CN114875321A - 一种先进核电机组蒸发器支承用钢板及其制造方法 - Google Patents

一种先进核电机组蒸发器支承用钢板及其制造方法 Download PDF

Info

Publication number
CN114875321A
CN114875321A CN202210487756.8A CN202210487756A CN114875321A CN 114875321 A CN114875321 A CN 114875321A CN 202210487756 A CN202210487756 A CN 202210487756A CN 114875321 A CN114875321 A CN 114875321A
Authority
CN
China
Prior art keywords
percent
less
equal
steel plate
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210487756.8A
Other languages
English (en)
Other versions
CN114875321B (zh
Inventor
王勇
王储
段江涛
孙殿东
欧阳鑫
胡昕明
李黎明
陈捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202210487756.8A priority Critical patent/CN114875321B/zh
Publication of CN114875321A publication Critical patent/CN114875321A/zh
Application granted granted Critical
Publication of CN114875321B publication Critical patent/CN114875321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明提供了一种先进核电机组蒸发器支承用钢板及其制造方法,该钢板的成分按重量百分比计如下:C 0.08%~0.12%、Si 0.10%~0.25%、Mn 0.25%~0.50%、P≤0.006%、S≤0.002%、Cr 2.10%~2.35%、Mo 1.00%~1.35%、Ni 0%~0.40%、Nb 0%~0.03%、V 0.05%~0.10%、Ti 0.03%~0.06%、Alt 0%~0.02%、Ca0.001%~0.004%、N 0.01%~0.03%、Sn≤0.001%、H≤0.0001%、O≤0.0020%、N 0.01%~0.03%,且J≤50,J=(Si+Mn)×(P+Sn)×104,余量为Fe及不可避免夹杂;制造方法,包括冶炼、连铸、加热、控轧控冷、热处理;应用本发明生产的钢板具有耐450℃焊后热处理高温强度和优异低温韧性,满足四代核电站蒸发器支承制造及使用要求。

Description

一种先进核电机组蒸发器支承用钢板及其制造方法
技术领域
本发明属于金属材料领域,尤其涉及一种先进核电机组蒸发器支承用钢板及其制造方法。
背景技术
核能作为世界上清洁高效的能源之一,已经被人类利用了70余年。进入二十一世纪以来,人类频繁的活动和全球经济的发展与能源短缺和极端气候的矛盾日益凸显,在这样全球一体化的背景下,核能的优势显得更加突出。因此和平发展更先进核能仍是时代所趋。目前,核能技术在经历了第一代试验性原型堆、第二代压水堆、第三代先进轻水堆的发展后,包含钠液冷却快堆、气冷快堆、铅液冷却快堆、超高温气冷堆、熔盐反应堆和超临界水冷堆等***先进核技术被全球核能专家提出,成为未来核电技术的发展方向。
***核能技术的主要特点是安全性更好、经济性更好、核废物量少,同时能有效防止核扩散。因此对核技术和核设备提出了非常高的要求,例如蒸发器支承长期处于450℃高温及热循环载荷作用下,对关键材料提出了非常高的技术指标要求。因此开发满足***先进核电站需求的关键核设备、关键核材料已成为当今世界核能大国迫切需要解决的核心难题。
本发明之前,发明《一种厚规格核电蒸汽发生器支承用钢及生产方法》(公开号CN201810446691.6),从公开的成分、生产方法和有益效果来看,该发明涉及的力学性能仅能保证200℃工作环境温度下的使用要求,对于更高使用温度无说明或保障,也间接说明该堆型不是最先进核电技术。
发明《一种核电站蒸发器承压边界部件用钢及其制造方法》(公开号CN201811165268.5),从公开的成分、生产方法和有益效果来看,该发明涉及的力学性能仅能保证350℃工作环境温度下的使用要求,对于更高使用温度无说明或保障,并且明确说明该发明是用于三代核电蒸发器用钢及制造的。
上述公开的发明专利主要涉及第三代核电设备所需的金属材料,相对于***核电技术所需的关键材料,其特点为出口温度在150℃~350℃、焊后热处理温度低(620℃以下)等低参数要求。本发明针对***核电蒸汽发生器支承材料需要高的内部纯净度、低的布氏硬度值,同时要求700℃×10h焊后热处理后具有优异的450℃高温强韧性和低温韧性特性,发明满足更高参数的核电蒸汽发生器支承材料。
发明内容
本发明的目的在于克服上述问题和不足而提供一种耐450℃焊后热处理高温强度、低温韧性及钢质纯净优异的先进核电机组蒸发器支承用钢板及其制造方法,满足四代核电站蒸发器支承制造及使用要求。
本发明目的是这样实现的:
本发明旨在采用全新的化学成分设计和适宜的生产工艺,在中低C、Si、Mn成分基础上,复合添加Cr、Mo、Ni、Nb、V、Ti及N合金元素,严格控制有害元素P、S、Sn及气体O、H含量,配以独特的冶炼、轧制及热处理生产工艺,开发满足***核电站关键设备所需的高性核能关键材料。
一种先进核电机组蒸发器支承用钢板,该钢板的成分按重量百分比计如下:C0.08%~0.12%、Si 0.10%~0.25%、Mn 0.25%~0.50%、P≤0.006%、S≤0.002%、Cr2.10%~2.35%、Mo 1.00%~1.35%、Ni 0%~0.40%、Nb 0%~0.03%、V 0.05%~0.10%、Ti 0.03%~0.06%、Alt 0%~0.02%、Ca 0.001%~0.004%、N 0.01%~0.03%、Sn≤0.001%、H≤0.0001%、O≤0.0020%、N 0.01%~0.03%,且J≤50,J=(Si+Mn)×(P+Sn)×104,余量为Fe及不可避免夹杂。
所述钢板显微组织为回火贝氏体组织。
所述钢板厚度为30~60mm。
所述钢板370MPa≤Rel≤387MPa、540MPa≤Rm≤557MPa、450℃的454MPa≤Rm≤468MPa;700℃×10h焊后热处理态钢板450℃的425MPa≤Rm(450℃)≤438MPa、KV2(-20℃)≥350J、HBW≤175。
本发明成分设计理由如下:
C本发明中主要固溶态的C和化合态的C保证钢的热处理和焊后热处理态的高温强度抗拉强度,也是提高疲劳强度的主要元素,但过多的碳含量对钢的韧性和焊接性能不利,因此本发明将C含量范围设定为0.08%~0.12%。
Si是炼钢过程中良好的还原剂和脱氧剂,特别是与Alt联合使用,能显著增加Alt的脱氧能力。Si在高温下表面形成一层致密的、抗氧化SiO2保护膜,但在350~550℃回火脆化温度范围,过高的硅含量将导致钢的回火脆化敏感性升高,所以本发明不宜过多添加硅元素,因此本发明将Si含量范围设定为0.10%~0.25%。
Mn本发明中由于Si、Alt等脱氧剂的添加量较少,Mn的添加弥补了脱氧不足的效果,另外Mn作为固溶强化能力强的合金元素,提高基体强度,但Mn是影响回火脆性和断裂韧性的主要因素,本发明需要严格控制,因此本发明将Mn含量范围设定为0.25%~0.50%。
S、P作为钢中的有害元素,为保证钢质的纯净度、J系数和断裂韧度等综合指标必须严格控制,因此限定为S≤0.002%,P≤0.006%。
Cr作为强碳化形物成元素,它与钢中的Fe、Mn、Mo组合生成稳定的M23C6结构的合金碳化物,保证长时焊后热处理态的高温性能,同时发挥Cr的高温抗氧化和耐腐蚀作用,本发明将Cr含量范围设定在2.10%~2.35%。
Mo提高钢的淬透性,保证钢的基体强度,同时Mo是强碳化物形成元素,与碳元素形成稳定的Mo2C热强化相,起到高温强化作用,因此为保证蒸发器支承在450℃工作时的组织、性能稳定性,本发明将Mo含量范围设定在1.00%~1.35%。
Ni在本发明中Ni元素主要提高钢的塑韧性,但Ni含量过高会降低材料的抗辐照作用,因此本发明将Ni含量范围设定在≤0.40%。
Nb在本发明中起细化晶粒的作用,通过晶粒细化提高钢强韧性。因此Nb含量限定在≤0.03%。
V在本发明中加入量较多,主要作用之一是在长时间高温焊后回火处理过程中与C、N元素形成的碳、氮复合化物非常稳定,保证了高温焊后热处理态的高温强度。另外,V合金的添加有效抑制辐照诱起的Cr、Mn元素在晶界偏析,因此V含量限定在0.05%~0.10%。
Ti是强铁素体形成元素之一,强烈地提高钢的A1和A3温度。钛在钢中能提高塑性和韧性。由于钛固定了碳和氮并形成碳、氮化钛,提高了钢的强度。经正火热处理后使晶粒细化,析出形成碳化物可使钢的塑性和冲击韧性得到显著改善,因此Ti含量限定在0.03%~0.06%。
Alt在本发明中Alt元素作为参与或少量添加元素体现,发挥脱氧剂作用,不添加或少量Alt主要是保证钢质的纯净度,防止生成铝的氧化物影响疲劳性能,因此Alt含量限定在≤0.02%。
Ca本发明夹杂物通过Ca的球化处理,MnS夹杂物变成CaS或含CaS的复合夹杂,使Al2O3类夹杂成为铝酸钙型氧化物夹杂,这类夹杂物为球形,呈弥散分布,在钢的轧制温度下基本不变形,轧制后仍为球形。因此Ca处理可以使钢的氢致开裂敏感性下降。但Ca加入过多,形成Ca(O,S)尺寸过大,脆性也增大,可成为断裂裂纹起始点,降低钢的低温韧性、延伸性及焊接性,同时降低钢质纯净度,因此本发明将Ca含量范围设定为0.001%~0.004%。
N与Nb、V等元素形成氮化物,在晶界析出,钉扎晶界细化晶粒,起到提高晶界高温强度作用,因此N含量限定在0.01%~0.03%。
H、O作为有害气体存在会引起诸多缺陷,如H引起钢中产生“白点”或“氢脆”等缺陷,严重影响材料的使用寿命和设备安全;O与Al、Si元素形成脆性非金属氧化物,影响钢质纯净度和疲劳极限性能,必须严格加以控制,因此O含量限定在≤0.0020%,H含量限定在≤0.0001%。
Sn是钢中的残余元素,不仅影响钢质纯净度,而且作为影响回火脆性J系数的重要元素,必须严格控制,因此Sn含量限定在≤0.001%。
本发明技术方案之二是提供一种先进核电机组蒸发器支承用钢板的制造方法,包括冶炼、连铸、加热、控轧控冷、热处理;
(1)冶炼:包括转炉冶炼、LF炉精炼、RH精炼;
转炉冶炼过程中脱磷和脱碳通过转炉分开进行,其中脱磷吹氧控制在7~10min,脱碳吹氧控制在8~12min;
优选,钢水冶炼在转炉中进行,采用优质废钢和铁水作为原料,铁水含量控制在70%~80%。
LF精炼过程中进行深脱硫处理,同时向钢中喂CaSi线进行钙处理,喂丝速度为200~350m/min,喂丝深度在渣层以下1.0~2.0m处,该处理改变非金属夹杂物的形态,形成细小的CaS或铝酸钙球状夹杂物质点,增加钢坯等轴率的同时净化钢质,提高纯净度,改善钢的抗氢性能,生成的渣层厚度60~90mm,确保夹杂物充分上浮;
RH精炼过程中完成炉内脱气,净循环时间10~15min,开浇前镇静时间3~5min。
(2)连铸:破真空后采用连铸机浇铸,过热度20~30℃,浇注过程要稳定恒速;优选,铸坯下线进堆垛缓冷,堆垛缓冷时间24~48h,400℃以下解垛,防止因急冷导致铸坯内部产生裂纹。
(4)加热工艺:通过控制钢坯的加热工艺,确保合金元素充分固溶,并有效抑制原始奥氏体晶粒长大,钢锭加热温度控制在1180~1250℃,加热6~8h,均热时间0.5~1.0h。
(5)控轧控冷工艺:再结晶开轧温度1050~1150℃,再结晶区单道次变形率10%~14%,总变形率≥55%,中间坯厚度2.0~4.0倍成品钢板厚度;未再结晶开轧温度910~940℃,未再结晶终轧温度830~850℃,未再结晶区轧制不少于6道次,累计变形率≥50%。轧后ACC控冷工艺,开冷温度为820~850℃,返红温度为500~600℃,冷却速度15~20℃/s。过钢中添加的Nb、V、Ti微合金元素与C、N元素有机结合最大限度的发挥其弥散强化及细化晶粒作用,细化轧态组织,成品厚度30~60mm。
(6)热处理工序:本发明设计正火工艺温度为930~960℃,保温时间0.5~1.0min/mm,通过高温正火获得较大过冷度提高形核率起到细晶强化作用,同时Mn、Cr、Mo、Ni等合金元素在此温度下充分固溶于基体组织中起到固溶强化作用。另外考虑蒸发器支承的优异加工性能和使用性能,根据设计许用应力推算材料的热处理态抗拉强度上限小于560MPa,同时还要保证450℃下的焊后热处理态抗拉强度不小于420MPa,需要通过回火热处理进行强塑性和硬度性能调控,本发明设计回火温度710~730℃,保温时间60min+2.0~4.0min/mm×T,T为钢板厚度,单位为mm,该工艺下回火,钢中第二相析出弥补了强度衰减同时获得100%的回火贝氏体组织,该组织结构经过700℃保温10h的焊后热处理后仍保留贝氏体回火形态,该组织结构保证了焊后热处理态的综合力学性能,特别是高温强度和低温冲击性能。
本发明的有益效果在于:
(1)在中低C、Si、Mn成分基础上,严格控制有害元素P、S、Sn及气体O、H含量,控制高温回火脆化系数在50以下,通过复合添加Cr、Mo、Ni、Nb、V、Ti及N合金元素结合制造工艺获得100%B回火态组织,保证了蒸发器支承钢板的综合性能要求。
(2)通过特有的生产工艺获得的先进核电机组蒸发器支承钢板其力学性能表现为供货态的常温370MPa≤Rel≤387MPa、540MPa≤Rm≤557MPa、450℃的450MPa≤Rm≤468MPa、(A+B+C+D)细系非金属夹杂物≤1.0级、(A+B+C+D)粗系非金属夹杂物为0级;700℃×10h焊后热处理态钢板的420MPa≤Rm(450℃)≤440MPa、KV2(-20℃)≥350J、HBW≤175;获得了厚度规格30~60mm的蒸发器支承钢板,无论在优异的综合性能和尺寸规格上均填补该类产品空白。
具体实施方式
下面通过实施例对本发明作进一步的说明。
本发明实施例根据技术方案的组分配比,进行冶炼、连铸、加热、控轧控冷、热处理;
(1)连铸:破真空后采用连铸机浇铸,过热度20~30℃;
(2)加热:连铸坯加热温度为1180~1250℃,加热总时间6~8h,其中连铸坯均热时间0.5~1.0h;
(3)控轧控冷:再结晶控轧开始温度1050~1150℃,再结晶区单道次平均变形率10%~14%,总变形率≥55%,中间坯厚度为2.0~4.0倍成品钢板厚度;未再结晶区开轧温度910~940℃,未再结晶区终轧温度830~850℃,未再结晶区轧制不少于6道次,累计变形率≥50%;
轧后ACC控冷工艺,开冷温度为820~850℃,返红温度为500~600℃,冷却速度15~20℃/s;
(4)热处理:正火+回火工艺;
正火工艺:正火温度为930~960℃,保温时间0.5~1.0min/mm,;回火温度710~730℃,保温时间60min+2.0~4.0min/mm×T,T为钢板厚度,单位为mm。
进一步;所述步骤(1)连铸后,铸坯下线进堆垛缓冷,堆垛缓冷时间24~48h,400℃以下解垛。
进一步;所述冶炼工艺包括转炉冶炼、LF炉精炼、RH精炼;
转炉冶炼过程中脱磷和脱碳通过转炉分开进行,其中脱磷吹氧控制在7~10min,脱碳吹氧控制在8~12min;
LF精炼过程中进行深脱硫处理,同时向钢中喂CaSi线进行钙处理,喂丝速度为200~350m/min,喂丝深度在渣层以下1~2m处,生成的渣层厚度60~90mm;
RH精炼过程中完成脱气,净循环时间10~15min,开浇前镇静时间3~5min。
进一步;转炉冶炼过程中采用废钢和铁水作为原料,铁水含量控制在70%~80%。
本发明实施例钢的成分见表1。本发明实施例钢冶炼主要工艺参数见表2。本发明实施例钢连铸、加热主要工艺参数见表3。本发明实施例钢控轧主要工艺参数见表4。本发明实施例钢控冷、热处理主要工艺参数见表5。本发明实施例钢的性能见表6。本发明实施例钢非金属夹杂物评价结果见表7。
表1本发明实施例钢的成分(wt%)
Figure BDA0003629889330000071
表2本发明实施例钢冶炼主要工艺参数
Figure BDA0003629889330000081
表3本发明实施例钢连铸、加热主要工艺参数
Figure BDA0003629889330000082
表4本发明实施例钢控轧主要工艺参数
Figure BDA0003629889330000091
注:T为成品钢板厚度。
表5本发明实施例钢控冷、热处理主要工艺参数
Figure BDA0003629889330000092
表6本发明实施例钢性能
Figure BDA0003629889330000101
注:1、模拟焊后热处理工艺(模焊):温度700℃,时间10h,400℃以上升降温≤55℃/h。
表7本发明实施例钢非金属夹杂物评价结果
Figure BDA0003629889330000102
根据以上结果可以得出,本发明提供的四代核电站蒸发器支承用钢板内部纯净度高,P、S有害元素含量控制极低,抗回火脆化系数J<50;供货态的常温370MPa≤Rel≤387MPa、541MPa≤Rm≤557MPa、450℃的450MPa≤Rm≤468MPa、(A+B+C+D)细系夹杂≤1.0、(A+B+C+D)粗系夹杂为0,大尺寸D类夹杂直径≤25μm。700℃×10h焊后热处理态450℃的420MPa≤Rm(450℃)≤440MPa、KV2(-20℃)≥350J、HBW≤175。
为了表述本发明,在上述中通过实施例对本发明恰当且充分地进行了说明,以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内,本发明的专利保护范围应由权利要求限定。

Claims (8)

1.一种先进核电机组蒸发器支承用钢板,其特征在于,该钢板的成分按重量百分比计如下:C 0.08%~0.12%、Si 0.10%~0.25%、Mn 0.25%~0.50%、P≤0.006%、S≤0.002%、Cr 2.10%~2.35%、Mo 1.00%~1.35%、Ni≤0.40%、Nb≤0.03%、V 0.05%~0.10%、Ti 0.03%~0.06%、Alt≤0.02%、Ca 0.001%~0.004%、N 0.01%~0.03%、Sn≤0.001%、H≤0.0001%、O≤0.0020%、N 0.01%~0.03%,且J≤50,J=(Si+Mn)×(P+Sn)×104,余量为Fe及不可避免夹杂。
2.根据权利要求1所述的一种先进核电机组蒸发器支承用钢板,其特征在于,所述钢板显微组织为回火贝氏体组织。
3.根据权利要求1所述的一种先进核电机组蒸发器支承用钢板,其特征在于,所述钢板厚度为30~60mm。
4.根据权利要求1所述的一种先进核电机组蒸发器支承用钢板,其特征在于,所述钢板370MPa≤Rel≤387MPa、540MPa≤Rm≤557MPa、450℃下454MPa≤Rm≤468MPa;700℃×10h焊后热处理态钢板450℃下425MPa≤Rm≤438Mpa、-20℃KV2≥350J、HBW≤175。
5.一种权利要求1-4所述的一种先进核电机组蒸发器支承用钢板的制造方法,其特征在于,包括冶炼、连铸、加热、控轧控冷、热处理;
(1)连铸:破真空后采用连铸机浇铸,过热度20~30℃;
(2)加热:连铸坯加热温度为1180~1250℃,加热总时间6~8h,其中连铸坯均热时间0.5~1.0h;
(3)控轧控冷:再结晶控轧开始温度1050~1150℃,再结晶区单道次平均变形率10%~14%,总变形率≥55%,中间坯厚度为2.0~4.0倍成品钢板厚度;未再结晶区开轧温度910~940℃,未再结晶区终轧温度830~850℃,未再结晶区轧制不少于6道次,累计变形率≥50%;
轧后ACC控冷工艺,开冷温度为820~850℃,返红温度为500~600℃,冷却速度15~20℃/s;
(4)热处理:正火+回火工艺;
正火工艺:正火温度为930~960℃,保温时间0.5~1.0min/mm,;回火温度710~730℃,保温时间60min+2.0~4.0min/mm×T,T为钢板厚度,单位为mm。
6.根据权利要求5所述的一种先进核电机组蒸发器支承用钢板的制造方法,其特征在于:所述步骤(1)连铸后,铸坯下线进堆垛缓冷,堆垛缓冷时间24~48h,400℃以下解垛。
7.根据权利要求5所述的一种先进核电机组蒸发器支承用钢板的制造方法,其特征在于:所述冶炼工艺包括转炉冶炼、LF炉精炼、RH精炼;
转炉冶炼过程中脱磷和脱碳通过转炉分开进行,其中脱磷吹氧控制在7~10min,脱碳吹氧控制在8~12min;
LF精炼过程中进行深脱硫处理,同时向钢中喂CaSi线进行钙处理,喂丝速度为200~350m/min,喂丝深度在渣层以下1~2m处,生成的还原渣的下渣渣层厚度60~90mm;
RH精炼过程中完成脱气,净循环时间10~15min,开浇前镇静时间3~5min。
8.根据权利要求7所述的一种先进核电机组蒸发器支承用钢板的制造方法,其特征在于:转炉冶炼过程中采用废钢和铁水作为原料,铁水含量控制在70%~80%。
CN202210487756.8A 2022-05-06 2022-05-06 一种先进核电机组蒸发器支承用钢板及其制造方法 Active CN114875321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210487756.8A CN114875321B (zh) 2022-05-06 2022-05-06 一种先进核电机组蒸发器支承用钢板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210487756.8A CN114875321B (zh) 2022-05-06 2022-05-06 一种先进核电机组蒸发器支承用钢板及其制造方法

Publications (2)

Publication Number Publication Date
CN114875321A true CN114875321A (zh) 2022-08-09
CN114875321B CN114875321B (zh) 2023-01-17

Family

ID=82673224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210487756.8A Active CN114875321B (zh) 2022-05-06 2022-05-06 一种先进核电机组蒸发器支承用钢板及其制造方法

Country Status (1)

Country Link
CN (1) CN114875321B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952999A (zh) * 2011-08-19 2013-03-06 鞍钢股份有限公司 一种核电站低压加热器用钢及其制造方法
JP2013147733A (ja) * 2011-12-21 2013-08-01 Jfe Steel Corp 強度−伸びバランスに優れた高張力鋼板およびその製造方法
CN103725967A (zh) * 2013-12-26 2014-04-16 南阳汉冶特钢有限公司 120mm规格以下SCMV4-2压力容器钢厚板及生产方法
CN108893681A (zh) * 2018-06-26 2018-11-27 武汉钢铁有限公司 高强高韧性压力容器钢板及其制备方法
CN109440011A (zh) * 2018-12-27 2019-03-08 攀钢集团江油长城特殊钢有限公司 一种真空感应炉冶炼低合金含氮焊丝钢及其冶炼方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102952999A (zh) * 2011-08-19 2013-03-06 鞍钢股份有限公司 一种核电站低压加热器用钢及其制造方法
JP2013147733A (ja) * 2011-12-21 2013-08-01 Jfe Steel Corp 強度−伸びバランスに優れた高張力鋼板およびその製造方法
CN103725967A (zh) * 2013-12-26 2014-04-16 南阳汉冶特钢有限公司 120mm规格以下SCMV4-2压力容器钢厚板及生产方法
CN108893681A (zh) * 2018-06-26 2018-11-27 武汉钢铁有限公司 高强高韧性压力容器钢板及其制备方法
CN109440011A (zh) * 2018-12-27 2019-03-08 攀钢集团江油长城特殊钢有限公司 一种真空感应炉冶炼低合金含氮焊丝钢及其冶炼方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐代明等: "《金属材料学》", 30 June 2014, 西南交通大学出版社 *

Also Published As

Publication number Publication date
CN114875321B (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN114959460B (zh) 一种低屈强比易焊接耐候桥梁钢及其制造方法
CN106319380A (zh) 一种低压缩比690MPa级特厚钢板及其生产方法
CN109652733B (zh) 一种690MPa级特厚钢板及其制造方法
CN102181807B (zh) 一种-50℃核电承压设备用钢及生产方法
CN112226687B (zh) 一种低轧制压缩比齿条钢板及其制造方法
CN112251670A (zh) 一种延伸性能良好的690MPa级钢板及其制造方法
CN111850399A (zh) 具有良好耐磨性耐蚀塑料模具钢及其制备方法
WO2020237976A1 (zh) 一种超细针状组织结构钢及其生产方法
CN114908292B (zh) 一种先进核电机组蒸发器用钢板及其制造方法
CN114959459B (zh) 一种先进核电机组堆芯壳筒体用钢板及其制造方法
CN114875321B (zh) 一种先进核电机组蒸发器支承用钢板及其制造方法
CN112593155B (zh) 一种高强度建筑结构用抗震耐火耐候钢板及制备方法
CN115094303B (zh) 一种先进核电机组过热器用钢板及其制造方法
CN114892085B (zh) 一种先进核电机组定位用宽厚钢板及其制造方法
CN115786806B (zh) 一种具有良好低温韧性的高强度低碳当量特厚钢板及其制造方法
CN116219279B (zh) 一种高强度高韧性核反应堆安全壳用钢及其制造方法
CN116121645B (zh) 一种特厚规格高强度核反应堆安全壳用钢及其制造方法
CN116240457B (zh) 一种超厚规格高强度核反应堆安全壳用钢及其制造方法
CN116695028B (zh) 一种高强韧高耐蚀性核电奥氏体不锈钢及其制造方法
JP2001158936A (ja) 耐水素誘起割れ性に優れた薄肉鋼板およびその製造方法
CN116815046A (zh) 一种抗氢致开裂性能优异的fh36海工钢及其制造方法
CN117987734A (zh) 一种超低碳600MPa级高强韧水电钢板及其制备方法
CN118256817A (zh) 一种1000MPa级抗应力腐蚀承压设备用钢板及其制备方法
CN116875885A (zh) 一种590MPa级抗氢致开裂石油套管用卷板及制造方法
CN116732430A (zh) 一种性能均匀的风塔门框用耐低温易焊接特厚钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant