接收MBMS服务的能力的MBMS配置。
WTRU能力可对应于先前描述的任何WTRU能力方面。MBMS配置可对应于先前描述的任何MBMS配置方面。
网络控制的移动性-条件移动性
如果配置有条件切换(CHO)的WTRU确定MBMS服务降级到低于阈值,并且/或者如果该MBMS确定MBMS连接和/或无线电链路存在问题,则该MBMS可触发移动性重新配置。如果CHO配置包括多于一个候选目标小区,则WTRU可选择满足MBMS服务要求的小区。
网络控制的条件移动性
处于RRC连接模式并且配置有MBMS操作的WTRU可报告合适的相邻小区,该相邻小区还适合于满足WTRU的MBMS服务要求。这种报告可包括在RRC消息中,例如包括在测量报告中。WTRU可报告WTRU当前已激活的会话的MBMS要求、MBMS服务和/或MBMS ID。关于正在进行的MBMS会话的信息可包括在有可能在改变MBMS服务接收时被触发的MAC MBMS CE中,包括在RRC响应(例如RRC连接重新配置完成响应)中,或包括在例如测量报告中的另一RRC消息中。WTRU可支持用于测量报告的额外触发,该额外触发包括MBMS相关触发,诸如当WTRU确定MBMS连接和/或无线电链路存在问题时。
移动性故障的处置
在重新配置失败时,在具有或没有移动性的情况下,WTRU可恢复到先前MBMS配置。可替代地,WTRU可自主地获取MBMS服务和/或将MBMS服务重新配置成合适的发射模式。在此情况下,WTRU还可触发L2重发程序(例如MSR发射)以使得能够恢复MBMS服务的任何未成功接收的数据。WTRU可根据适用配置来发起用于L2重发的程序。
示例实施方案
图2是表示本创新的各方面的方法200的流程图。方法200由WTRU执行。在210处,WTRU接收被索引为过程(例如HARQ过程)的序列的多个调度配置。可经由从gNB或能够配置WTRU的其他实体接收单播或其他合适的发射类型来进行WTRU对多个配置的接收。在本示例环境中,WTRU被配置成能够随后接收非单播下行链路发射方法,诸如来自gNB的MBMS发射。在215处,WTRU从gNB接收非单播下行链路发射(例如MBMS发射)作为包含信息单元(诸如数据单元)的初始发射。在220处,WTRU检测是否接收到具有错误的信息单元(数据单元)。如果未检测到错误,则方法200进行到240,并且方法200可停止。如果在220处检测到所接收信息单元的错误,则在225处,WTRU确定与HARQ过程相关联的至少第二调度配置的存在。如果没有可用的第二配置,则过程220可移动到245,其中可使用可用HARQ过程(不涉及第二配置)直到方法200在240处结束。如果在225处确定至少第二调度配置可用,则方法200移动到230,其中WTRU请求信息单元的后续发射;信息单元的重发。
在235处,WTRU接收信息单元的后续发射,随后根据对应于第二HARQ层的第二调度配置来处理信息单元。此后,在使用第二调度配置(第二HARQ层)的HARQ处理成功校正信息单元的条件下,方法200随后在240处结束。在方法200中,WTRU基于在第一调度配置中接收到的控制消息(诸如DCI消息中)中的指示来确定第二调度配置的存在,以处理最初接收到的具有错误的信息单元的另一重发。在另一特征中,WTRU基于HARQ过程的配置方面来确定第二调度配置的存在。信息单元可以是对应于混合自动重复请求(HARQ)处理的过程的传送块(TB)。后续重发是HARQ处理的序列中的下一次发射。HARQ处理可对应于WTRU的配置元素。对信息单元的初始发射和后续发射的HARQ处理的序列的软组合可解决在信息单元中检测到的错误。软组合可包括使用增量冗余或追赶组合。
方法中提及的信息单元可以是服务数据单元(SDU)。第一调度配置或第二调度配置可与以下中的一个或多个相关联:物理下行链路控制信道(PDCCH)、一个或多个控制信道元素的集合、下行链路控制信息(DCI)的第一CCE的索引、控制资源集(CORSET)、搜索空间、时间或周期性、无线电网络临时标识符(RNTI)、物理下行链路共享信道(PDSCH)、DCI格式或大小以及一个或一系列聚集等级。
该方法中的HARQ过程可对应于用HARQ层标识的WTRU调度配置/参数。可由所接收下行链路控制信息(DCI)激活或去激活多个HARQ层。另外,WTRU可将HARQ反馈发射到无线电接入网络上的节点。在该方法中,非单播下行链路发射方法可以是多媒体广播多播服务(MBMS)。
图3描绘涉及使用不同配置的HARQ处理的方面的过程300的示例描绘。图3的频率对时间图展示从gNB到可由WTRU使用的两个配置的WTRU的发射。在一个示例中,WTRU可处于非连续接收(DRX)模式以接收PDCCH发射。配置1发射305可由WTRU经由PDCCH接收,并且配置2发射可由WTRU从gNB经由PDCCH接收。305PDCCH配置1和310PDCCH配置2可在不同BWP中发射。305PDCCH配置1可对应于第一调度配置,并且310PDCCH配置2可对应于第二调度配置。在315处,经由305配置1接收DCI,这允许在320处的HARQ过程校正与被配置成接收初始发射(Tx=0)的过程ID x(PID=x)相关联的所接收数据。如果HARQ过程未能使用PID=x校正数据,则WTRU使用PDCCH配置2来接收和尝试解码第二DCI 325。所接收数据可对应于重发(TX=1),并且与PID=x相关联。在此实例中,成功使用增量冗余或追赶组合来解码与PID=x相关联的数据。在335处,WTRU使用305配置1接收DCI,该配置1可调用与另一过程(PID=y)相关联的HARQ处理,并且可对应于初始重发(TX=0)。在所指示的实例中,HARQ过程340成功解码与使用HARQ发射0的PID=y相关联的数据。在上述过程的一个方面中,WTRU基于HARQ发射编号来确定将使用的PDCCH配置。可能的是,WTRU可基于DCI 315中的指示来确定DCI 325的存在。可能的是,WTRU基于与特定HARQ过程ID相关联的配置来确定DCI 325的存在。HARQ层可被概念化为HARQ发射(TX编号)与相关联控制信道配置(配置1、2等)的组合。
在本创新的另一观点中,WTRU可执行被配置成用于MBMS接收的分层HARQ操作的步骤。那些步骤包括接收各自由至少一个HARQ配置(重发#、过程ID等)和相关联调度配置组成的多个(HARQ层)配置。WTRU随后可执行第一HARQ层的解码,诸如盲解码。WTRU可基于先前HARQ层的解码结果来解码后续HARQ层。例如,如果第一HARQ层的解码失败,则可解码第二HARQ层。WTRU可确定额外HARQ层的存在,这种确定可基于来自gNB的第一所接收DCI中的指示。WTRU随后可根据相关联调度信息来执行第二HARQ层的解码。值得注意的是,第二HARQ层可与不同于第一HARQ层的至少一个方面(RNTI、CORESET、搜索空间、聚集等级)相关联。因此,在第一HARQ过程尝试已失败之后,第二HARQ层可提供对MBMS接收的成功解码。
上文中公开的另一种方法的方面可包括由配置有非单播下行链路发射方法的无线发射/接收单元(WTRU)执行的方法,该下行链路发射源自无线电接入网络上的节点。在该方法中,WTRU从节点接收协议数据单元(PDU)的序列,产生状态报告(SR),并且将SR发射到节点,其中SR请求至少一个缺失PDU的L2重发。WTRU从节点接收L2重发,并且使用L2重发来解决来自PDU的序列的至少一个缺失PDU。
在该方法中,从节点接收PDU的序列可包括接收与多媒体广播多播服务(MBMS)相关的PDU的序列。将SR发射到节点包括发射以下中的至少一个:对PDU的重发的请求、标识数据流的服务的标识、WTRU的标识、WTRU的服务的数据无线电承载(DRB)的标识、描述接收缓冲状态的定序信息和/或第一缺失序列编号PDU(SN PDU)。
在该方法中,产生SR由以下中的至少一个触发:确定PDU的序列中存在至少一个PDU缺失;确定针对自动重复请求(HARQ)的传送块(TB)的发射已失败;确定WTRU正在经历链路问题;对用于服务的WTRU重发模式进行重新配置以支持L2重发;改变服务区域和/或发起目标小区中的访问的WTRU的移动性相关重新配置;以及WTRU配置有用于服务的服务社区和/或无损操作。
在该方法中,将SR发射到节点可包括使用以下中的一个或多个的SR发射:物理上行链路共享信道(PUSCH)、物理上行链路控制信道(PUCCH)和物理随机接入信道(PRACH)。WTRU从节点接收L2重发可包括以下中的任一个:在发射MSR时发起定时器,其中在定时器超时时,WTRU将全部所接收PDU释放到上层,监测下行链路控制指示符以接收专用L2重发,以及接收根据分层PDU组织的重发,该分层PDU对应于WTRU的配置。
图4描绘示例消息图400,该示例消息图描绘gNB 410与WTRU 420之间用以将状态报告(SR)中继到gNB的事务。在图400中,在430处,gNB 410将多个层(层1-N)发射到WTRU。层可表示允许WTRU更好地处理一些程序(诸如本文中所描述的HARQ程序)的不同和/或相关配置。在440处,WTRU可向gNB发射SR以指示所观测HARQ操作点。HARQ操作点的一个示例可以是用于TB的HARQ发射的目标数量和/或满足服务要求可能需要的层数量。基于SR,在450处,gNB可将层数量从N调整到M,或调整HARQ层参数以改进HARQ操作点。
在本公开的一个方面,WTRU可被配置成用于MBMS接收的分层HARQ操作。WTRU可连续解码多个HARQ层。WTRU可根据先前层和配置的解码结果来确定每个层的调度配置。
在本公开的另一方面中,WTRU可周期性地或基于所配置事件触发来测量和报告目标/所观测HARQ操作点(例如用于成功接收的HARQ层的最小数量)。WTRU可被配置成基于MBMS接收的状态来触发条件重新配置。这种状态可包括诸如MBMS接收的质量、超过阈值所需的HARQ层的数量的参数,以便确定是否需要重新配置。
上述方法可由WTRU执行,并且/或者可包括计算机可读存储介质,该计算机可读存储介质包括指令,该指令在由计算机执行时促使计算机执行上文中的方法中的任一方法。
尽管上文以特定组合提供了特征和元件,但是本领域的普通技术人员将理解,每个特征或元件可单独使用或以与其他特征和元件的任何组合来使用。本公开并不限于就本专利申请中所述的具体实施方案而言,这些具体实施方案旨在作为各个方面的例证。在不脱离本发明的实质和范围的前提下可进行许多修改和变型,因其对于本领域的技术人员而言将是显而易见的。除非明确如此提供,否则本申请说明书中使用的任何元件、动作或说明均不应理解为对本发明至关重要或必要。根据前面的描述,除了本文列举的那些之外,在本公开的范围内的功能上等同的方法和装置对于本领域的技术人员而言将是显而易见的。此类修改和变型旨在落入所附权利要求书的范围内。本公开仅受限于所附权利要求的条款以及此类享有权利的权利要求的等同形式的全部范围。应当理解,本公开不限于特定的方法或***。
为了简单起见,关于红外能力设备(即红外发射器和接收器)的术语和结构讨论了前述实施方案。然而,所讨论的实施方案不限于这些***,而是可应用于使用其他形式的电磁波或非电磁波(诸如声波)的其他***。
还应当理解,本文所用的术语仅用于描述具体实施方案的目的,并非旨在进行限制。如本文中所使用,术语“视频”或术语“图像”可意指在时间基础上显示的快照、单个图像和/或多个图像中的任一者。作为另一示例,当在本文中提及时,术语“用户设备”和其缩写“UE”、术语“远程”和/或术语“头戴式显示器”或其缩写“HMD”可意指或包括(i)无线发射和/或接收单元(WTRU);(ii)WTRU的多个实施方案中的任一个实施方案;(iii)具有无线功能和/或具有有线功能(例如,可拴系)的设备配置有(特别是)WTRU的一些或全部结构和功能;(iii)配置有少于WTRU的全部结构和功能的无线能力和/或有线能力设备;或(iv)等。下文相对于附图1A-1D,在本文提供了可表示本文所述的任何WTRU的示例性WTRU的细节。作为另一示例,本文中的各种所公开实施方案在上文和下文被描述为利用头戴式显示器。本领域技术人员将认识到,可利用除头戴式显示器之外的设备,并且可相应地修改本公开和各种所公开实施方案中的一些或全部,而无需过度实验。这种其他设备的实例可包括无人机或其他设备,被配置成流式传输信息以提供调适的现实体验。
另外,本文中所提供的方法可在并入计算机可读介质中以供计算机或处理器执行的计算机程序、软件或固件中实施。计算机可读介质的示例包括电子信号(通过有线或无线连接传输)和计算机可读存储介质。计算机可读存储介质的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、高速缓存存储器、半导体存储器设备、磁介质(诸如内置硬盘和可移动磁盘)、磁光介质和光介质(诸如CD-ROM磁盘和数字通用光盘(DVD))。与软件相关联的处理器可用于实现用于WTRU、UE、终端、基站、RNC或任何主计算机的射频收发器。
在不脱离本发明的范围的情况下,上文提供的方法、装置和***的变型是可能的。鉴于可应用的广泛多种实施方案,应理解,所示出的实施方案仅为示例,并且不应被视为限制以下权利要求书的范围。例如,本文中提供的实施方案包括手持设备,该手持设备可包括提供任何适当电压的任何适当电压源(诸如电池等)或与该电压源一起使用。
此外,在上文所提供的实施方案中,指出了处理平台、计算***、控制器和包含处理器的其他设备。这些设备可包含至少一个中央处理单元(“CPU”)和存储器。根据计算机编程领域的技术人员的实践,对动作和操作或指令的符号表示的引用可由各种CPU和存储器执行。此类动作和操作或指令可被认为是正在“执行的”、“计算机执行的”或“CPU执行的”。
本领域的普通技术人员将会知道,动作和符号表示的操作或指令包括CPU对电信号的操纵。电***表示数据位,这些数据位可导致电信号的最终变换或电信号的减少以及对在存储器***中的存储器位置处的数据位的保持,从而重新配置或以其他方式改变CPU的操作以及进行信号的其他处理。保持数据位的存储器位置是具有与数据位对应或表示数据位的特定电属性、磁属性、光学属性或有机属性的物理位置。应当理解,实施方案不限于上述平台或CPU,并且其他平台和CPU也可支持所提供的方法。
数据位还可保持在计算机可读介质上,该计算机可读介质包括磁盘、光盘和CPU可读的任何其他易失性(例如,随机存取存储器(RAM”))或非易失性(例如,只读存储器(ROM”))海量存储***。计算机可读介质可包括协作或互连的计算机可读介质,该协作或互连的计算机可读介质唯一地存在于处理***上或者分布在多个互连的处理***中,该多个互连的处理***相对于该处理***可以是本地的或远程的。应当理解,实施方案不限于上述存储器,并且其他平台和存储器也可支持所提供的方法。
在例示性实施方案中,本文所述的操作、过程等中的任一者可实现为存储在计算机可读介质上的计算机可读指令。计算机可读指令可由移动单元、网络元件和/或任何其他计算设备的处理器执行。
在***的各方面的硬件具体实施和软件具体实施之间几乎没有区别。硬件或软件的使用通常是(但不总是,因为在某些上下文中,硬件和软件之间的选择可能会变得很重要)表示在成本与效率之间权衡的设计选择。可存在可实现本文所述的过程和/或***和/或其他技术的各种媒介(例如,硬件、软件和/或固件),并且优选的媒介可随部署过程和/或***和/或其他技术的上下文而变化。例如,如果实施者确定速度和准确度最重要,则实施者可选择主要为硬件和/或固件的媒介。如果灵活性最重要,则实施者可选择主要为软件的具体实施。另选地,实施者可选择硬件、软件和/或固件的一些组合。
上述详细描述已经通过使用框图、流程图和/或示例列出了设备和/或过程的各种实施方案。在此类框图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域的技术人员应当理解,此类框图、流程图或示例内的每个功能和/或操作可单独地和/或共同地由广泛范围的硬件、软件、固件或几乎它们的任何组合来实现。在实施方案中,本文所述主题的若干部分可经由专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)和/或其他集成格式来实现。然而,本领域的技术人员将认识到,本文所公开的实施方案的一些方面整体或部分地可等效地在集成电路中实现为在一个或多个计算机上运行的一个或多个计算机程序(例如,在一个或多个计算机***上运行的一个或多个程序)、在一个或多个处理器上运行的一个或多个程序(例如,在一个或多个微处理器上运行的一个或多个程序)、固件或几乎它们的任何组合,并且根据本公开,设计电路和/或写入软件和/或固件的代码将完全在本领域技术人员的技术范围内。另外,本领域的技术人员将会知道,本文所述主题的机制可以多种形式作为程序产品分布,并且本文所述主题的例示性实施方案适用,而不管用于实际执行该分布的信号承载介质的具体类型如何。信号承载介质的示例包括但不限于以下各项:可记录类型介质(诸如软盘、硬盘驱动器、CD、DVD、数字磁带、计算机存储器等);和传输类型介质(诸如数字和/或模拟通信介质(例如,光纤电缆、波导、有线通信链路、无线通信链路等))。
本领域技术人员将认识到,本领域中常见的是,以本文中阐述的方式来描述设备和/或过程,并且此后使用工程实践以将这类所描述设备和/或过程集成到数据处理***中。也就是说,本文中所描述的设备和/或过程的至少一部分可经由合理量的实验集成到数据处理***中。本领域技术人员将认识到,典型数据处理***一般可包括以下中的一个或多个:***单元外壳;视频显示设备;存储器,诸如易失性存储器和非易失性存储器;处理器,诸如微处理器和数字信号处理器;计算实体,诸如操作***、驱动程序、图形用户接口和应用程序;一个或多个交互设备,诸如触摸板或屏幕;和/或控制***,包括反馈回路和控制马达(例如用于感测位置和/或速度的反馈、用于移动和/或调整部件和/或量的控制马达)。典型数据处理***可利用任何合适的市售部件来实施,诸如通常在数据计算/通信和/或网络计算/通信***中发现的那些部件。
本文所述的主题有时示出了包含在不同的其他部件内或与不同的其他部件连接的不同的部件。应当理解,此类描绘的架构仅仅是示例,并且事实上可实现达成相同功能的许多其他架构。在概念意义上,达成相同功能的部件的任何布置是有效“相关联的”,使得可实现期望的功能。因此,在本文中被组合以实现特定功能的任何两个部件可被视为彼此“相关联”,使得所需功能得以实现,而与架构或中间部件无关。同样,如此相关联的任何两个部件也可被视为彼此“可操作地连接”或“可操作地耦合”以实现期望的功能,并且能够如此相关联的任何两个部件也可被视为“可操作地可耦合”于彼此以实现期望的功能。可操作地可耦合的具体示例包括但不限于可物理配合和/或物理交互的部件和/或可无线交互和/或无线交互的部件和/或逻辑交互和/或可逻辑交互的部件。
关于本文使用的基本上任何复数和/或单数术语,本领域的技术人员可根据上下文和/或应用适当地从复数转换成单数和/或从单数转换成复数。为清楚起见,本文可明确地列出了各种单数/复数排列。
本领域的技术人员应当理解,一般来讲,本文尤其是所附权利要求(例如,所附权利要求的主体)中使用的术语通常旨在作为“开放式”术语(例如,术语“包括”应解释为“包括但不限于”,术语“具有”应解释为“具有至少”,术语“包含”应解释为“包含但不限于”等)。本领域的技术人员还应当理解,如果意图说明特定数量的引入的权利要求叙述对象,则此类意图将在权利要求中明确叙述,并且在不存在此类叙述对象的情况下,不存在此类意图。例如,在预期仅一个项目的情况下,可使用术语“单个”或类似的语言。为了有助于理解,以下所附权利要求和/或本文的描述可包含使用引导短语“至少一个”和“一个或多个”来引入权利要求叙述对象。然而,此类短语的使用不应理解为暗示通过不定冠词“一个”或“一种”将包含此类引入的权利要求叙述对象的任何特定权利要求限制为包含仅一个此类叙述对象的实施方案来引入权利要求叙述对象。即使当同一权利要求包括引导短语“一个或多个”或“至少一个”和不定冠词诸如“一个”或“一种”(例如,“一个”和/或“一种”应解释为意指“至少一个”或“一个或多个”)时,也是如此。这同样适用于使用用于引入权利要求叙述对象的定冠词。另外,即使明确叙述了特定数量的引入的权利要求叙述对象,本领域的技术人员也将认识到,此类叙述应解释为意指至少所述的数量(例如,在没有其他修饰语的情况下,对“两个叙述对象”的裸叙述意指至少两个叙述对象、或者两个或更多个叙述对象)。另外,在使用类似于“A、B和C等中的至少一者”的惯例的那些实例中,一般来讲,此类构造的含义是本领域的技术人员将理解该惯例(例如,“具有A、B和C中的至少一者的***”将包括但不限于单独具有A、单独具有B、单独具有C、同时具有A和B、同时具有A和C、同时具有B和C和/或同时具有A、B和C等的***)。在使用类似于“A、B或C等中的至少一者”的惯例的那些实例中,一般来讲,此类构造的含义是本领域的技术人员将理解该惯例(例如,“具有A、B或C中的至少一者的***”将包括但不限于单独具有A、单独具有B、单独具有C、同时具有A和B、同时具有A和C、同时具有B和C和/或同时具有A、B和C等的***)。本领域的技术人员还应当理解,事实上,无论在说明书、权利要求书还是附图中,呈现两个或更多个另选术语的任何分离的词语和/或短语都应当理解为设想包括术语中的一个术语、术语中的任一个术语或这两个术语的可能性。例如,短语“A或B”将被理解为包括“A”或“B”或“A和B”的可能性。另外,如本文所用,后面跟着列出多个项目和/或多个项目类别的术语“…中的任一个”旨在包括单独的或与其他项目和/或其他项目类别结合的项目和/或项目类别“中的任一个”、“的任何组合”、“的任何倍数”和/或“的倍数的任何组合”。此外,如本文所使用,术语“组”旨在包括任何数量的项目,包括零。另外,如本文所用,术语“数量”旨在包括任何数量,包括零。
另外,在根据马库什群组描述本公开的特征或方面的情况下,由此本领域的技术人员将认识到,也根据马库什群组的任何单独的成员或成员的子群组来描述本公开。
如本领域的技术人员将理解的,出于任何和所有目的(诸如就提供书面描述而言),本文所公开的所有范围还涵盖任何和所有可能的子范围以及它们的子范围的组合。任何列出的范围均可容易地被识别为充分地描述并且使得相同的范围能够被划分成至少相等的两半、三分之一、四分之一、五分之一、十分之一等。作为非限制性示例,本文所讨论的每个范围可容易地被划分成下三分之一、中三分之一和上三分之一等。如本领域的技术人员还将理解的,诸如“最多至”、“至少”、“大于”、“小于”等的所有语言包括所引用的数字并且是指随后可被划分为如上所述的子范围的范围。最后,如本领域的技术人员将理解的,范围包括每个单独的数字。因此,例如具有1至3个单元的群组是指具有1、2或3个单元的群组。类似地,具有1至5个单元的群组是指具有1、2、3、4或5个单元的群组等。

Claims (20)

1.一种由无线发射/接收单元WTRU执行的方法,所述方法包括:
接收被索引为混合自动重复请求HARQ过程的序列的多个调度配置;
从无线电接入网络上的节点接收非单播下行链路发射,所述非单播下行链路发射包含根据所述多个调度配置中的第一调度配置处理的信息单元;
检测所述信息单元的错误接收;
确定与所述HARQ过程相关联的至少第二调度配置的存在;
请求所述信息单元的重发;以及
使用所述第二调度配置接收所述信息单元的后续重发。
2.根据权利要求1所述的方法,其中确定至少所述第二调度配置的存在包括基于在所述第一调度配置中接收到的控制消息中的指示来确定。
3.根据权利要求1所述的方法,其中接收包含信息单元的非单播下行链路发射包括接收传送块,以及请求涉及所述HARQ过程的所述信息单元的重发。
4.根据权利要求1所述的方法,其中确定所述第二调度配置的存在包括基于所述HARQ过程的配置方面来确定。
5.根据权利要求1所述的方法,其中接收所述后续重发包括在所述HARQ过程的序列中接收下一发射。
6.根据权利要求1所述的方法,其中所述HARQ过程对应于所述WTRU的配置元素。
7.根据权利要求1所述的方法,其中所述HARQ过程对应于使用HARQ层标识的WTRU调度配置/参数,并且其中多个HARQ层可由所接收下行链路控制信息激活或去激活。
8.根据权利要求1所述的方法,其中所述第一调度配置或所述第二调度配置与以下中的一者或多者相关联:
物理下行链路控制信道、一个或多个控制信道元素的集合、下行链路控制信息的第一控制信道元素的索引、控制资源集、搜索空间、时间或周期性、无线电网络临时标识符、物理下行链路共享信道、下行链路控制信息格式或大小或者一个或一系列聚集等级。
9.根据权利要求1所述的方法,其中请求所述信息单元的重发还包括所述WTRU将反馈发射到所述无线电接入网络上的gNB节点。
10.根据权利要求1所述的方法,其中所述非单播下行链路发射包括多媒体广播多播服务。
11.一种无线发射/接收单元(WTRU),所述无线发射/接收单元配置有收发器和处理器,所述WTRU被配置成:
接收被索引为混合自动重复请求HARQ过程的序列的多个调度配置;
从无线电接入网络上的节点接收非单播下行链路发射,所述非单播下行链路发射包含根据所述多个调度配置中的第一调度配置处理的信息单元;
检测所述信息单元的错误接收;
确定与所述HARQ过程相关联的至少第二调度配置的存在;
请求所述信息单元的重发;以及
使用所述第二调度配置接收所述信息单元的后续重发。
12.根据权利要求11所述的WTRU,其中所述WTRU基于在所述第一调度配置中接收到的控制消息中的指示来确定所述第二调度配置的存在。
13.根据权利要求11所述的WTRU,其中所述信息单元是传送块,并且请求所述信息单元的重发涉及所述HARQ过程。
14.根据权利要求11所述的WTRU,其中所述WTRU基于所述HARQ过程的配置方面来确定所述第二调度配置的存在。
15.根据权利要求11所述的WTRU,其中所述HARQ过程对应于所述WTRU的配置元素。
16.根据权利要求11所述的WTRU,其中所述HARQ过程对应于使用HARQ层标识的WTRU调度配置/参数,并且其中多个HARQ层可由所接收下行链路控制信息激活或去激活。
17.根据权利要求11所述的WTRU,其中所述第一调度配置或所述第二调度配置与以下中的一者或多者相关联:
物理下行链路控制信道、一个或多个控制信道元素的集合、下行链路控制信息的第一控制信道元素的索引、控制资源集、搜索空间、时间或周期性、无线电网络临时标识符、物理下行链路共享信道、下行链路控制信息格式或大小或者一个或一系列聚集等级。
18.根据权利要求11所述的WTRU,其中对所述信息单元的重发的所述请求还包括所述WTRU将反馈发射到所述无线电接入网络上的gNB节点。
19.根据权利要求11所述的WTRU,其中所述非单播下行链路发射包括多媒体广播多播服务。
20.一种计算机可读存储介质,所述计算机可读存储介质包括指令,所述指令在由计算机执行时促使所述计算机执行根据权利要求1至10中任一项所述的方法。
CN202080092163.0A 2019-12-20 2020-12-16 用于在无线***中增强mbms可靠性的方法 Pending CN114930881A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962951123P 2019-12-20 2019-12-20
US62/951,123 2019-12-20
PCT/US2020/065241 WO2021126924A1 (en) 2019-12-20 2020-12-16 Methods for enhanced reliability for mbms in wireless systems

Publications (1)

Publication Number Publication Date
CN114930881A true CN114930881A (zh) 2022-08-19

Family

ID=74184892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080092163.0A Pending CN114930881A (zh) 2019-12-20 2020-12-16 用于在无线***中增强mbms可靠性的方法

Country Status (4)

Country Link
US (1) US20230027089A1 (zh)
EP (1) EP4079004A1 (zh)
CN (1) CN114930881A (zh)
WO (1) WO2021126924A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4381847A1 (en) * 2021-08-03 2024-06-12 InterDigital Patent Holdings, Inc. Multicast and broadcast services reliability indication
US20230188947A1 (en) * 2021-12-09 2023-06-15 Acer Incorporated Device and Method for Handling a Reception of a Multicast Broadcast Service Transmission and a Small Data Transmission

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112922A1 (zh) * 2016-12-23 2018-06-28 华为技术有限公司 一种数据传输的方法及设备
CN110463114A (zh) * 2017-02-03 2019-11-15 瑞典爱立信有限公司 Tti长度切换时的重新传输处置

Also Published As

Publication number Publication date
EP4079004A1 (en) 2022-10-26
WO2021126924A1 (en) 2021-06-24
US20230027089A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
TWI786389B (zh) 用於nr sl psfch傳輸及監視的裝置及方法
US11800436B2 (en) Methods and systems for beamformed system information transmission
US20220271864A1 (en) Efficient broadcast channel in beamformed systems for nr
JP6835984B2 (ja) 低遅延トラフィックによって影響されるときの高速大容量モバイルブロードバンド(eMBB)のハイブリッド自動再送要求(HARQ)フィードバック性能を改善するための方法および装置
CN112740611B (zh) 用于突发传输的方法和装置
US20230164773A1 (en) Methods, apparatus and systems for uplink transmission of small data
US20210297221A1 (en) Method and apparatus for physical sidelink control channel (pscch) design in new radio (nr)
JP2021533653A (ja) Harq拡張のための方法および装置
US20230189245A1 (en) Methods and apparatus for downlink small data reception
CN112789932A (zh) 自主低等待时间通信
US20220124679A1 (en) Wireless resource allocation schemes in vehicle-to-everything (v2x) communication
US20230029998A1 (en) Methods, apparatus, and systems for resource allocation for multimedia broadcast multicast service (mbms) in wireless systems
JP2024041837A (ja) Wlanのための範囲拡張を提供する方法およびwtru
US20230027089A1 (en) Methods for enhanced reliability for mbms in wireless systems
US20230354327A1 (en) Methods and apparatus for dynamic spectrum sharing
WO2022150750A1 (en) Lossless switching between ptp and ptm transmission and reception in mbs
US20210176735A1 (en) Control information transmission and sensing in wireless systems
WO2023014683A1 (en) Multicast and broadcast services reliability indication
EP4316181A1 (en) Method for efficient paging for user equipment to network relays
TW202320561A (zh) 在nr-u中接收控制資訊

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230602

Address after: Delaware

Applicant after: INTERDIGITAL PATENT HOLDINGS, Inc.

Address before: Wilmington, Delaware, USA

Applicant before: IDAC HOLDINGS, Inc.