CN114928383A - 可重构智能表面辅助的波束攻击方法 - Google Patents

可重构智能表面辅助的波束攻击方法 Download PDF

Info

Publication number
CN114928383A
CN114928383A CN202210660467.3A CN202210660467A CN114928383A CN 114928383 A CN114928383 A CN 114928383A CN 202210660467 A CN202210660467 A CN 202210660467A CN 114928383 A CN114928383 A CN 114928383A
Authority
CN
China
Prior art keywords
ris
matrix
bob
alice
wyn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210660467.3A
Other languages
English (en)
Other versions
CN114928383B (zh
Inventor
牛鸿
詹涛
雷霞
肖悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210660467.3A priority Critical patent/CN114928383B/zh
Publication of CN114928383A publication Critical patent/CN114928383A/zh
Application granted granted Critical
Publication of CN114928383B publication Critical patent/CN114928383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明属于信息与通信技术领域,具体的说是一种可重构智能表面(RIS)辅助的波束攻击方法。本发明的目的是攻击者(Wyn)通过调节RIS的相位偏移(PS)矩阵来最小化接收方(Bob)处的可达率。对于RIS辅助的波束赋形这一非凸优化问题,本发明给出了一种低复杂度的交替方向(LAD)算法。该算法将求解RIS的PS矩阵的问题分解为依次求解矩阵中各个元素的问题,能够得到各个反射单元PS的闭式解,从而降低了解决该类非凸优化问题的计算复杂度。同时,仿真结果表明本发明给出的求解算法收敛性较好;在最小化接收方可达率上,本发明相较于随机方案和无RIS方案能取得更好的效果。

Description

可重构智能表面辅助的波束攻击方法
技术领域
本发明属于信息与通信技术领域,具体的说是一种可重构智能表面辅助的波束攻击方法。
背景技术
可重构智能表面(Reconfigurable intelligent surface,RIS)因其对反射信号相位偏移(phase shift,PS)的控制能力而成为未来第六代移动通信的一项潜在技术。现有研究表明,RIS不需要昂贵的硬件设备就能获得可观的多径分集增益。近年来,在RIS的辅助下,针对最大化接收方可达率的问题提出了多种算法,如半定松弛,OM算法,MM算法,块坐标下降以及ADMM算法。同时,RIS也被视为可以提升物理层安全的一项关键技术。
值得一提的是,现存的研究大多聚焦于RIS带来的性能增益,而很少注意到这项技术存在的潜在风险。作为一种低成本的无源装置,RIS也可能被非法的攻击者所控制。与主动攻击相比,RIS辅助的无源波束赋形攻击不需要额外的发送功率就能达到攻击目的。例如,“K.Huang and H.Wang,“Intelligent Reflecting Surface Aided PilotContamination Attack and Its Countermeasure,”IEEE Trans.Wirel.Commun.,vol.20,no.1,pp.345-359,Jan.2021”中提出了一种窃听方控制RIS的导频污染攻击方式;“J.Yang,X.Ji,F.Wang,K.Huang and L.Guo,“A novel pilot spoofing scheme via intelligentreflecting surface based on statistical CSI,”IEEE Trans.Veh.Technol.,doi:10.1109/TVT.2021.3120602”通过改变RIS上行和下行链路的相位偏移参数,实现了保密容量的最小化。可以看出,上述两篇文献向我们揭示了窃听方可以利用RIS窃听信息。
然而,接收方也可以采取相应的措施阻止窃听方窃听信息。事实上,对于一个攻击者(Wyn)来说,完全可以专注于降低接收方的通信质量,通过控制RIS最小化接收方的可达率来达到攻击的目的。
发明内容
本发明的目的是提出一种解决RIS辅助的波束赋形中涉及到的非凸优化问题的算法。本发明的技术方案是基于Wyn控制的RIS辅助无源波束赋形攻击模型,提出一种最小化接收方可达率的优化问题并给出一种低复杂度的交替方向算法(low-complexityalternating direction,LAD)。
考虑如图1所示的RIS辅助的多输入多输出(multiple-input multiple-output,MIMO)无线通信***。发送方(Alice)和接收方(Bob)之间通过一条直射径和RIS进行通信。由于RIS被攻击者(Wyn)所控制,所以Wyn可以获得信道的信道状态信息(channel stateinformation,CSI)。具体而言,Alice和Bob处分别有Nt和Nr根天线,RIS处有N个反射单元。设RIS中的每个反射单元都可以通过其反射系数独立调节入射信号的PS,实际情况下,Alice通过设置波束赋形矢量来提供和Bob通信的性能增益,而Wyn通过调节RIS的反射单元来干扰Alice和Bob的通信。Alice和RIS之间的链路信道、RIS和Bob之间的链路信道以及Alice和Bob之间的链路信道分别用
Figure BDA0003690621650000021
来表示,
Figure BDA0003690621650000022
表示复数域。Alice发送的基带信号s满足sHs=Es,Es表示信号功率。
基于以上信道模型,Bob处接收到的信号可以表示为:
Figure BDA0003690621650000023
式中
Figure BDA0003690621650000024
表示RIS的PS矩阵,θi∈[0,2π)表示第i个反射单元的PS;w满足||w||2=1表示Alice处的波束赋形矢量;
Figure BDA0003690621650000025
表示复加性高斯白噪声,σ2表示噪声功率,I表示Nr阶单位矩阵。
如前文所述,Alice通过设计波束赋形矢量w来最大化Bob处的可达率,而Wyn通过设计RIS的PS矩阵Θ来最小化Bob处的可达率,以此来影响Alice和Bob处的通信。所以,该优化问题可以表示为:
Figure BDA0003690621650000026
式中R表示Bob处可达率,其计算公式为:
R=log2(1+γSNR) (3)
式中γSNR表示接收信号信噪比,根据公式(1),其表达式为:
Figure BDA0003690621650000027
因此,问题(P0)可以被转化为:
Figure BDA0003690621650000031
因为优化函数中的Θ,w参数高度耦合,所以问题(P1)很难解决。此外,问题(P1)的限制条件也是非凸的,一些传统的求解方法如半定松弛等都有很高的计算复杂度。因此,接下来本文将给出一种低复杂度的交替方向(LAD)算法用于解决这类问题,这也是本发明的核心。
1)Alice处波束赋形矢量w的确定。
对于一个给定的PS矩阵Θ,问题(P1)可以改写为:
Figure BDA0003690621650000032
问题(P2)等价于:
Figure BDA0003690621650000033
因为矩阵HHH为Nt阶Hermite矩阵,所以:
Figure BDA0003690621650000034
式中λmax(HHH)表示矩阵HHH的最大特征值,而w此时正是矩阵HHH对应最大特征值的特征向量且满足||w||2=1。
2)Wyn处PS矩阵Θ的确定。
根据公式(8),问题(P1)可以转化为:
Figure BDA0003690621650000035
由矩阵理论知识可得:
Figure BDA0003690621650000041
所以问题(P4)可以转化为:
Figure BDA0003690621650000042
为了推导出θi(i=1,2,…,N)的闭式解,当其他参数固定时,问题(P5)可以被分解为N个子问题,N即表示反射面单元个数,其中第n个子问题是:
Figure BDA0003690621650000043
定义矩阵
Figure BDA0003690621650000044
其表达式分别为:
Figure BDA0003690621650000045
Figure BDA0003690621650000046
式中,i=1,2,…,N,j=1,2,…,Nt,k=1,2,…,Nr,|Pi,j,k|表示元素Pi,j,k的幅值,
Figure BDA0003690621650000047
表示其相位。|Qj,k|和φj,k也分别表示元素Qj,k的幅值和相位。
Figure BDA0003690621650000048
该方程有两个根,分别为:
Figure BDA0003690621650000049
Figure BDA00036906216500000410
式中:
Figure BDA00036906216500000411
Figure BDA0003690621650000051
Figure BDA0003690621650000052
Figure BDA0003690621650000053
Figure BDA0003690621650000054
中使
Figure BDA0003690621650000055
取值更小的解即为问题(P5_n)的解。依次计算N个子问题即可得到RIS处的PS矩阵Θ。
LAD算法计算复杂度分析:
因为每一个反射单元的PS的闭式解都可以得到,所以该算法的计算复杂度大大降低。具体来说,LAD算法的计算过程主要包括两部分。第一部分是参数J和L的求解,每个参数的求解复杂度都为
Figure BDA0003690621650000056
第二部分是参数K和M的求解,每个参数的求解复杂度都为
Figure BDA0003690621650000057
因此,根据公式(15)(16)计算
Figure BDA0003690621650000058
Figure BDA0003690621650000059
的复杂度一共为
Figure BDA00036906216500000510
由于n=1,2,…,N,所以每一次迭代的计算复杂度为
Figure BDA00036906216500000511
设P表示迭代次数,则该算法的整体复杂度为
Figure BDA00036906216500000512
本发明的有益效果为,对于RIS辅助的波束赋形这一非凸优化问题,本发明给出了一种低复杂度的交替方向算法。该算法将求解RIS的PS矩阵的问题分解为依次求解矩阵中各个元素的问题,能够得到各个反射单元PS的闭式解,从而降低了解决该类非凸优化问题的计算复杂度。同时,仿真结果表明本发明给出的求解算法收敛性较好;在最小化接收方可达率上,本发明相较于随机方案和无RIS方案能取得更好的效果。
附图说明
图1是RIS辅助的MIMO无源波束攻击示意图。
图2是LAD算法在单通道条件下的收敛情况仿真图。
图3是LAD算法在平均通道条件下的收敛情况仿真图。
图4是LAD算法和另外两种算法的性能对比仿真图。
具体实施方式
下面结合附图对本发明的步骤以及性能进行详细描述,以便本领域的技术人员能够更好地理解本发明。
图1是本发明应用的一般性***示意图。该通信***的目的是Wyn通过调节RIS的PS矩阵来最小化Bob处的可达率。在该信道模型下,本发明的具体实施步骤如下所示:
a)分别输入Alice与RIS之间,RIS与Bob之间,Alice与Bob之间的信道衰落系数矩阵T,R,D,最大迭代次数itermax,初始化RIS的PS矩阵Θin
b)根据公式(15)(16)分别计算
Figure BDA0003690621650000061
然后取使得
Figure BDA0003690621650000062
较小的
Figure BDA0003690621650000063
并赋值给θn
c)重复步骤b),计算出N个反射单元的PS值并得到RIS的PS矩阵Θ;
d)令Θin=Θ;
e)重复步骤b)c)d)直到公式(12)中的目标函数值低于预先设定的阈值ε或者达到最大迭代次数itermax。取最后一次迭代的Θ值为RIS处的PS矩阵的最优解Θopt
f)根据公式(8)计算得到Alice处的最有波束赋形矢量wopt
g)输出Θopt,wopt
图2给出了LAD算法在单通道和平均通道下的收敛性情况。如图2和图3所示,在每一次迭代后,Bob处的可达率都会减小或者不变,说明算法收敛性较好。同时,大尺度的RIS可以使得算法的收敛速度更快以及使得Bob处的可达率更小。
图4对比了三种不同方法的性能情况。具体来说,LAD算法是本发明的内容,随机方案表示RIS的PS矩阵随机赋值,无RIS方案代表传统的没有RIS的通信***。从图3中可以看到,相较于随机方案和无RIS的方案,随着反射面单元数目的增加,LAD算法可以大大降低Bob处的可达率,达到RIS辅助的干扰Alice和Bob正常通信的目的。

Claims (1)

1.可重构智能表面辅助的波束攻击方法,用于存在RIS的多输入多输出无线通信***,***中发送方(Alice)和接收方(Bob)之间通过一条直射径和RIS进行通信,RIS被攻击者(Wyn)所控制,定义,Alice和Bob处分别有Nt和Nr根天线,RIS处有N个反射单元,RIS中的每个反射单元都可以独立调节入射信号的PS,Alice通过设置波束赋形矢量来提供和Bob通信的性能增益,而Wyn通过调节RIS的反射单元来干扰Alice和Bob的通信;Alice和RIS之间的链路信道、RIS和Bob之间的链路信道以及Alice和Bob之间的链路信道分别用
Figure FDA0003690621640000011
来表示,
Figure FDA0003690621640000012
表示复数域,Alice发送的基带信号s满足sHs=Es,Es表示信号功率;Bob处接收到的信号表示为:
Figure FDA0003690621640000013
式中
Figure FDA0003690621640000014
表示RIS的PS矩阵,θi∈[0,2π)表示第i个反射单元的PS,w满足||w||2=1表示Alice处的波束赋形矢量,
Figure FDA0003690621640000015
表示复加性高斯白噪声,σ2表示噪声功率,I表示单位矩阵;其特征在于,所述波束赋形攻击方法为:
Alice通过设计波束赋形矢量w来最大化Bob处的可达率,而Wyn通过设计PS来最小化Bob处的可达率,以此来影响Alice和Bob处的通信,则建立优化问题为:
P0:
Figure FDA0003690621640000016
s.t.||w||2=1
θi∈[0,2π),i=1,2,…,N
R表示Bob处可达率:
R=log2(1+γSNR)
γSNR表示接收信号信噪比:
Figure FDA0003690621640000017
将问题P0转化为:
P1:
Figure FDA0003690621640000021
s.t.||w||2=1
θi∈[0,2π),i=1,2,…,N
确定Alice处波束赋形矢量w:
对于一个给定的PS矩阵Θ,将问题P1改写为:
P2:
Figure FDA0003690621640000022
s.t.||w||2=1
问题P2等价于:
P3:
Figure FDA0003690621640000023
s.t.||w||2≠0
矩阵HHH为Nt阶Hermite矩阵,则:
Figure FDA0003690621640000024
式中λmax(HHH)表示矩阵HHH的最大特征值,而w此时正是矩阵HHH对应最大特征值的特征向量且满足||w||2=1;
确定Wyn处PS矩阵Θ:
将问题P1转化为:
P4:
Figure FDA0003690621640000025
s.t.θi∈[0,2π),i=1,2,…,N
由矩阵理论知识得:
Figure FDA0003690621640000026
将问题P4转化为:
P5:
Figure FDA0003690621640000031
s.t.θi∈[0,2π),i=1,2,…,N
当其他参数固定时,将问题P5分解为N个子问题,N即为RIS的反射单元个数,其中第n个子问题是:
Figure FDA0003690621640000032
s.t.θn∈[0,2π)
定义矩阵
Figure FDA0003690621640000033
Figure FDA0003690621640000034
Figure FDA0003690621640000035
式中,i=1,2,…,N,j=1,2,…,Nt,k=1,2,…,Nr,|Pi,j,k|表示元素Pi,j,k的幅值,
Figure FDA0003690621640000036
表示其相位,|Qj,k|和φj,k分别表示元素Qj,k的幅值和相位;
Figure FDA0003690621640000037
第n个子问题有两个根,分别为:
Figure FDA0003690621640000038
Figure FDA0003690621640000039
式中:
Figure FDA00036906216400000310
Figure FDA00036906216400000311
Figure FDA00036906216400000312
Figure FDA00036906216400000313
Figure FDA0003690621640000041
中使
Figure FDA0003690621640000042
取值更小的解即为问题P5_n的解,依次计算N个子问题即可得到RIS处的PS矩阵Θ。
CN202210660467.3A 2022-06-13 2022-06-13 可重构智能表面辅助的波束攻击方法 Active CN114928383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210660467.3A CN114928383B (zh) 2022-06-13 2022-06-13 可重构智能表面辅助的波束攻击方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210660467.3A CN114928383B (zh) 2022-06-13 2022-06-13 可重构智能表面辅助的波束攻击方法

Publications (2)

Publication Number Publication Date
CN114928383A true CN114928383A (zh) 2022-08-19
CN114928383B CN114928383B (zh) 2023-04-07

Family

ID=82813912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210660467.3A Active CN114928383B (zh) 2022-06-13 2022-06-13 可重构智能表面辅助的波束攻击方法

Country Status (1)

Country Link
CN (1) CN114928383B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954690A (zh) * 2021-01-22 2021-06-11 西北工业大学 基于空基可重构智能表面的抗干扰方法及***
US20210288698A1 (en) * 2020-03-10 2021-09-16 University Of Electronic Science And Technology Of China Method for Intelligent Reflecting Surface Aided Terahertz Secure Communication System
CN113411115A (zh) * 2021-06-15 2021-09-17 河南科技大学 智能反射表面辅助的毫米波物理层安全通信联合优化方法
WO2021239311A1 (en) * 2020-05-29 2021-12-02 British Telecommunications Public Limited Company Ris-assisted wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288698A1 (en) * 2020-03-10 2021-09-16 University Of Electronic Science And Technology Of China Method for Intelligent Reflecting Surface Aided Terahertz Secure Communication System
WO2021239311A1 (en) * 2020-05-29 2021-12-02 British Telecommunications Public Limited Company Ris-assisted wireless communications
CN112954690A (zh) * 2021-01-22 2021-06-11 西北工业大学 基于空基可重构智能表面的抗干扰方法及***
CN113411115A (zh) * 2021-06-15 2021-09-17 河南科技大学 智能反射表面辅助的毫米波物理层安全通信联合优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOWEN TIAN; ZHI SUN: "Fast Beam Tracking for Reconfigurable Intelligent Surface Assisted Mobile mmWave Networks" *
钱良鑫;杨平;江科;肖悦: "可重构智能表面辅助的四元数调制无线通信***" *

Also Published As

Publication number Publication date
CN114928383B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
Zhang et al. Capacity characterization for intelligent reflecting surface aided MIMO communication
CN109194378B (zh) 基于线性神经网络的物理层安全波束赋形方法
CN108880734B (zh) 量子回溯搜索优化的CCFD-Massive MIMO***功率分配方法
Zhang et al. Near-optimal design for hybrid beamforming in mmWave massive multi-user MIMO systems
Zhang et al. On the capacity of intelligent reflecting surface aided MIMO communication
CN114337762A (zh) 利用部分csi的ris辅助认知无线电无线安全通信传输方法
CN114828253A (zh) 一种ris辅助多无人机通信***的资源分配方法
US20230412430A1 (en) Inforamtion reporting method and apparatus, first device, and second device
Gharagezlou et al. Secrecy sum rate analysis and power allocation with OSTBC and artificial noise for MIMO systems
Gharagezlou et al. Energy efficient power allocation with joint antenna and user selection in massive MIMO systems
Abdulateef et al. Performance analyses of channel estimation and precoding for massive MIMO downlink in the TDD system
CN113765567A (zh) 基于深度学习的大规模mimo收发联合波束成形方法
Chen et al. Hybrid beamforming and data stream allocation algorithms for power minimization in multi-user massive MIMO-OFDM systems
CN109361435B (zh) 大规模多输入多输出波束域多播传输方法
CN114928383B (zh) 可重构智能表面辅助的波束攻击方法
Ding et al. Secure Full-Duplex Communication via Movable Antennas
CN113923746B (zh) 一种基于时间反演的无线供能通信网络的抗干扰方法
Loskot et al. A unified approach to computing error probabilities of diversity combining schemes over correlated fading channels
Guo et al. Massive MIMO aided secure multi-pair relaying with power control
Kong et al. Beamforming and power allocation for uplink NOMA transmission in multibeam satellite communications with rate splitting
CN112636799A (zh) 一种mimo安全通信中最优伪噪声功率配置方法
Akbarpour-Kasgari et al. Deep Reinforcement Learning in mmW-NOMA: Joint Power Allocation and Hybrid Beamforming
Sarker et al. Pilot power allocation scheme for user-centric cell-free massive MIMO systems
Shi et al. Deep learning based robust precoder design for massive MIMO downlink
Huang et al. Technical report on efficient integration of dynamic tdd with massive mimo

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant