CN114891820A - Bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application - Google Patents

Bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application Download PDF

Info

Publication number
CN114891820A
CN114891820A CN202210595170.3A CN202210595170A CN114891820A CN 114891820 A CN114891820 A CN 114891820A CN 202210595170 A CN202210595170 A CN 202210595170A CN 114891820 A CN114891820 A CN 114891820A
Authority
CN
China
Prior art keywords
artificial sequence
bacillus licheniformis
dna
kivd
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210595170.3A
Other languages
Chinese (zh)
Other versions
CN114891820B (en
Inventor
陈守文
周飞
占杨杨
许海霞
尹昊
蔡冬波
马昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN202210595170.3A priority Critical patent/CN114891820B/en
Publication of CN114891820A publication Critical patent/CN114891820A/en
Application granted granted Critical
Publication of CN114891820B publication Critical patent/CN114891820B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01005Tyrosine transaminase (2.6.1.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01058Phenylalanine(histidine) transaminase (2.6.1.58)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0104Pyruvate kinase (2.7.1.40)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention belongs to the technical field of microbial genetic engineering, and particularly relates to bacillus licheniformis for efficiently synthesizing hydroxytyrosol, a construction method and application thereof. Firstly, carrying out multiple transformations on the basis of Bacillus licheniformis DW2 to obtain recombinant Bacillus licheniformis DH 7; 4-hydroxyphenylacetic acid-3-hydroxylase from escherichia coli and ketoacid decarboxylase from lactococcus lactis are selected and transferred into bacillus licheniformis DH7 chassis cells, so that the first-pass synthesis of hydroxytyrosol yield is realized; through combined expression of the 4-hydroxyphenylacetic acid-3-hydroxylase HpaBC and the ketoacid decarboxylase KivD mutant, the recombinant bacillus licheniformis can efficiently synthesize hydroxytyrosol by using cheap carbon sources such as glucose and the like, and the yield is as high as 5.55 +/-0.37. The recombinant bacillus licheniformis disclosed by the invention can solve the problems of low yield and high price of hydroxytyrosol and has a wide industrial prospect.

Description

Bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application
Technical Field
The invention belongs to the technical field of microbial genetic engineering, and particularly relates to bacillus licheniformis for efficiently synthesizing hydroxytyrosol, a construction method and application thereof.
Background
Hydroxytyrosol (HT), also known as 3, 4-dihydroxyphenylethanol, is a bioactive polyphenol and one of the strongest natural antioxidants known today. Hydroxytyrosol can scavenge free radicals, reduce oxidation of low density lipoprotein, and stimulate calcium deposition. It also has anticancer, anti-inflammatory and antimicrobial activity. Therefore, hydroxytyrosol can be used in cosmetics, food, health products and medical industry.
At present, HT is industrially produced by plant extraction or chemical synthesis. In nature, HT is present in olive plants in the form of oleuropein, and hydroxytyrosol can be extracted from fresh olive leaves and olive processing wastewater. Although these materials are abundant and inexpensive, they suffer from drawbacks such as low yields, strong acid water vapor and long duration of the process. Chemical synthesis utilizes some analogues of HT, such as 3, 4-dihydroxyphenylacetic acid, 3, 4-dihydroxybenzaldehyde, tyrosol, etc. as substrates to synthesize hydroxytyrosol, and these methods are not suitable for large-scale industrial production due to expensive substrates, poor conditions, complicated steps or low yield.
With the progress of metabolic engineering and synthetic biology, the de novo production of HT from simple carbon sources has been achieved by either rebuilding the natural pathway or introducing artificial biosynthetic pathways in microorganisms. At present, most reports utilize escherichia coli to synthesize hydroxytyrosol through microbial modification, which lays an important foundation for producing hydroxytyrosol by a microbial fermentation method. However, the method for synthesizing HT from the head by using a simple carbon source has the problems of long synthetic route, heavy metabolic burden, low efficiency and low substrate conversion rate, and further improvement of the de novo efficiency is needed to realize economic production of HT.
Disclosure of Invention
In view of the above problems in the prior art, it is an object of the present invention to provide a bacillus licheniformis for efficiently synthesizing hydroxytyrosol. A recombinant bacillus licheniformis is developed, a ketoacid decarboxylase gene and a hydroxylase gene for synthesizing hydroxytyrosol are optimally expressed in the bacillus licheniformis for producing the hydroxytyrosol, and a bacillus licheniformis strain for heterogeneously synthesizing the hydroxytyrosol is constructed.
The invention also aims to provide the application of the recombinant bacillus licheniformis in the production of hydroxytyrosol.
In order to solve the problems, the technical scheme of the invention is as follows:
a bacillus licheniformis for efficiently synthesizing hydroxytyrosol comprises the following steps:
sequentially knocking out pyruvate kinase gene pyk, tyrosine/phenylalanine transaminase gene hisC and aldehyde dehydrogenase gene dhaS in Bacillus licheniformis DW2, and alcohol dehydrogenase gene adhA to obtain Bacillus licheniformis DH4, and reacting tyrA fbr Integrating the gene into the ldh site of the bacillus licheniformis DH4 to obtain bacillus licheniformis DH5, replacing the gene in the bacillus licheniformis DH5, aroK and aroA promoters with Pbaca to obtain bacillus licheniformis DH 7;
4-hydroxyphenylacetic acid-3-hydroxylase genes hpaBC and kivD in the genome of Escherichia coli BL21(DE3) V461A Or kivD V461I Co-expression was performed and then transferred into DH7, kivD V461A The sequence is shown as SEQ ID NO.89, kivD V461I The sequence is shown as SEQ ID NO. 90.
Wherein the promoter of hpaBC can be: PbacA, P43 or Pbay;
kivD V461A or kivD V461I The promoter of (a) may be: pbaca, P43 or Pbay.
The protection scope of the invention also includes: the bacillus licheniformis is used for synthesizing hydroxytyrosol.
Compared with the prior art, the invention has the following advantages:
1. the invention overexpresses target genes of KivD mutant (V461A and V461I) and HpaBC in Bacillus licheniformis DH 7. Through the effective expression of the enzymes in the recombinant bacillus licheniformis DH7, the strain can utilize glucose as a substrate to synthesize hydroxytyrosol from the beginning, the synthesis cost is low, and the operation is simple.
2. According to the invention, the strong promoter P43, Pbaca and Pbay are used for efficiently driving the exogenous gene to be specifically expressed in the recombinant bacillus licheniformis DH7, so that the construction and transformation efficiency of the recombinant expression vector is improved, the capability of the bacillus licheniformis for synthesizing the hydroxytyrosol is effectively improved, and the yield of the hydroxytyrosol is improved.
Drawings
FIG. 1 is a scheme for the synthesis of hydroxytyrosol.
FIG. 2 is a liquid phase diagram of DW2/pHY300 and HT1 hydroxytyrosol.
Detailed Description
The present invention will be described in further detail with reference to examples, but the scope of the present invention is not limited to these examples.
Example 1:
construction of genetically engineered Strain DH 7:
(1) knock-out of pyk, hisC and dhaS: taking the genome of Bacillus licheniformis DW2 as a template, respectively amplifying upstream and downstream homologous arms of a pyruvate kinase gene pyk segment by using primers pyk-AF/AR and pyk-BF/BR, and fusing the upstream and downstream homologous arm segments to obtain a pyk knockout box; using primer (T2-T5-F/R), using plasmid T2(2) -ori as template to amplify the skeleton; inserting the pyk knockout cassette into a plasmid T2, performing colony PCR by using T2-F/T2-R to obtain a positive transformant, successfully constructing pyk knockout plasmid T2-delta-pyk through DNA sequencing, introducing the plasmid into Bacillus licheniformis DW2 (or called Bacillus licheniformis DW2, CN112226437A), and obtaining pyk knockout strain DH1 through homologous recombination; the construction method of the tyrosine/phenylalanine transaminase gene hisC and aldehyde dehydrogenase gene dhaS knockout vector is pyk, pyk strain DH3 with the hisC and dhaS genes knocked out simultaneously is obtained by iterative knockout;
wherein, the primer sequence required by pyk knockout is as follows:
pyk-AF:ctgcagcccgggggatccgggatacagctacatccc
pyk-AR:ttaaagtacgcttgcacgcggcccaattgtacaaact
pyk-BF:agtttgtacaattgggccgcgtgcaagcgtactttaa
pyk-BR:gatcttttctacgagctcgcggcagcctgctttttc
T2-T5-F:ggatcccccgggctgcaggaattc
T2-T5-R:gagctcgtagaaaagatcaaagga
T2-F:atgtgataactcggcgta
T2-R:gcaagcagcagattacgc
pyk-YF:ttctcggattgatcatgg
pyk-YR:aacggcttgacgactttc
primers for knocking out hisC
hisC-AF:ctgcagcccgggggatccaacggcgtcgtgttcagc
hisC-AR:gtaaaatgaggtgacagagaggtgatgattcagtca
hisC-BF:tgactgaatcatcacctctctgtcacctcattttac
hisC-BR:gatcttttctacgagctccttggcggtgaaatgaaa
hisC-YF:gtgcggaaagtggctgat
hisC-YR:acatgaacatcgtaaaagc
Primers for knocking out hisC
dhaS-AF:ctgcagcccgggggatccgtgcgggtgtatgttcaa
dhaS-AR:atttcacgtccgagtccctcgggtgagttgtcttgg
dhaS-BF:ccaagacaactcacccgagggactcggacgtgaaat
dhaS-BR:gatcttttctacgagctcaataccaggaaccgacaa
dhaS-YF:accgcagcaggatgttct
dhaS-YR:cgcatttgctaaaccttc
(2) Knock-out of alcohol dehydrogenase gene adhA: respectively amplifying upstream and downstream homologous arms of an adhA fragment by using a genome of bacillus licheniformis DW2 as a template and using primers adhA-AF/AR and adhA-BF/BR, fusing the upstream and downstream homologous arm fragments to obtain an ahdA knockout box, and amplifying a skeleton by using a primer (T2-T5-F/R) and a plasmid T2(2) -ori as a template; inserting the plasmid into a plasmid T2, performing colony PCR by using T2-F/T2-R to obtain a positive transformant, successfully constructing an adhA knockout plasmid T2-delta-adhA through DNA sequencing, introducing the plasmid into Bacillus licheniformis DH3, and obtaining an adhA knockout strain D H4 through homologous recombination;
primers for the adhA knockout are as follows
adhA-AF:ctgcagcccgggggatccagcagtgtagcacgataa
adhA-AR:gggaggcggaatctttccaatcatatgtaatacagagag
adhA-BF:ctctctgtattacatatgattggaaagattccgcctccc
adhA-BR:gatcttttctacgagctcccttaatggagggcggtcaa
adhA-YF:tcatgagtcctccgattc
adhA-YR:ttttatacgagcggtgac。
(3)tyrA fbr Integration into the ldh site: designing primers (ldh-AF/AR, ldh-BF/BR) according to the sequence of ldh in the genome DNA sequence of the bacillus licheniformis to amplify the upstream and downstream homologous arms of the ldh; designing a primer (Pylb-F/R) amplification promoter Pylb according to a sequence of Pylb in a Bacillus subtilis DNA sequence; designing a primer (tyrA-F/tyrA-R) to amplify tyrA according to the tyrA sequence and tyrA mutation site sequence (shown in SEQ ID NO. 85) in the Escherichia coli DNA sequence fbr (ii) a Designing primers (TamyL-F and TamyL-R) to amplify TamyL according to the sequence of TamyL in the DNA sequence of the bacillus licheniformis; primers were used to map the ldh upstream and downstream homology arms, the Pylb promoter and tyrA fbr Fragment fusion construction tyrA fbr An expression cassette; using primer (T2-T5-F/R), using plasmid T2(2) -ori as template to amplify the skeleton; inserting the tyrA-modified plasmid into a plasmid T2, performing colony PCR by using T2-F/T2-R to obtain a positive transformant, and successfully constructing tyrA through DNA sequencing fbr Integration expression plasmid T2-ldh-tyrA fbr Introduced into Bacillus licheniformis DH4 to obtain tyrA by homologous recombination fbr Integrating the expression strain DH 5; the prephenate dehydrogenase TyrA fbr The coded amino acid sequence is shown in SEQ ID NO. 86.
tyrA fbr The introduction used for integration into the ldh site was as follows:
ldh-AF:ctgcagcccgggggatccccgacctgtgatggagat
ldh-AR:ggagcgcgttcgacgatgcatattgtgcaatacttc
Pylb-F:gaagtattgcacaatatgcatcgtcgaacgcgctcc
Pylb-R:ggtcaattcagcaaccatacaaatctccccctttgt
TyrA-F:acaaagggggagatttgtatggttgctgaattgacc
TyrA-R:tccgtcctctctgctcttaatgaaggtattgggctg
TamyL-F:cagcccaataccttcattaagagcagagaggacgga
TamyL-R:aacagattcccaaacggacgcaataatgccgtcgca
ldh-BF:tgcgacggcattattgcgtccgtttgggaatctgtt
ldh-BR:gatcttttctacgagctctcaagcctcccatctgtg
ldh-YF:catatcagcggaatcatc
ldh-YR:ccgcttaatacaaggaga
(4) replacement of aroK and aroA promoters to PbacA:
amplifying 500bp sequences of the upper and lower streams of an aroK promoter by using a primer ParaK-AF/AR, respectively serving as an upper homologous arm and a lower homologous arm, amplifying a PbacA promoter sequence by using genome DNA of Bacillus licheniformis DW2 as a template, fusing the upper homologous arm, the promoter and the lower homologous arm, designing primers (T2-T5-F and T2-T5-R), and amplifying a framework by using plasmid T2(2) -ori as a template; connecting the fusion fragment and the linear plasmid fragment by using a one-step cloning kit, transforming into Escherichia coli DH5 alpha competent cells, and respectively obtaining the recombinant plasmid T through PCR verification and sequencing analysis 2 (2) -PbacA-aroK. And (3) electrically transferring the recombinant plasmid into bacillus licheniformis DH5, performing homologous recombination exchange, and screening and verifying to obtain a promoter replacement aroK promoter strain DH 6.
The construction method of the aroA enhanced expression vector strain is the same as that of the aroK promoter replacement strain, and the DH7 strain is finally obtained.
The primers used for aroK promoter replacement are shown below:
ParoK-AF:ctgcagcccgggggatccgtaggctcatttgctgat
PbacA(aroK)-AR:aatctcgccgaaatcgcaggctatttccaccagtcgtcaa
PbacA(aroK)-F:ttgacgactggtggaaatagcctgcgatttcggcgagatt
PbacA(aroK)-R:tctcattgcggcattcatataaaaattctcctttttgat
PbacA(aroK)-BF:atcaaaaaggagaatttttatatgaatgccgcaatgaga
ParoK-BR:gatcttttctacgagctcctttcaagttgtggaatg
ParoK-YF:aggcgttcaggcggaatt
ParoK-YR:gacacagcgatagaaaca
the primers used for aroA promoter replacement are shown below:
ParoA-AF:ctgcagcccgggggatccgaagtggacgcacatttc
PbacA(aroA)-AR:tctcgccgaaatcgcagggttatccatcctttcttt
PbacA(aroA)-F:aaagaaaggatggataaccctgcgatttcggcgaga
PbacA(aroA)-R:aagttcagtgttgctcatataaaaattctccttttt
PbacA(aroA)-BF:aaaaaggagaatttttatatgagcaacactgaactt
ParoA-BR:gatcttttctacgagctccaacacgctttaagattt
ParoA-YF:gttgacgcacgcttcgtt
ParoA-YR:attgatgaattccttcag
example 2:
wild type kivD and hpaBC co-expression strain construction
Step 1: designing primers (P43-HpaBC-F and HpaBC-R) to amplify the sequence of the hpaBC according to the sequence of the hpaBC in the genome of escherichia coli BL21(DE3), and designing primers (Amp-P43-F and P43-HpaBC-R) to amplify the sequence of P43 according to the sequence of a P43 promoter in the genome of bacillus subtilis 168 (shown in SEQ ID NO. 92);
wherein the sequence of Amp-P43-F, P43-HpaBC-R, P43-HpaBC-F, HpaBC-R is as follows:
Amp-P43-F:acttttcggggaaatgtctgataggtggtatgtttt
P43-HpaBC-R:gaaatcttctggtttcatgtgtacattcctctctta
P43-HpaBC-F:taagagaggaatgtacacatgaaaccagaagatttc
HpaBC-R:gtaaacttggtctgacagttaaatcgcagcttccattt
step 2: p43 and hpaBC (shown in SEQ ID NO. 91) were ligated together by overlap extension PCR (primers used were Amp-P43-F and HpaBC-R) to obtain a fusion fragment;
and step 3: primers (T5-amp-F and T5-amp-R) were designed, and the backbone was amplified using plasmid pHY-Pbaca-kivD (ZhanY, et al. efficient synthesis of 2-phenylethanol from L-phenylethanone by engineered Bacillus licheniformis using plasmid as carbon source. apple Microbiol Biotechnol.2020.2020.104 (17):7507-7520) as template. The kivD sequence is shown in SEQ ID NO. 88.
Wherein the sequences of T5-amp-F and T5-amp-R are as follows:
T5-amp-F:gacatttccccgaaaagtgccac
T5-amp-R:ctgtcagaccaagtttactcatata;
and 4, step 4: connecting the gene fragment obtained in the step (6) and the linear plasmid fragment obtained in the step (7) by using a one-step cloning kit, transferring the connection product into escherichia coli DH5 alpha by a calcium chloride conversion method, screening by a culture medium containing tetracyclic resistance at 37 ℃, screening to obtain a transformant, screening positive transformants by colony PCR verification (primers are amp-YF and amp-YR) on a transformant selection plasmid, and determining correct DNA sequencing by naming the transformant as a co-expression vector pHY-PbacA-kivD-P43-hpaBC;
wherein the sequences of amp-YF and amp-YR are:
amp-YF:ccctgatctcgacttcgt
amp-YR:ttaaggggtctgacgctc
and 5: the pHY-PbacA-kivD-P43-hpaBC plasmid is electrically transferred into DH7, and the strain PCR is verified, so that the recombinant strain HT1 which successfully transfers the recombinant plasmid pHY-PbacA-kivD-P43-hpaBC is successfully obtained.
Example 3:
construction of mutant kivD (V461A or V461I) and hpaBC Co-expression Strain
Step 1: the mutant frameworks containing V461A and V461I were amplified with primers V461A-F/R and V461I-F/R, respectively, using the vector pHY-Pbaca-kivD-P43-hpaBC of example 2 as a template.
V461A-F:gttatacagctgaaagagaaattcatggaccaaatcaaa
V461A-R:ctctttcagctgtataaccatcattattgataataaagc
V461I-F:gttatacaatcgaaagagaaattcatggaccaaatcaaa
V461I-R:ctctttcgattgtataaccatcattattgataataaagc
Step 2: vector self-ligation is carried out on the linear skeletons of V461A and V461I obtained in the step (1) by using a one-step cloning kit, the ligation product is transferred into escherichia coli DH5 alpha by a calcium chloride transformation method, screening is carried out on a culture medium containing tetracyclic resistance at the temperature of 37 ℃, a transformant is obtained by screening, colony PCR verification is carried out on a selected plasmid of the transformant (primers are pHY-YF and pHY-YR), successful mutation of a mutation site is verified by DNA sequencing, and V461A and V461I mutant vectors are respectively named as pHY-Pbaca-kivD V461A -P43-hpaBC and pHY-Pbaca-kivD V461I -P43-hp aBC。kivD V461A The sequence is shown as SEQ ID NO.89, kivD V461I The sequence is shown as SEQ ID NO. 90.
And step 3: pHY-Pbaca-kivD V461A -P43-hpaBC and pHY-Pbaca-kivD V461I The P43-hpaBC plasmid was electrotransferred to recombinant strain DH7, respectively, to obtain strains HT2 and HT 3.
Example 4:
construction of recombinant strains expressing mutant kivD (V461A and V461I) and hpaBC in combination of different promoters
Step 1: the plasmid pHY-Pbaca-kivD used in example 3 was used V461A -P43-hpaBC and pHY-Pbaca-kivD V461I -P43-hpaBC as a template, and Pbaca (shown in SEQ ID NO. 93) and P43 and Pbay (shown in SEQ ID NO. 94) as promoters, respectively, to construct expression vectors of 18 different combinations. To construct pHY-P43-kivD V461I P43-hpaBC as an example, the P43 promoter was amplified with the P43-kivD-F/R primer and pHY-Pbaca-kivD with the P43 fragment as a template V461I pHY-P43-kivD was amplified using-P43-hpaBC as a template and kivD-T5-F/R primer V461I -P43-hpaBC vector backbone; using a one-step cloning kit, the P43 promoter fragment and pHY-P43-kivD were cloned V461I -P43-hpaBC Linear backbone, ligation by chloroTransferring the ligation product into Escherichia coli DH5 alpha by calcium transformation method, screening by culture medium containing tetracyclic resistance at 37 deg.C, screening to obtain transformant, and naming as co-expression vector pHY-P43-kivD V461I -P43-hpaBC. The construction method of the other 15 different combination expression vectors is similar to pHY-P43-kivD V461I -P43-hpaBC。
The remaining 15 combination expression vectors are shown in the following table:
recombinant plasmid Recombinant plasmid
pHY-PbacA-kivD V461A -PbacA-hpaBC pHY-PbacA-kivD V461I -PbacA-hpaBC
pHY-PbacA-kivD V461A -Pbay-hpaBC pHY-PbacA-kivD V461I -Pbay-hpaBC
pHY-P43-kivD V461A -P43-hpaBC pHY-P43-kivD V461I -PbacA-hpaBC
pHY-P43-kivD V461A -PbacA-hpaBC pHY-P43-kivD V461I -Pbay-hpaBC
pHY-P43-kivD V461A -Pbay-hpaBC pHY-Pbay-kivD V461I -P43-hpaBC
pHY-Pbay-kivD V461A -P43-hpaBC pHY-Pbay-kivD V461I -PbacA-hpaBC
pHY-Pbay-kivD V461A -PbacA-hpaBC pHY-Pbay-kivD V461I -Pbay-hpaBC
pHY-Pbay-kivD V461A -Pbay-hpaBC
P43-kivD-F:tttttataacaggaattctgataggtggtatgtttt
P43-kivD-R:atctcctactgtatacatgtgtacattcctctctta
PbacA-kivD-F:tttttataacaggaattccctgcgatttcggcgaga
PbacA-kivD-R:atctcctactgtatacatataaaaattctccttttt
Pbay-kivD-F:tttttataacaggaattccctgcgatttcggcgaga
Pbay-kivD-R:atctcctactgtatacatacaaatctccccctttgt
kivD-T5-F:gaattcctgttataaaaaaaggatc
kivD-T5-R::atgtatacagtaggagattaccta
P43-hpaBC-F:acttttcggggaaatgtctgataggtggtatgtttt
P43-hpaBC-R:gaaatcttctggtttcatgtgtacattcctctctta
PbacA-hpaBC-F:acttttcggggaaatgtccctgcgatttcggcgaga
PbacA-hpaBC-R:gaaatcttctggtttcatataaaaattctccttttt
Pbay-hpaBC-F:acttttcggggaaatgtccctgcgatttcggcgaga
Pbay-hpaBC-R:gaaatcttctggtttcatacaaatctccccctttgt
hpaBC-T5-F:gacatttccccgaaaagtgccac
HpaBC-T5-R:atgaaaccagaagatttccg
Step 2: the constructed 18 recombinant plasmids expressed in different combinations and the control vector pHY300 are electrically transformed into a recombinant strain DH7, and 18 recombinant bacillus licheniformis HT 2-HT 19 and HT0 control strains are obtained.
Example 5:
recombinant Bacillus licheniformis hydroxytyrosol fermentation
1) Seed fermentation: activated Bacillus licheniformis DW2/pHY-300, HT0 and different recombinant Bacillus licheniformis HT 1-HT 19 on the plate, inoculating the bacteria to 250mL triangular flasks containing 50mL liquid LB, and culturing at 37 deg.C and 230rp m for 13 h. Then inoculating the fermentation medium with an inoculation amount of 2% (volume ratio); the culture condition of the hydroxytyrosol fermentation medium is 37 ℃, the culture is carried out for 48h at 230rpm, and the yield of the hydroxytyrosol is measured after the fermentation is finished.
The formula of the hydroxytyrosol fermentation medium is 10g/L peptone, 5g/L yeast powder, 10g/L NaCl and 18.6g/LK 2 HPO 4 ,5.2g/LKH 2 PO 4 70g/L glucose, pH 7.0, the remainder being water.
2) Pretreatment of fermentation liquor: diluting the fermentation liquor with deionized water, centrifuging to remove thallus, and filtering with 0.22 μm water phase filter membrane.
3) Hydroxytyrosol was detected by High Performance Liquid Chromatography (HPLC). The measurement conditions are specifically as follows: using Agilent 1260 hplc, column C18 (4.6mm ID × 250mm,5 μm), mobile phase methanol: 0.1% formic acid 2: 8, the flow rate is 0.6mL/min, the column temperature is 30 ℃, the sample injection amount is 10.0 mu L, the detection wavelength is 224nm, and the elution time is 25 min. And calculating the content of the hydroxytyrosol in the fermentation liquor according to a standard curve made of a hydroxytyrosol standard product. As a result, hydroxytyrosol was not detected in the control strains DW2/pHY-300 and DH0, but in both recombinant strains, H T7 (pHY-P43-kivD) was detected V461A Pbay-hpaBC) and HT16 (pHY-P43-kivD) V461I -Pbay-hpaBC) strain yields up to 5.55 + -0.37 and 5.49 + -0.33 g/L.
TABLE 1 yield of hydroxytyrosol by different recombinant strains
Figure BDA0003667646590000091
Figure BDA0003667646590000101
Sequence listing
<110> university of Hubei
<120> bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application
<160> 94
<170> SIPOSequenceListing 1.0
<210> 1
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
ctgcagcccg ggggatccgg gatacagcta catccc 36
<210> 2
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
ttaaagtacg cttgcacgcg gcccaattgt acaaact 37
<210> 3
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
agtttgtaca attgggccgc gtgcaagcgt actttaa 37
<210> 4
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
gatcttttct acgagctcgc ggcagcctgc tttttc 36
<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
ggatcccccg ggctgcagga attc 24
<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
gagctcgtag aaaagatcaa agga 24
<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
atgtgataac tcggcgta 18
<210> 8
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
gcaagcagca gattacgc 18
<210> 9
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
ttctcggatt gatcatgg 18
<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
aacggcttga cgactttc 18
<210> 11
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
ctgcagcccg ggggatccaa cggcgtcgtg ttcagc 36
<210> 12
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
gtaaaatgag gtgacagaga ggtgatgatt cagtca 36
<210> 13
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
tgactgaatc atcacctctc tgtcacctca ttttac 36
<210> 14
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
gatcttttct acgagctcct tggcggtgaa atgaaa 36
<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
gtgcggaaag tggctgat 18
<210> 16
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
acatgaacat cgtaaaagc 19
<210> 17
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
ctgcagcccg ggggatccgt gcgggtgtat gttcaa 36
<210> 18
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
atttcacgtc cgagtccctc gggtgagttg tcttgg 36
<210> 19
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
ccaagacaac tcacccgagg gactcggacg tgaaat 36
<210> 20
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
gatcttttct acgagctcaa taccaggaac cgacaa 36
<210> 21
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
accgcagcag gatgttct 18
<210> 22
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
cgcatttgct aaaccttc 18
<210> 23
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
ctgcagcccg ggggatccag cagtgtagca cgataa 36
<210> 24
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
gggaggcgga atctttccaa tcatatgtaa tacagagag 39
<210> 25
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
ctctctgtat tacatatgat tggaaagatt ccgcctccc 39
<210> 26
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
gatcttttct acgagctccc ttaatggagg gcggtcaa 38
<210> 27
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
tcatgagtcc tccgattc 18
<210> 28
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
ttttatacga gcggtgac 18
<210> 29
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
ctgcagcccg ggggatcccc gacctgtgat ggagat 36
<210> 30
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
ggagcgcgtt cgacgatgca tattgtgcaa tacttc 36
<210> 31
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
gaagtattgc acaatatgca tcgtcgaacg cgctcc 36
<210> 32
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
ggtcaattca gcaaccatac aaatctcccc ctttgt 36
<210> 33
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
acaaaggggg agatttgtat ggttgctgaa ttgacc 36
<210> 34
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 34
tccgtcctct ctgctcttaa tgaaggtatt gggctg 36
<210> 35
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 35
cagcccaata ccttcattaa gagcagagag gacgga 36
<210> 36
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 36
aacagattcc caaacggacg caataatgcc gtcgca 36
<210> 37
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 37
tgcgacggca ttattgcgtc cgtttgggaa tctgtt 36
<210> 38
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 38
gatcttttct acgagctctc aagcctccca tctgtg 36
<210> 39
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 39
catatcagcg gaatcatc 18
<210> 40
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 40
ccgcttaata caaggaga 18
<210> 41
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 41
ctgcagcccg ggggatccgt aggctcattt gctgat 36
<210> 42
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 42
aatctcgccg aaatcgcagg ctatttccac cagtcgtcaa 40
<210> 43
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 43
ttgacgactg gtggaaatag cctgcgattt cggcgagatt 40
<210> 44
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 44
tctcattgcg gcattcatat aaaaattctc ctttttgat 39
<210> 45
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 45
atcaaaaagg agaattttta tatgaatgcc gcaatgaga 39
<210> 46
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 46
gatcttttct acgagctcct ttcaagttgt ggaatg 36
<210> 47
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 47
aggcgttcag gcggaatt 18
<210> 48
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 48
gacacagcga tagaaaca 18
<210> 49
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 49
ctgcagcccg ggggatccga agtggacgca catttc 36
<210> 50
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 50
tctcgccgaa atcgcagggt tatccatcct ttcttt 36
<210> 51
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 51
aaagaaagga tggataaccc tgcgatttcg gcgaga 36
<210> 52
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 52
aagttcagtg ttgctcatat aaaaattctc cttttt 36
<210> 53
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 53
aaaaaggaga atttttatat gagcaacact gaactt 36
<210> 54
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 54
gatcttttct acgagctcca acacgcttta agattt 36
<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 55
gttgacgcac gcttcgtt 18
<210> 56
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 56
attgatgaat tccttcag 18
<210> 57
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 57
acttttcggg gaaatgtctg ataggtggta tgtttt 36
<210> 58
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 58
gaaatcttct ggtttcatgt gtacattcct ctctta 36
<210> 59
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 59
taagagagga atgtacacat gaaaccagaa gatttc 36
<210> 60
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 60
gtaaacttgg tctgacagtt aaatcgcagc ttccattt 38
<210> 61
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 61
gacatttccc cgaaaagtgc cac 23
<210> 62
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 62
ctgtcagacc aagtttactc atata 25
<210> 63
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 63
ccctgatctc gacttcgt 18
<210> 64
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 64
ttaaggggtc tgacgctc 18
<210> 65
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 65
gttatacagc tgaaagagaa attcatggac caaatcaaa 39
<210> 66
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 66
ctctttcagc tgtataacca tcattattga taataaagc 39
<210> 67
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 67
gttatacaat cgaaagagaa attcatggac caaatcaaa 39
<210> 68
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 68
ctctttcgat tgtataacca tcattattga taataaagc 39
<210> 69
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 69
tttttataac aggaattctg ataggtggta tgtttt 36
<210> 70
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 70
atctcctact gtatacatgt gtacattcct ctctta 36
<210> 71
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 71
tttttataac aggaattccc tgcgatttcg gcgaga 36
<210> 72
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 72
atctcctact gtatacatat aaaaattctc cttttt 36
<210> 73
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 73
tttttataac aggaattccc tgcgatttcg gcgaga 36
<210> 74
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 74
atctcctact gtatacatac aaatctcccc ctttgt 36
<210> 75
<211> 25
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 75
gaattcctgt tataaaaaaa ggatc 25
<210> 76
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 76
atgtatacag taggagatta ccta 24
<210> 77
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 77
acttttcggg gaaatgtctg ataggtggta tgtttt 36
<210> 78
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 78
gaaatcttct ggtttcatgt gtacattcct ctctta 36
<210> 79
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 79
acttttcggg gaaatgtccc tgcgatttcg gcgaga 36
<210> 80
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 80
gaaatcttct ggtttcatat aaaaattctc cttttt 36
<210> 81
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 81
acttttcggg gaaatgtccc tgcgatttcg gcgaga 36
<210> 82
<211> 36
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 82
gaaatcttct ggtttcatac aaatctcccc ctttgt 36
<210> 83
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 83
gacatttccc cgaaaagtgc cac 23
<210> 84
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 84
atgaaaccag aagatttccg 20
<210> 85
<211> 1122
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 85
atggttgctg aattgaccgc attacgcgat caaattgatg aagtcgataa agcgctgctg 60
aatttattag cgaagcgtct ggaactggtt gctgaagtgg gcgaggtgaa aagccgcttt 120
ggactgccta tttatgttcc ggagcgcgag gcatctatct tggcctcgcg tcgtgcagag 180
gcggaagctc tgggtgtacc gccagatctg attgaggatg ttttgcgtcg ggtgatgcgt 240
gaatcttact ccagtgaaaa cgacaaagga tttaaaacac tttgtccgtc actgcgtccg 300
gtggttatcg tcggcggtgg cggtcagatg ggacgcctgt tcgagaagat gctgaccctc 360
tcgggttatc aggtgcggat tctggagcaa catgactggg atcgagcggc tgatattgtt 420
gccgatgccg gaatggtgat tgttagtgtg ccaatccacg ttactgagca agttattggc 480
aaattaccgc ctttaccgaa agattgtatt ctggtcgatc tggcatcagt gaaaaatggg 540
ccattacagg ccatgctggt ggcgcatgat ggtccggtgc tggggctaca cccgatgttc 600
ggtccggaca gcggtagcct ggcaaagcaa gttgtggtct ggtgtgatgg acgtaaaccg 660
gaagcatacc aatggtttct ggagcaaatt caggtctggg gcgctcggct gcatcgtatt 720
agcgccgtcg agcacgatca gaatatggcg tttattcagg cactgcgcca ctttgctact 780
tttgcttacg ggctgcacct ggcagaagaa aatgttcagc ttgagcaact tctggcgctc 840
tcttcgccga tttaccgcct tgagctggcg atggtcgggc gactgtttgc tcaggatccg 900
cagctttatg ccgacatcat tatgtcgtca gagcgtaatc tggcgttaat caaacgttac 960
tataagcgtt tcggcgaggc gattgagttg ctggagcagg gcgataagca ggcgtttatt 1020
gacagtttcc gcaaggtgga gcactggttc ggcgattacg tacagcgttt tcagagtgaa 1080
agccgcgtgt tattgcgtca ggcgaatgac aatcgccagt aa 1122
<210> 86
<211> 373
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 86
Met Val Ala Glu Leu Thr Ala Leu Arg Asp Gln Ile Asp Glu Val Asp
1 5 10 15
Lys Ala Leu Leu Asn Leu Leu Ala Lys Arg Leu Glu Leu Val Ala Glu
20 25 30
Val Gly Glu Val Lys Ser Arg Phe Gly Leu Pro Ile Tyr Val Pro Glu
35 40 45
Arg Glu Ala Ser Ile Leu Ala Ser Arg Arg Ala Glu Ala Glu Ala Leu
50 55 60
Gly Val Pro Pro Asp Leu Ile Glu Asp Val Leu Arg Arg Val Met Arg
65 70 75 80
Glu Ser Tyr Ser Ser Glu Asn Asp Lys Gly Phe Lys Thr Leu Cys Pro
85 90 95
Ser Leu Arg Pro Val Val Ile Val Gly Gly Gly Gly Gln Met Gly Arg
100 105 110
Leu Phe Glu Lys Met Leu Thr Leu Ser Gly Tyr Gln Val Arg Ile Leu
115 120 125
Glu Gln His Asp Trp Asp Arg Ala Ala Asp Ile Val Ala Asp Ala Gly
130 135 140
Met Val Ile Val Ser Val Pro Ile His Val Thr Glu Gln Val Ile Gly
145 150 155 160
Lys Leu Pro Pro Leu Pro Lys Asp Cys Ile Leu Val Asp Leu Ala Ser
165 170 175
Val Lys Asn Gly Pro Leu Gln Ala Met Leu Val Ala His Asp Gly Pro
180 185 190
Val Leu Gly Leu His Pro Met Phe Gly Pro Asp Ser Gly Ser Leu Ala
195 200 205
Lys Gln Val Val Val Trp Cys Asp Gly Arg Lys Pro Glu Ala Tyr Gln
210 215 220
Trp Phe Leu Glu Gln Ile Gln Val Trp Gly Ala Arg Leu His Arg Ile
225 230 235 240
Ser Ala Val Glu His Asp Gln Asn Met Ala Phe Ile Gln Ala Leu Arg
245 250 255
His Phe Ala Thr Phe Ala Tyr Gly Leu His Leu Ala Glu Glu Asn Val
260 265 270
Gln Leu Glu Gln Leu Leu Ala Leu Ser Ser Pro Ile Tyr Arg Leu Glu
275 280 285
Leu Ala Met Val Gly Arg Leu Phe Ala Gln Asp Pro Gln Leu Tyr Ala
290 295 300
Asp Ile Ile Met Ser Ser Glu Arg Asn Leu Ala Leu Ile Lys Arg Tyr
305 310 315 320
Tyr Lys Arg Phe Gly Glu Ala Ile Glu Leu Leu Glu Gln Gly Asp Lys
325 330 335
Gln Ala Phe Ile Asp Ser Phe Arg Lys Val Glu His Trp Phe Gly Asp
340 345 350
Tyr Val Gln Arg Phe Gln Ser Glu Ser Arg Val Leu Leu Arg Gln Ala
355 360 365
Asn Asp Asn Arg Gln
370
<210> 87
<211> 1647
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 87
atgtatacag taggagatta cctattagac cgattacacg agttaggaat tgaagaaatt 60
tttggagtcc ctggagacta taacttacaa tttttagatc aaattatttc ccgcaaggat 120
atgaaatggg tcggaaatgc taatgaatta aatgcttcat atatggctga tggctatgct 180
cgtactaaaa aagctgccgc atttcttaca acctttggag taggtgaatt gagtgcagtt 240
aatggattag caggaagtta cgccgaaaat ttaccagtag tagaaatagt gggatcacct 300
acatcaaaag ttcaaaatga aggaaaattt gttcatcata cgctggctga cggtgatttt 360
aaacacttta tgaaaatgca cgaacctgtt acagcagctc gaactttact gacagcagaa 420
aatgcaaccg ttgaaattga ccgagtactt tctgcactat taaaagaaag aaaacctgtc 480
tatatcaact taccagttga tgttgctgct gcaaaagcag agaaaccctc actccctttg 540
aaaaaagaaa actcaacttc aaatacaagt gaccaagaga tcttgaacaa aattcaagaa 600
agcttgaaaa atgccaaaaa accaatcgtg attacaggac atgaaataat tagttttggc 660
ttagaaaaaa cagtctctca atttatttca aagacaaaac tacctattac gacattaaac 720
tttggaaaaa gttcagttga tgaagctctc ccttcatttt taggaatcta taatggtaaa 780
ctctcagagc ctaatcttaa agaattcgtg gaatcagccg acttcatcct gatgcttgga 840
gttaaactca cagactcttc aacaggagcc ttcactcatc atttaaatga aaataaaatg 900
atttcactga atatagatga aggaaaaata tttaacgaaa gcatccaaaa ttttgatttt 960
gaatccctca tctcctctct cttagaccta agcgaaatag aatacaaagg aaaatatatc 1020
gataaaaagc aagaagactt tgttccatca aatgcgcttt tatcacaaga ccgcctatgg 1080
caagcagttg aaaacctaac tcaaagcaat gaaacaatcg ttgctgaaca agggacatca 1140
ttctttggcg cttcatcaat tttcttaaaa ccaaagagtc attttattgg tcaaccctta 1200
tggggatcaa ttggatatac attcccagca gcattaggaa gccaaattgc agataaagaa 1260
agcagacacc ttttatttat tggtgatggt tcacttcaac ttacggtgca agaattagga 1320
ttagcaatca gagaaaaaat taatccaatt tgctttatta tcaataatga tggttataca 1380
gtcgaaagag aaattcatgg accaaatcaa agctacaatg atattccaat gtggaattac 1440
tcaaaattac cagaatcatt tggagcaaca gaagaacgag tagtctcgaa aatcgttaga 1500
actgaaaatg aatttgtgtc tgtcatgaaa gaagctcaag cagatccaaa tagaatgtac 1560
tggattgagt tagttttggc aaaagaagat gcaccaaaag tactgaaaaa aatgggcaaa 1620
ctatttgctg aacaaaataa atcataa 1647
<210> 88
<211> 548
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 88
Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly
1 5 10 15
Ile Glu Glu Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu Gln Phe Leu
20 25 30
Asp Gln Ile Ile Ser Arg Lys Asp Met Lys Trp Val Gly Asn Ala Asn
35 40 45
Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys
50 55 60
Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Val
65 70 75 80
Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile
85 90 95
Val Gly Ser Pro Thr Ser Lys Val Gln Asn Glu Gly Lys Phe Val His
100 105 110
His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu
115 120 125
Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Val
130 135 140
Glu Ile Asp Arg Val Leu Ser Ala Leu Leu Lys Glu Arg Lys Pro Val
145 150 155 160
Tyr Ile Asn Leu Pro Val Asp Val Ala Ala Ala Lys Ala Glu Lys Pro
165 170 175
Ser Leu Pro Leu Lys Lys Glu Asn Ser Thr Ser Asn Thr Ser Asp Gln
180 185 190
Glu Ile Leu Asn Lys Ile Gln Glu Ser Leu Lys Asn Ala Lys Lys Pro
195 200 205
Ile Val Ile Thr Gly His Glu Ile Ile Ser Phe Gly Leu Glu Lys Thr
210 215 220
Val Ser Gln Phe Ile Ser Lys Thr Lys Leu Pro Ile Thr Thr Leu Asn
225 230 235 240
Phe Gly Lys Ser Ser Val Asp Glu Ala Leu Pro Ser Phe Leu Gly Ile
245 250 255
Tyr Asn Gly Lys Leu Ser Glu Pro Asn Leu Lys Glu Phe Val Glu Ser
260 265 270
Ala Asp Phe Ile Leu Met Leu Gly Val Lys Leu Thr Asp Ser Ser Thr
275 280 285
Gly Ala Phe Thr His His Leu Asn Glu Asn Lys Met Ile Ser Leu Asn
290 295 300
Ile Asp Glu Gly Lys Ile Phe Asn Glu Ser Ile Gln Asn Phe Asp Phe
305 310 315 320
Glu Ser Leu Ile Ser Ser Leu Leu Asp Leu Ser Glu Ile Glu Tyr Lys
325 330 335
Gly Lys Tyr Ile Asp Lys Lys Gln Glu Asp Phe Val Pro Ser Asn Ala
340 345 350
Leu Leu Ser Gln Asp Arg Leu Trp Gln Ala Val Glu Asn Leu Thr Gln
355 360 365
Ser Asn Glu Thr Ile Val Ala Glu Gln Gly Thr Ser Phe Phe Gly Ala
370 375 380
Ser Ser Ile Phe Leu Lys Pro Lys Ser His Phe Ile Gly Gln Pro Leu
385 390 395 400
Trp Gly Ser Ile Gly Tyr Thr Phe Pro Ala Ala Leu Gly Ser Gln Ile
405 410 415
Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu
420 425 430
Gln Leu Thr Val Gln Glu Leu Gly Leu Ala Ile Arg Glu Lys Ile Asn
435 440 445
Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu
450 455 460
Ile His Gly Pro Asn Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr
465 470 475 480
Ser Lys Leu Pro Glu Ser Phe Gly Ala Thr Glu Glu Arg Val Val Ser
485 490 495
Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala
500 505 510
Gln Ala Asp Pro Asn Arg Met Tyr Trp Ile Glu Leu Val Leu Ala Lys
515 520 525
Glu Asp Ala Pro Lys Val Leu Lys Lys Met Gly Lys Leu Phe Ala Glu
530 535 540
Gln Asn Lys Ser
545
<210> 89
<211> 1647
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 89
atgtatacag taggagatta cctattagac cgattacacg agttaggaat tgaagaaatt 60
tttggagtcc ctggagacta taacttacaa tttttagatc aaattatttc ccgcaaggat 120
atgaaatggg tcggaaatgc taatgaatta aatgcttcat atatggctga tggctatgct 180
cgtactaaaa aagctgccgc atttcttaca acctttggag taggtgaatt gagtgcagtt 240
aatggattag caggaagtta cgccgaaaat ttaccagtag tagaaatagt gggatcacct 300
acatcaaaag ttcaaaatga aggaaaattt gttcatcata cgctggctga cggtgatttt 360
aaacacttta tgaaaatgca cgaacctgtt acagcagctc gaactttact gacagcagaa 420
aatgcaaccg ttgaaattga ccgagtactt tctgcactat taaaagaaag aaaacctgtc 480
tatatcaact taccagttga tgttgctgct gcaaaagcag agaaaccctc actccctttg 540
aaaaaagaaa actcaacttc aaatacaagt gaccaagaga tcttgaacaa aattcaagaa 600
agcttgaaaa atgccaaaaa accaatcgtg attacaggac atgaaataat tagttttggc 660
ttagaaaaaa cagtctctca atttatttca aagacaaaac tacctattac gacattaaac 720
tttggaaaaa gttcagttga tgaagctctc ccttcatttt taggaatcta taatggtaaa 780
ctctcagagc ctaatcttaa agaattcgtg gaatcagccg acttcatcct gatgcttgga 840
gttaaactca cagactcttc aacaggagcc ttcactcatc atttaaatga aaataaaatg 900
atttcactga atatagatga aggaaaaata tttaacgaaa gcatccaaaa ttttgatttt 960
gaatccctca tctcctctct cttagaccta agcgaaatag aatacaaagg aaaatatatc 1020
gataaaaagc aagaagactt tgttccatca aatgcgcttt tatcacaaga ccgcctatgg 1080
caagcagttg aaaacctaac tcaaagcaat gaaacaatcg ttgctgaaca agggacatca 1140
ttctttggcg cttcatcaat tttcttaaaa ccaaagagtc attttattgg tcaaccctta 1200
tggggatcaa ttggatatac attcccagca gcattaggaa gccaaattgc agataaagaa 1260
agcagacacc ttttatttat tggtgatggt tcacttcaac ttacggtgca agaattagga 1320
ttagcaatca gagaaaaaat taatccaatt tgctttatta tcaataatga tggttataca 1380
attgaaagag aaattcatgg accaaatcaa agctacaatg atattccaat gtggaattac 1440
tcaaaattac cagaatcatt tggagcaaca gaagaacgag tagtctcgaa aatcgttaga 1500
actgaaaatg aatttgtgtc tgtcatgaaa gaagctcaag cagatccaaa tagaatgtac 1560
tggattgagt tagttttggc aaaagaagat gcaccaaaag tactgaaaaa aatgggcaaa 1620
ctatttgctg aacaaaataa atcataa 1647
<210> 90
<211> 1647
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 90
atgtatacag taggagatta cctattagac cgattacacg agttaggaat tgaagaaatt 60
tttggagtcc ctggagacta taacttacaa tttttagatc aaattatttc ccgcaaggat 120
atgaaatggg tcggaaatgc taatgaatta aatgcttcat atatggctga tggctatgct 180
cgtactaaaa aagctgccgc atttcttaca acctttggag taggtgaatt gagtgcagtt 240
aatggattag caggaagtta cgccgaaaat ttaccagtag tagaaatagt gggatcacct 300
acatcaaaag ttcaaaatga aggaaaattt gttcatcata cgctggctga cggtgatttt 360
aaacacttta tgaaaatgca cgaacctgtt acagcagctc gaactttact gacagcagaa 420
aatgcaaccg ttgaaattga ccgagtactt tctgcactat taaaagaaag aaaacctgtc 480
tatatcaact taccagttga tgttgctgct gcaaaagcag agaaaccctc actccctttg 540
aaaaaagaaa actcaacttc aaatacaagt gaccaagaga tcttgaacaa aattcaagaa 600
agcttgaaaa atgccaaaaa accaatcgtg attacaggac atgaaataat tagttttggc 660
ttagaaaaaa cagtctctca atttatttca aagacaaaac tacctattac gacattaaac 720
tttggaaaaa gttcagttga tgaagctctc ccttcatttt taggaatcta taatggtaaa 780
ctctcagagc ctaatcttaa agaattcgtg gaatcagccg acttcatcct gatgcttgga 840
gttaaactca cagactcttc aacaggagcc ttcactcatc atttaaatga aaataaaatg 900
atttcactga atatagatga aggaaaaata tttaacgaaa gcatccaaaa ttttgatttt 960
gaatccctca tctcctctct cttagaccta agcgaaatag aatacaaagg aaaatatatc 1020
gataaaaagc aagaagactt tgttccatca aatgcgcttt tatcacaaga ccgcctatgg 1080
caagcagttg aaaacctaac tcaaagcaat gaaacaatcg ttgctgaaca agggacatca 1140
ttctttggcg cttcatcaat tttcttaaaa ccaaagagtc attttattgg tcaaccctta 1200
tggggatcaa ttggatatac attcccagca gcattaggaa gccaaattgc agataaagaa 1260
agcagacacc ttttatttat tggtgatggt tcacttcaac ttacggtgca agaattagga 1320
ttagcaatca gagaaaaaat taatccaatt tgctttatta tcaataatga tggttataca 1380
attgaaagag aaattcatgg accaaatcaa agctacaatg atattccaat gtggaattac 1440
tcaaaattac cagaatcatt tggagcaaca gaagaacgag tagtctcgaa aatcgttaga 1500
actgaaaatg aatttgtgtc tgtcatgaaa gaagctcaag cagatccaaa tagaatgtac 1560
tggattgagt tagttttggc aaaagaagat gcaccaaaag tactgaaaaa aatgggcaaa 1620
ctatttgctg aacaaaataa atcataa 1647
<210> 91
<211> 2093
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 91
atgaaaccag aagatttccg cgccagtacc caacgtcctt tcaccgggga agagtatctg 60
aaaagcctgc aggatggtcg cgagatctat atctatggcg agcgagtgaa agacgtcacc 120
actcatccgg catttcgtaa tgcggcagcg tctgttgccc agctgtacga cgcactgcac 180
aaaccggaga tgcaggactc tctgtgttgg aacaccgaca ccggcagcgg cggctatacc 240
cataaattct tccgcgtggc gaaaagtgcc gacgacctgc gccagcaacg cgacgccatc 300
gctgagtggt cacgcctgag ctatggctgg atgggccgta ccccagacta caaagccgct 360
ttcggttgcg cactgggcgc gaatccgggc ttttacggtc agttcgagca gaacgcccgt 420
aactggtaca cccgtattca ggaaactggc ctctacttta accacgcgat tgttaaccca 480
ccgatcgatc gtcatttgcc gaccgataaa gtgaaagacg tttacatcaa gctggaaaaa 540
gagactgacg ccgggattat cgtcagcggt gcgaaagtgg ttgccaccaa ctcggcgctg 600
actcactaca acatgattgg cttcggctcg gcacaagtga tgggcgaaaa cccggacttc 660
gcactgatgt tcgttgcgcc aatggatgcc gatggcgtga aattaatctc ccgcgcctct 720
tatgagatgg tcgcgggtgc taccggctcg ccatacgact acccgctctc cagccgcttc 780
gatgagaacg atgcgattct ggtgatggat aacgtgctga ttccatggga aaacgtgctg 840
atctaccgcg attttgatcg ctgccgtcgc tggacgatgg aaggcggttt tgcccgtatg 900
tatccgctgc aagcctgtgt gcgcctggca gtgaaattag acttcattac ggcactgctg 960
aaaaaatcac tcgaatgtac cggcaccctg gagttccgtg gtgtgcaggc cgatctcggt 1020
gaagtggtag cgtggcgcaa caccttctgg gcattgagtg actcgatgtg ttcagaagca 1080
acgccgtggg tcaacggggc ttatttaccg gatcatgccg cactgcaaac ctatcgcgta 1140
ctggcaccaa tggcctacgc gaagatcaaa aacattatcg aacgcaacgt taccagtggc 1200
ctgatctatc tcccttccag tgcccgtgac ctgaataatc cgcagatcga ccagtatctg 1260
gcgaagtatg tgcgcggttc gaacggtatg gatcacgtcc agcgcatcaa gatcctcaaa 1320
ctgatgtggg atgctattgg cagcgaattt ggtggtcgtc acgaactgta tgaaatcaac 1380
tactccggta gccaggatga gattcgcctg cagtgtctgc gccaggcaca aaactccggc 1440
aatatggaca agatgatggc gatggttgat cgctgcctgt cggaatacga ccaggacggc 1500
tggactgtgc cgcacctgca caacaacgac gatatcaaca tgctggataa gctgctgaaa 1560
taacgcagca ggaggttaag atgcaattag atgaacaacg cctgcgcttt cgtgacgcga 1620
tggccagcct gtcggcagcg gtaaatatta tcaccaccga gggcgacgcc ggacaatgcg 1680
ggattacggc aacggccgtc tgctcggtca cggatacacc accgtcgctg atggtgtgca 1740
ttaacgccaa cagtgcgatg aacccggttt ttcagggcaa cggcaagttg tgcgtcaacg 1800
tcctcaacca tgagcaggaa ctgatggcac gccacttcgc gggcatgaca ggcatggcga 1860
tggaagagcg ttttagcctc tcatgctggc aaaaaggtcc gctggcgcag ccggtgctaa 1920
aaggttcgct ggccagtctt gaaggtgaga tccgcgatgt gcaggcaatt ggcacacatc 1980
tggtgtatct ggtggagatt aaaaacatca tcctcagtgc agaaggtcat ggacttatct 2040
actttaaacg ccgtttccat ccggtgatgc tggaaatgga agctgcgatt taa 2093
<210> 92
<211> 300
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 92
tgataggtgg tatgttttcg cttgaacttt taaatacagc cattgaacat acggttgatt 60
taataactga caaacatcac cctcttgcta aagcggccaa ggacgctgcc gccggggctg 120
tttgcgtttt tgccgtgatt tcgtgtatca ttggtttact tatttttttg ccaaagctgt 180
aatggctgaa aattcttaca tttattttac atttttagaa atgggcgtga aaaaaagcgc 240
gcgattatgt aaaatataaa gtgatagcgg taccattata ggtaagagag gaatgtacac 300
<210> 93
<211> 335
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 93
cctgcgattt cggcgagatt caagcccggg tctaatctat ttttccttct tcggacgctt 60
caaaaattac ttttattata atcggaacag tgttttttag atcttttgat ctatttggtg 120
tttatcttgt ctcataaata catgtttaaa caatgtaaaa tataaaatat ccaattcata 180
aaaaattaac cattattaaa caatattcct atggaaaata atgattattt ttgataatct 240
gttttcacaa gacggaggtt caataaaaaa tcggtaaaag agcaactaca gaccaatatt 300
atggtgaata ttttatcaaa aaggagaatt tttat 335
<210> 94
<211> 333
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 94
cctgcgattt cggcgagatt caagcccggg tctaatctat ttttccttct tcggacgctt 60
caaaaattac ttttattata atcggaacag tgttttttag atcttttgat ctatttggtg 120
tttatcttgt ctcataaata catgtttaaa caatgtaaaa tataaaatat ccaattcata 180
aaaaattaac cattattaaa caatattcct atggaaaata atgattattt ttgataatct 240
gttttcacaa gacggaggtt caataaaaaa tcggtaaaag agcaactaca gaccaatatt 300
atggtgaatg aaacaacaaa gggggagatt tgt 333

Claims (2)

1. A method for preparing Bacillus licheniformis for synthesizing hydroxytyrosol comprises the following steps:
sequentially knocking out pyruvate kinase genes in Bacillus licheniformis DW2pykTyrosine/phenylalanine transaminase geneshisCAnd aldehyde dehydrogenase genedhaSAlcohol dehydrogenase geneadhAObtaining Bacillus licheniformis DH4tyrA fbr Gene integration into Bacillus licheniformis DH4ldhObtaining Bacillus licheniformis DH5, and transforming the gene in Bacillus licheniformis DH5,aroKand aroAreplacing the promoters with PbacA to obtain Bacillus licheniformis DH 7;
4-hydroxyphenylacetic acid-3-hydroxylase gene in Escherichia coli BL21(DE3) genomehpaBCAndkivD V461A orkivD V461I Co-expression is carried out, then the gene is transferred into DH7,kivD V461A the sequence is shown as SEQ ID NO.89,kivD V461I the sequence is shown as SEQ ID NO.90, whereinhpaBCThe promoter of (a) is: PbacA, P43 or Pbay;kivD V461A orkivD V461I The promoter of (a) is: pbaca, P43 or Pbay.
2. Use of a bacillus licheniformis according to claim 1 for the synthesis of hydroxytyrosol.
CN202210595170.3A 2022-05-28 2022-05-28 Bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application Active CN114891820B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210595170.3A CN114891820B (en) 2022-05-28 2022-05-28 Bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210595170.3A CN114891820B (en) 2022-05-28 2022-05-28 Bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application

Publications (2)

Publication Number Publication Date
CN114891820A true CN114891820A (en) 2022-08-12
CN114891820B CN114891820B (en) 2023-05-23

Family

ID=82726266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210595170.3A Active CN114891820B (en) 2022-05-28 2022-05-28 Bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application

Country Status (1)

Country Link
CN (1) CN114891820B (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232890A (en) * 1998-12-18 2000-08-29 Ajinomoto Co Inc Production of l-glutamic acid through fermentation process
JP2003104833A (en) * 2001-09-28 2003-04-09 Katakura Chikkarin Co Ltd Cosmetic
WO2009023731A1 (en) * 2007-08-13 2009-02-19 Sunrez Corporation Compositions for neutralization and decontamination of toxic chemical and biological agents
US20100047887A1 (en) * 2006-11-27 2010-02-25 Jihane Achkar Method for preparing hydroxytyrosol
US20130130340A1 (en) * 2011-11-07 2013-05-23 Yajun Yan Biosynthesis of caffeic acid and caffeic acid derivatives by recombinant microorganisms
CN106148262A (en) * 2016-07-01 2016-11-23 江南大学 Improve recombined bacillus subtilis and the construction method thereof of acetylglucosamine yield
CN107201331A (en) * 2016-03-18 2017-09-26 中国科学院天津工业生物技术研究所 Express hydroxytyrosol and the Escherichia coli of hydroxytyrosol glucoside and construction method and application
CN107723306A (en) * 2016-08-10 2018-02-23 天津大学 A kind of method of biological production hydroxytyrosol
CN107920518A (en) * 2015-07-02 2018-04-17 诺华丝国际股份有限公司 Antimicrobial compositions and application thereof
US20180206425A1 (en) * 2016-09-29 2018-07-26 Wuhan Polyploid Biotechnology Co., Ltd Polyploid rice photo-thermo-sensitive genetic male sterile line and breeding method thereof
US20190136269A1 (en) * 2017-08-04 2019-05-09 Jiangnan University Genetically Engineered Strain
CN110331173A (en) * 2019-07-29 2019-10-15 湖北大学 Application of the phenylpyruvate decarboxylase mutant M538A in biofermentation production benzyl carbinol
CN110438055A (en) * 2019-08-01 2019-11-12 湖北大学 A kind of whole-cell catalyst containing phenylpyruvate decarboxylase mutant and the application in production benzyl carbinol
CN110951797A (en) * 2019-12-05 2020-04-03 湖北大学 Application of streptococcus digestus glutamate dehydrogenase GdhA in improving yield of bacillus licheniformis poly gamma-glutamic acid
CN112481336A (en) * 2020-11-27 2021-03-12 上海交通大学 Method for biosynthesizing high value-added compound by utilizing lignocellulose derivative

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232890A (en) * 1998-12-18 2000-08-29 Ajinomoto Co Inc Production of l-glutamic acid through fermentation process
JP2003104833A (en) * 2001-09-28 2003-04-09 Katakura Chikkarin Co Ltd Cosmetic
US20100047887A1 (en) * 2006-11-27 2010-02-25 Jihane Achkar Method for preparing hydroxytyrosol
WO2009023731A1 (en) * 2007-08-13 2009-02-19 Sunrez Corporation Compositions for neutralization and decontamination of toxic chemical and biological agents
US20130130340A1 (en) * 2011-11-07 2013-05-23 Yajun Yan Biosynthesis of caffeic acid and caffeic acid derivatives by recombinant microorganisms
CN107920518A (en) * 2015-07-02 2018-04-17 诺华丝国际股份有限公司 Antimicrobial compositions and application thereof
CN107201331A (en) * 2016-03-18 2017-09-26 中国科学院天津工业生物技术研究所 Express hydroxytyrosol and the Escherichia coli of hydroxytyrosol glucoside and construction method and application
CN106148262A (en) * 2016-07-01 2016-11-23 江南大学 Improve recombined bacillus subtilis and the construction method thereof of acetylglucosamine yield
CN107723306A (en) * 2016-08-10 2018-02-23 天津大学 A kind of method of biological production hydroxytyrosol
US20180206425A1 (en) * 2016-09-29 2018-07-26 Wuhan Polyploid Biotechnology Co., Ltd Polyploid rice photo-thermo-sensitive genetic male sterile line and breeding method thereof
US20190136269A1 (en) * 2017-08-04 2019-05-09 Jiangnan University Genetically Engineered Strain
CN110331173A (en) * 2019-07-29 2019-10-15 湖北大学 Application of the phenylpyruvate decarboxylase mutant M538A in biofermentation production benzyl carbinol
CN110438055A (en) * 2019-08-01 2019-11-12 湖北大学 A kind of whole-cell catalyst containing phenylpyruvate decarboxylase mutant and the application in production benzyl carbinol
CN110951797A (en) * 2019-12-05 2020-04-03 湖北大学 Application of streptococcus digestus glutamate dehydrogenase GdhA in improving yield of bacillus licheniformis poly gamma-glutamic acid
CN112481336A (en) * 2020-11-27 2021-03-12 上海交通大学 Method for biosynthesizing high value-added compound by utilizing lignocellulose derivative

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YANFEN BAI等: "Production of salidroside in metabolically engineered Escherichia coli" *
刘春筱等: "代谢工程改造大肠杆菌合成羟基酪醇" *
张清等: "能量代谢工程促地衣芽胞杆菌DW2高效合成杆菌肽", 生物工程学报 *

Also Published As

Publication number Publication date
CN114891820B (en) 2023-05-23

Similar Documents

Publication Publication Date Title
CN106754846B (en) Fusobacterium nucleatum tyrosine phenol lyase mutant, gene, vector, engineering bacterium and application thereof
CN108504613B (en) L-homoserine production strain and construction method and application thereof
CN109777763B (en) Genetically engineered bacterium for producing L-theanine and construction and application thereof
CN112522223B (en) Genetically engineered bacterium for producing L-sarcosine and construction method and application thereof
CN109468291B (en) Carbonyl reductase EbSDR8 mutant and construction method and application thereof
CN112852790B (en) Plant nitrilase chimeric enzyme mutant, coding gene and application thereof
CN112746067B (en) Lysine decarboxylase mutants for preparing D-ornithine
WO2024140379A1 (en) Enzyme, strain for producing salidroside, and production method
CN111808829B (en) Gamma-glutamyl methylamine synthetase mutant and application thereof
KR20150121789A (en) Recombinant microorganism having enhanced butanediol producing ability and method for producing butanediol using the same
CN110872593B (en) Serine hydroxymethyl transferase mutant and application thereof
CN110331173B (en) Application of phenylpyruvic acid decarboxylase mutant M538A in production of phenethyl alcohol through biological fermentation
CN114806913B (en) High-yield succinic acid yeast engineering strain with mitochondria positioning reduction TCA pathway, construction method and application thereof
CN114891820B (en) Bacillus licheniformis for efficiently synthesizing hydroxytyrosol, construction method and application
CN111172143B (en) D-xylonic acid dehydratase and application thereof
CN114874960B (en) Bacillus licheniformis for producing tyrosol by fermentation method, construction method and application thereof
CN109897872B (en) Enzymatic preparation of (2S, 3S) -N-t-butoxycarbonyl-3-amino-1-chloro-2-hydroxy-4-phenylbutane
CN114410599B (en) Carbonyl reductase mutant and application thereof in preparation of rosuvastatin chiral intermediate
CN115058406B (en) P-nitrobenzyl esterase mutant, coding gene and application
CN115029329B (en) Carbonyl reductase mutant and application thereof in preparation of R-mandelic acid
CN114250237B (en) Tyrosine phenol lyase mutant, engineering bacterium and application thereof in catalytic synthesis of levodopa
KR102602060B1 (en) Recombinant microorganism for producing 2,3-butanediol with reduced by-product production and method for producing 2,3-butanediol using the same
CN113512571B (en) Method for synthesizing L-pipecolic acid by ornithine cyclodeaminase catalysis
CN108866017B (en) Method for preparing β -hydroxy- β -methylbutyric acid by enzyme method
CN117305255A (en) 4-hydroxyphenylacetic acid-3-monooxygenase mutant and application thereof in preparation of caffeic acid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant