CN114910915A - 一种侧扫声呐的水下目标多模式成像方法 - Google Patents

一种侧扫声呐的水下目标多模式成像方法 Download PDF

Info

Publication number
CN114910915A
CN114910915A CN202110180573.7A CN202110180573A CN114910915A CN 114910915 A CN114910915 A CN 114910915A CN 202110180573 A CN202110180573 A CN 202110180573A CN 114910915 A CN114910915 A CN 114910915A
Authority
CN
China
Prior art keywords
scan sonar
elements
receiving array
imaging
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110180573.7A
Other languages
English (en)
Inventor
刘佳
许枫
苏仁聪
安旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN202110180573.7A priority Critical patent/CN114910915A/zh
Priority to PCT/CN2021/104223 priority patent/WO2022166097A1/zh
Publication of CN114910915A publication Critical patent/CN114910915A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明属于水下目标探测与定位技术领域,具体地说,涉及一种侧扫声呐的水下目标多模式成像方法,包括:将侧扫声呐接收阵划分为多个基元,每个基元接收单波束信号;在船的航行过程中,侧扫声呐对准某一海域进行扫测,发射不同角度的多波束信号;当船处于低速航行模式时,采用单波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到单波束成像声图;当船处于高速航行模式时,采用平行波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到平行波束成像声图;在船的航行过程中,始终采用扇形波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到扇形波束成像声图。

Description

一种侧扫声呐的水下目标多模式成像方法
技术领域
本发明属于水下目标探测与定位技术领域,具体地说,涉及一种侧扫声呐的水下目标多模式成像方法。
背景技术
在专业海洋探测中,主要依赖声呐探测技术,侧扫声呐是常用设备之一,通过向海底主动发射声波信号,接收反射回来的声波信号,判断海底目标基本参数,从而绘制出海底地图。
侧扫声呐摆放有悬挂和拖曳式两种。其中,拖曳式侧扫声呐需要结合拖鱼,实施复杂且硬件成本高。同时,受船速、船向、水流速度和流向影响,这种作业方式决定了侧扫声呐的定位精度不是很高。悬挂式侧扫声呐,机械安装虽然简单,但不能根据实际情况进行调整并获取声纳准确姿态信息。因此,水下目标精确定位是目前侧扫作业中急需解决的问题,如何将清晰的水下图像与精确定位相结合是水下目标探测技术的关键。
传统的基于侧扫声呐进行目标定位方法是,侧扫声纳在工作时,侧扫声纳在垂直于航向方向形成两个窄波束,通过水下目标回波强度变化,来反应海底的地貌特征;在用于水下小目标检测时,该小目标回波产生的亮点和由于遮蔽引起的声阴影是用于水下目标检测的主要特征。但是,常规侧扫声纳在扫测时,形成的声图为一过式成像,容易受载体机械运动影响,从而造成或产生了目标声图畸变,检测率识别率低、无法实现对待测目标的探测的问题。
发明内容
为解决现有技术存在的上述缺陷,本发明提出了一种侧扫声呐的水下目标多模式成像方法,该方法包括:
将侧扫声呐放置在船上,侧扫声呐接收阵设置在待测目标上;
将侧扫声呐接收阵划分为多个基元,每个基元单独引线,形成独立基元,每个基元接收单波束信号;在船的航行过程中,侧扫声呐对准某一海域进行扫测,发射不同角度的多波束信号;
当船处于低速航行模式时,采用单波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到单波束成像声图;
当船处于高速航行模式时,采用平行波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到平行波束成像声图;
在船的航行过程中,始终采用扇形波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到扇形波束成像声图。
作为上述技术方案的改进之一,所述方法还包括:根据不同的船行速度,首先通过单波束成像声图或平行波束成像声图,获得观测疑似目标结果,再通过扇形波束成像声图,获得目标精细观测结果,根据获取的观测疑似目标结果和目标精细观测结果,确定待测目标在该海域中的位置,实现对待测目标的探测。
作为上述技术方案的改进之一,所述采用单波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到单波束成像声图;其具体过程为:
在侧扫声呐在船上进行几何形状的移动过程中,且船的航行速度小于4节的低速模式时,对侧扫声呐接收阵的所有基元接收到的单波束信号进行叠加和近场聚焦处理,得到波束数据Beam0(t):
Figure BDA0002942102170000021
其中,i为基元序号,N为基元个数,
其中,si(t)为第i个基元接收的单波束信号:
Figure BDA0002942102170000022
其中,A为第i个基元接收的单波束信号的信号幅度,f为第i个基元接收的单波束信号的信号频率,
Figure BDA0002942102170000023
为接收信号相位;
根据得到的Beam0(t),绘制单波束成像声图。
作为上述技术方案的改进之一,所述采用平行波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到平行波束成像声图;其具体过程为:
在侧扫声呐在船上进行几何形状的移动过程中,且船的航行速度在4-12节的高速模式时,对侧扫声呐接收阵的所有基元接收到的基元域信号进行处理,得到平行波束域信号模型;
X(t)=aS(t)+N(t) (3)
其中,X(t)为预成波束向量矩阵;a为侧扫声呐接收阵的所有基元组成的信号导向矢量矩阵;S(t)为侧扫声呐接收阵的所有基元组成的矩阵;N(t)为侧扫声呐接收阵的所有基元组成的噪声和干扰信号矩阵;
其中,则信号的导向矢量
Figure BDA0002942102170000031
其中,τN为第i个基元与参考基元之间接收信号的时延;f0为工作频率;j为虚单位;
对于平行多波束导向角θs为扇形覆盖范围内的某一角度;θs=ζ,ζ∈(-θH,θH);
当考虑简单的平行多波束,即每个波束的波束导向角度为0度时,且不考虑噪声和干扰信号N(t)的情况下,各个波束输出退化为若干个基元数据的累加,则公式(3)可以简化为:
X(t)=aS(t)
其中,X(t)=[x1(t),x2(t),x3(t)...xj(t)];
Figure BDA0002942102170000032
其中,xj(t)为X(t)中的第j个预成波束向量;si(t)为第i个基元接收的单波束信号;
根据得到的多个xj(t),绘制平行波束成像声图。
作为上述技术方案的改进之一,所述采用扇形波束成像模式,对侧扫声呐接收阵中的所有基元接收的信号进行处理,得到高频扇形波束数据;其具体过程为:
对侧扫声呐接收阵的所有基元接收到的基元域信号进行处理,得到扇形波束域信号模型;
X(t)1=a1S(t)1+N(t)1 (7)
其中,X(t)1为扇形波束向量矩阵;a1为侧扫声呐接收阵的所有基元组成的扇形信号导向矢量矩阵;S(t)1为侧扫声呐接收阵的所有基元组成的扇形矩阵,即所有基元信号的复包络,CW信号或chirp信号;N(t)1为侧扫声呐接收阵的所有基元组成的噪声和干扰扇形信号矩阵;
其中,信号的导向矢量
Figure BDA0002942102170000033
在不考虑噪声和干扰扇形信号N(t)1的情况下,则公式(7)可以简化为:
X(t)1=a1S(t)1
进而简化为:
Figure BDA0002942102170000041
其中,xM(t)为第M个基元的扇形波束向量;
Figure BDA0002942102170000042
其中,si(t)1为第i个基元接收的扇形波束信号;
根据得到的多个扇形波束向量xM(t),绘制扇形波束成像声图。
本发明与现有技术相比的有益效果是:
1、常规侧扫声纳在水平方向上实现窄波束,通过拖体或载体的机械移动实现地貌或目标声图,容易受到机械运动的干扰,尤其在拖曳较绳短或者船载固定安装等情况下更容易受到风浪导致的晃动干扰,
针对现有侧扫声纳的不足,本发明通过单波束、平行多波束和扇形多波束等多模成像方式,获取更加灵活的成像方式,通过扇形多波束成像获取不受机械干扰的目标成像效果。
2、常规成像方法为一过式成像,即一次航迹只能获得目标的一幅有效声图,信息量有限,检测识别效果有限。
针对现有侧扫声纳的不足,本发明通过具备单波束、平行多波束和扇形多波束等多模成像方式可以通过多帧间成像关联,获得更多的信息量,可以在完成目标粗检测之后辅助目标识别。
附图说明
图1是本发明的一种侧扫声呐的水下目标多模式成像方法采用单波束成像模式的示意图;
图2是本发明的一种侧扫声呐的水下目标多模式成像方法采用平行波束成像模式的示意图;
图3是本发明的一种侧扫声呐的水下目标多模式成像方法采用扇形波束成像模式的示意图;
图4是本发明的一种侧扫声呐的水下目标多模式成像方法的一个实施例中得到的单波束成像声图示意图;
图5是本发明的一种侧扫声呐的水下目标多模式成像方法的一个实施例中得到的扇形波束成像声图示意图;
图6是本发明的一种侧扫声呐的水下目标多模式成像方法的流程图。
具体实施方式
现结合附图对本发明作进一步的描述。
本发明提供了一种侧扫声呐的水下目标多模式成像方法,本发明的方法为了解决针对常规的侧扫声纳在扫测时,形成的声图为一过式成像,容易受载体机械运动影响,而且由于信息量有限,目标检测、识别能力受限的问题,采用多基元接收阵的设计,通过对各个阵元的信号充分利用,通过载体机械运动和阵列相控技术相结合,同时实现单波束成像、多平行波束成像和扇形波束成像的多模成像模式的多模成像探测,满足高速运动下、载体姿态变化剧烈条件下的高检测、识别性能。
如图6所示,本发明提供了一种侧扫声呐的水下目标多模式成像方法,该方法具体包括:
将侧扫声呐放置在船上,侧扫声呐接收阵设置在待测目标上;
将侧扫声呐接收阵划分为多个基元,每个基元单独引线,形成独立基元,每个基元接收单波束信号;在船的航行过程中,侧扫声呐对准某一海域进行扫测,发射不同角度的多波束信号;
当船处于低速航行模式时,采用单波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到单波束成像声图;
具体地,如图1所示,在侧扫声呐在船上进行几何形状的移动过程中,且船的航行速度小于4节的低速模式时,对侧扫声呐接收阵的所有基元接收到的单波束信号进行叠加和近场聚焦处理,得到波束数据Beam0(t):
Figure BDA0002942102170000051
其中,i为基元序号,N为基元个数,
其中,si(t)为第i个基元接收的单波束信号:
Figure BDA0002942102170000061
其中,A为第i个基元接收的单波束信号的信号幅度,f为第i个基元接收的单波束信号的信号频率,
Figure BDA0002942102170000062
为接收信号相位;
根据得到的Beam0(t),绘制单波束成像声图。
当船处于高速航行模式时,采用平行波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到平行波束成像声图;
具体地,如图2所示,在侧扫声呐在船上进行几何形状的移动过程中,且船的航行速度在4-12节的高速模式时,对侧扫声呐接收阵的所有基元接收到的基元域信号进行处理,得到平行波束域信号模型;
X(t)=S(t)+N(t) (3)
其中,X(t)为预成波束向量矩阵;a为侧扫声呐接收阵的所有基元组成的信号导向矢量矩阵;S(t)为侧扫声呐接收阵的所有基元组成的矩阵,即所有基元信号的复包络,CW信号或chirp信号;N(t)为侧扫声呐接收阵的所有基元组成的噪声和干扰信号矩阵;
其中,侧扫声呐接收阵的所有基元组成的信号导向矢量矩阵a的推导过程如下:
假设基元个数为N,N个基元均匀分布,且相邻基元之间的间距为d。
由三角形余弦定理可得,以第s个基元为参考基元,则第n个基元与待测目标之间的距离
Figure BDA0002942102170000063
Figure BDA0002942102170000064
其中,θs为平行多波束导向角;xn=(n-1)×d,其中,n=1,2,3,…,N,rs为第s个基元与待测目标之间的距离,则第i个基元与参考基元之间接收信号的时延为:
Figure BDA0002942102170000065
其中,c为水中声速;
则信号的导向矢量
Figure BDA0002942102170000066
其中,τN为第i个基元与参考基元之间接收信号的时延;f0为工作频率;j为虚单位。
对于平行多波束导向角θs为扇形覆盖范围内的某一角度,即θs=ζ,ζ∈(-θH,θH),参考基元根据需求的波束数量,沿接收阵平均分布;其中,每个基元的接收信号时延在计算中,需要有个统一额参考,这个参考即为参考基元。
当考虑简单的平行多波束,即每个波束的波束导向角度为0度时,且不考虑噪声和干扰信号N(t)的情况下,各个波束输出退化为若干个基元数据的累加,则公式(3)可以简化为:
X(t)=aS(t)
其中,X(t)=[x1(t),x2(t),x3(t)...xj(t)];
Figure BDA0002942102170000071
其中,xj(t)为X(t)中的第j个预成波束向量;si(t)为第i个基元接收的单波束信号;
根据得到的多个xj(t),绘制平行波束成像声图。
在船的航行过程中,始终采用扇形波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到扇形波束成像声图。
具体地,如图3所示,对侧扫声呐接收阵的所有基元接收到的基元域信号进行处理,得到扇形波束域信号模型;
X(t)1=a1S(t)1+N(t)1 (7)
其中,X(t)1为扇形波束输出向量矩阵;a1为侧扫声呐接收阵的所有基元组成的扇形信号导向矢量矩阵;S(t)1为侧扫声呐接收阵的所有基元组成的扇形矩阵,即所有基元信号的复包络,CW信号或chirp信号;N(t)1为侧扫声呐接收阵的所有基元组成的噪声和干扰扇形信号矩阵;
其中,侧扫声呐接收阵的所有基元组成的扇形信号导向矢量矩阵a1的推导过程如下:
假设基元个数为N,N个基元均匀分布,且相邻基元之间的间距为d;
由三角形余弦定理可得,以第s1个基元为参考基元,则第n个基元与待测目标之间的距离
Figure BDA0002942102170000081
Figure BDA0002942102170000082
其中,θs1为扇形多波束导向角;x1n=(n-1)×d;其中,n=1,2,3,…,N;rs1为第s1个基元与待测目标之间的距离,则第n个基元与参考基元之间接收信号的时延为:
Figure BDA0002942102170000083
其中,c为水中声速;
则信号的导向矢量
Figure BDA0002942102170000084
其中,τN为第n个基元与参考基元之间接收信号的时延;f0为工作频率;j为虚单位。
例如,当考虑扇形波束开角为[-10°,10°],波束开角为1°,扇形波束导向角θs1=-10°,-9°,-8°,...10°。
在不考虑噪声和干扰扇形信号N(t)1的情况下,则公式(7)可以简化为:
X(t)1=a1S(t)1
进而简化为:
Figure BDA0002942102170000085
其中,xM(t)为第M个基元的扇形波束向量;
Figure BDA0002942102170000086
其中,si(t)1为第i个基元接收的扇形波束信号;
根据得到的多个扇形波束向量xM(t),绘制扇形波束成像声图。
其中,所述方法还包括:根据不同的船行速度,首先通过单波束成像声图或平行波束成像声图,获得观测疑似目标结果,再通过扇形波束成像声图,获得目标精细观测结果,根据获取的观测疑似目标结果和目标精细观测结果,确定待测目标在该海域中的位置,实现对待测目标的探测。
实施例1.
本发明给出了一个具体的实施例,侧扫声纳基阵长度0.6m,基元数量36个,工作频率600kHz,探测范围130m,航速小于4节,波束覆盖开角设计为-4度~4度。因为航速较小,根据船的航行速度为低速模式,则采用单波束成像模式和扇形多波束成像模式。
其中,单波束采用基于近场聚焦的波束形成技术,波束导向角为0度;扇形多波束采用近场聚焦波束形成技术,波束导向角为-4度~4度,波束间隔0.2度。
如图4所示,对于单波束成像模式,随着侧扫声纳的移动,在每个收发周期内,侧扫声纳接收阵获取一个单波束声纳波束域回波信号,将多帧获取的波束数据以瀑布图的形成显示在电脑屏幕上,就形成了单波束成像声图,并从该图上获取D、E、F三个点作为观测疑似目标。
如图5所示。对于扇形多波束成像模式,将每帧获取的扇形多波束的波束数据显示在电脑屏幕上,就形成了扇形波束成像声图,并从该图上获取A、B、C三个点作为精细观测目标。
根据在声图上的亮点的强度,可以确定A和D为强度最亮的点,且位于相同位置,则将该位置对应的电作为待测目标,实现对待测目标的探测。采用本发明的探测方法后,获得了待测目标的多模成像模式,兼具机械运动带来的高分辨特性和扇形波束的灵活性,可以为后续检测识别降低虚惊率提供帮组。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (5)

1.一种侧扫声呐的水下目标多模式成像方法,该方法包括:
将侧扫声呐放置在船上,侧扫声呐接收阵设置在待测目标上;
将侧扫声呐接收阵划分为多个基元,每个基元单独引线,形成独立基元,每个基元接收单波束信号;在船的航行过程中,侧扫声呐对准某一海域进行扫测,发射不同角度的多波束信号;
当船处于低速航行模式时,采用单波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到单波束成像声图;
当船处于高速航行模式时,采用平行波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到平行波束成像声图;
在船的航行过程中,始终采用扇形波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到扇形波束成像声图。
2.根据权利要求1所述的侧扫声呐的水下目标多模式成像方法,其特征在于,所述方法还包括:根据不同的船行速度,首先通过单波束成像声图或平行波束成像声图,获得观测疑似目标结果,再通过扇形波束成像声图,获得目标精细观测结果,根据获取的观测疑似目标结果和目标精细观测结果,确定待测目标在该海域中的位置,实现对待测目标的探测。
3.根据权利要求1所述的侧扫声呐的水下目标多模式成像方法,其特征在于,所述采用单波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到单波束成像声图;其具体过程为:
在侧扫声呐在船上进行几何形状的移动过程中,且船的航行速度小于4节的低速模式时,对侧扫声呐接收阵的所有基元接收到的单波束信号进行叠加和近场聚焦处理,得到波束数据Beam0(t):
Figure FDA0002942102160000011
其中,i为基元序号,N为基元个数,
其中,si(t)为第i个基元接收的单波束信号:
Figure FDA0002942102160000012
其中,A为第i个基元接收的单波束信号的信号幅度,f为第i个基元接收的单波束信号的信号频率,
Figure FDA0002942102160000013
为接收信号相位;
根据得到的Beam0(t),绘制单波束成像声图。
4.根据权利要求1所述的侧扫声呐的水下目标多模式成像方法,其特征在于,所述采用平行波束成像模式,对侧扫声呐接收阵中的所有基元接收的单波束信号进行处理,得到平行波束成像声图;其具体过程为:
在侧扫声呐在船上进行几何形状的移动过程中,且船的航行速度在4-12节的高速模式时,对侧扫声呐接收阵的所有基元接收到的基元域信号进行处理,得到平行波束域信号模型;
X(t)=aS(t)+N(t) (3)
其中,X(t)为预成波束向量矩阵;a为侧扫声呐接收阵的所有基元组成的信号导向矢量矩阵;S(t)为侧扫声呐接收阵的所有基元组成的矩阵;N(t)为侧扫声呐接收阵的所有基元组成的噪声和干扰信号矩阵;
其中,则信号的导向矢量
Figure FDA0002942102160000021
其中,τN为第i个基元与参考基元之间接收信号的时延;f0为工作频率;j为虚单位;
对于平行多波束导向角θs为扇形覆盖范围内的某一角度;θs=ζ,ζ∈(-θHH);
当考虑简单的平行多波束,即每个波束的波束导向角度为0度时,且不考虑噪声和干扰信号N(t)的情况下,各个波束输出退化为若干个基元数据的累加,则公式(3)可以简化为:
X(t)=aS(t)
其中,X(t)=[x1(t),x2(t),x3(t)...xj(t)];
Figure FDA0002942102160000022
其中,xj(t)为X(t)中的第j个预成波束向量;si(t)为第i个基元接收的单波束信号;
根据得到的多个xj(t),绘制平行波束成像声图。
5.根据权利要求1所述的侧扫声呐的水下目标多模式成像方法,其特征在于,所述采用扇形波束成像模式,对侧扫声呐接收阵中的所有基元接收的信号进行处理,得到高频扇形波束数据;其具体过程为:
对侧扫声呐接收阵的所有基元接收到的基元域信号进行处理,得到扇形波束域信号模型;
X(t)1=a1S(t)1+N(t)1 (7)
其中,X(t)1为扇形波束向量矩阵;a1为侧扫声呐接收阵的所有基元组成的扇形信号导向矢量矩阵;S(t)1为侧扫声呐接收阵的所有基元组成的扇形矩阵,即所有基元信号的复包络,CW信号或chirp信号;N(t)1为侧扫声呐接收阵的所有基元组成的噪声和干扰扇形信号矩阵;
其中,信号的导向矢量
Figure FDA0002942102160000031
在不考虑噪声和干扰扇形信号N(t)1的情况下,则公式(7)可以简化为:
X(t)1=a1S(t)1
进而简化为:
Figure FDA0002942102160000032
其中,xM(t)为第M个基元的扇形波束向量;
Figure FDA0002942102160000033
其中,si(t)1为第i个基元接收的扇形波束信号;
根据得到的多个扇形波束向量xM(t),绘制扇形波束成像声图。
CN202110180573.7A 2021-02-08 2021-02-08 一种侧扫声呐的水下目标多模式成像方法 Pending CN114910915A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110180573.7A CN114910915A (zh) 2021-02-08 2021-02-08 一种侧扫声呐的水下目标多模式成像方法
PCT/CN2021/104223 WO2022166097A1 (zh) 2021-02-08 2021-07-02 一种侧扫声呐的水下目标多模式成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110180573.7A CN114910915A (zh) 2021-02-08 2021-02-08 一种侧扫声呐的水下目标多模式成像方法

Publications (1)

Publication Number Publication Date
CN114910915A true CN114910915A (zh) 2022-08-16

Family

ID=82740815

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110180573.7A Pending CN114910915A (zh) 2021-02-08 2021-02-08 一种侧扫声呐的水下目标多模式成像方法

Country Status (2)

Country Link
CN (1) CN114910915A (zh)
WO (1) WO2022166097A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117970338A (zh) * 2024-01-09 2024-05-03 南通海狮船舶机械有限公司 一种水下定位探测仪及其控制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115755068A (zh) * 2022-11-09 2023-03-07 广东智能无人***研究院 一种海底管线状态在线智能诊断***
CN115856898B (zh) * 2023-03-03 2023-05-16 山东科技大学 一种适应于全海深的面阵三维成像声呐点位归算方法
CN116482335B (zh) * 2023-04-26 2023-12-15 中国冶金地质总局第二地质勘查院 一种海砂矿勘查方法
CN116930976B (zh) * 2023-06-19 2024-03-26 自然资源部第一海洋研究所 基于小波模极大值的侧扫声呐图像的海底线检测方法
CN117408879B (zh) * 2023-10-26 2024-05-10 中国人民解放军32021部队 一种侧扫声呐图像拼接方法和装置
CN117522684B (zh) * 2023-12-29 2024-03-19 湖南大学无锡智能控制研究院 水下侧扫声呐图像拼接方法、装置及***
CN117890894B (zh) * 2024-03-15 2024-05-28 浙江星天海洋科学技术股份有限公司 多波束探测***及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017511A2 (en) * 2004-08-02 2006-02-16 Johnson Outdoors Inc. Sonar imaging system for mounting to watercraft
CN105629249A (zh) * 2016-03-28 2016-06-01 北京海卓同创科技有限公司 一种多波束侧扫声纳装置
CN111190168B (zh) * 2018-11-14 2022-01-11 中国科学院声学研究所 一种侧扫声纳的姿态稳定方法
JP7259503B2 (ja) * 2019-04-12 2023-04-18 日本電気株式会社 ソーナー画像処理装置、ソーナー画像処理方法及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117970338A (zh) * 2024-01-09 2024-05-03 南通海狮船舶机械有限公司 一种水下定位探测仪及其控制方法

Also Published As

Publication number Publication date
WO2022166097A1 (zh) 2022-08-11

Similar Documents

Publication Publication Date Title
CN114910915A (zh) 一种侧扫声呐的水下目标多模式成像方法
US6438071B1 (en) Method for producing a 3D image
US6198692B1 (en) Apparatus suitable for searching objects in water
CN112505710B (zh) 一种多波束合成孔径声呐三维成像算法
US4815045A (en) Seabed surveying apparatus for superimposed mapping of topographic and contour-line data
CN110412588B (zh) 一种基于交叉阵列的目标三维信息测量方法及***
JP4236767B2 (ja) 衛星sar画像に基づく移動体の移動情報検出方法
CN115856898B (zh) 一种适应于全海深的面阵三维成像声呐点位归算方法
CN110907938B (zh) 一种近场的快速下视合成孔径三维成像方法
US20200333787A1 (en) Marine surface drone and method for characterising an underwater environment implemented by such a drone
CN110412586B (zh) 一种基于相控发射和聚束成像的水下目标探查方法
CN111880185A (zh) 一种水下目标勘测处理方法及***
US6289231B1 (en) Wave receiving apparatus and ultrasonic diagnostic apparatus
CN113108778B (zh) 一种具备多条带模式的深水多波束测深方法及***
JP2008014874A (ja) 船舶用レーダ
CN105974421A (zh) 利用正交阵列形成无人船监控区域超声波三维图像的方法
CN111190168B (zh) 一种侧扫声纳的姿态稳定方法
CN111679248A (zh) 一种基于海底水平l型阵列的目标方位和距离联合稀疏重构定位方法
CN111142112A (zh) 一种水下锚系小目标快速非成像检测方法
CN111090094A (zh) 脉冲多普勒雷达的双波束角度测量方法、***及存储介质
US11668821B2 (en) Position correction using towed sensor
CN114460587B (zh) 一种主动声呐全景接触目标快速辨识方法
CN112526464B (zh) 一种基于多通道雷达实测数据估计方位波束宽度的方法
Andrews et al. Swathmap: Long range sidescan sonar mapping of the deep seafloor
CN110703263A (zh) 一种模块化组合式水下成像***和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination