CN114868006A - 用于液滴操控的方法和*** - Google Patents

用于液滴操控的方法和*** Download PDF

Info

Publication number
CN114868006A
CN114868006A CN202080075566.4A CN202080075566A CN114868006A CN 114868006 A CN114868006 A CN 114868006A CN 202080075566 A CN202080075566 A CN 202080075566A CN 114868006 A CN114868006 A CN 114868006A
Authority
CN
China
Prior art keywords
array
droplet
droplets
electrodes
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080075566.4A
Other languages
English (en)
Inventor
利亚姆·马斯特斯
尤德彦·乌玛帕西
斯珀蒂·阿奇
马加利·苏铭伦
威廉·兰福德
里奥尼德·克拉斯诺巴耶夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volta Laboratories Inc
Original Assignee
Volta Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volta Laboratories Inc filed Critical Volta Laboratories Inc
Publication of CN114868006A publication Critical patent/CN114868006A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0268Drop counters; Drop formers using pulse dispensing or spraying, eg. inkjet type, piezo actuated ejection of droplets from capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/142Preventing evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0454Moving fluids with specific forces or mechanical means specific forces radiation pressure, optical tweezers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • G01N2015/0026Investigating dispersion of liquids in gas, e.g. fog
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/20Detection of antibodies in sample from host which are directed against antigens from microorganisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Fluid Mechanics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本文描述了用于处理至少一个生物样品的***和方法。该***和方法可以使用至少一个液滴处理该生物样品或多个该生物样品。该液滴或多个该液滴可以使用本文所述的***和方法来操控。

Description

用于液滴操控的方法和***
交叉引用
本申请要求2019年8月27日提交的美国临时申请号62/892,495、2020年2月21日提交的美国临时申请号62/980,013、2020年4月3日提交的美国临时申请号63/005,097以及2020年4月13日提交的美国临时申请号63/009,376的权益,它们通过引用以其全文并入本文。
背景技术
生物样品可以经处理以用于各种应用。例如,脱氧核糖核酸(DNA)分子或核糖核酸(RNA)分子可以经处理(例如,测序)以鉴定遗传变体,其可以用于鉴定疾病,诸如癌症。此类生物样品可以在分区(诸如液滴)中进行处理。DNA或RNA的序列可以通过序列鉴定(诸如核酸测序)来确定。
含有生物样品的液滴可以通过使用电润湿来操控,该电润湿可以采用来自电极的电场以移动邻近表面的液滴。
发明内容
在一方面,本公开提供了一种用于处理多个生物样品的方法,所述方法包括(i)邻近阵列接收包含所述多个生物样品的多个液滴,和(ii)以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述多个生物样品,从而处理所述多个生物样品。
在另一方面,本公开提供了一种用于定制用于处理多个生物样品的阵列***的方法,所述方法包括(i)从用户接收针对配置阵列***的请求,所述请求包括一个或多个规范,和(ii)使用所述一个或多个规范来配置所述阵列***以产生所述配置阵列***,所述配置阵列***被配置用于接收包含所述多个生物样品的多个液滴,并且以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV)处理所述多个液滴或其衍生物。
在另一方面,本公开提供了一种用于处理生物样品的方法,所述方法包括邻近开放阵列提供包含所述生物样品的液滴,和使用所述开放阵列处理所述滴液或其衍生物中的所述生物样品,其中在处理期间,所述滴液的位置在至少10秒的时间段内变化至多5%。
在另一方面,本公开提供了一种用于处理生物样品的方法,所述方法包括(i)邻近阵列接收包含所述生物样品的液滴,和(ii)以所述液滴之间小于5%的串扰,以所述液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述生物样品。
在一些实施方案中,所述至少一个参数包括选自以下各项的一个或多个成员:液滴大小、液滴体积、液滴位置、液滴速度、液滴润湿、液滴温度、液滴pH、液滴中的珠、液滴中细胞的数量、液滴颜色、化学材料的浓度、生物物质的浓度或其任何组合。在一些实施方案中,所述阵列的配置选自:具有电极阵列的开放配置、没有电极阵列的开放配置、具有非共面电极组的开放配置、一个板上有电极阵列且另一个板上没有电极的两个板、一个板上有非共面电极组且另一个板上没有电极的两个板、一个板上有电极阵列且另一个板上有单个电极的两个板、一个板上有非共面电极组且另一个板上有单个电极的两个板、两个板上均有电极阵列的两个板、两个板上均有非共面电极组的两个板或其任何组合。
在一些实施方案中,所述多个生物样品通过将力场与电场组合进行处理。在一些实施方案中,所述力场通过在阵列上的流体流动、振动或其组合来生成。在一些实施方案中,所述力场选自声波、振动、气压、光场、磁场、重力场、离心力、水动力、电泳力、介电润湿力和毛细管力。在一些实施方案中,所述多个生物样品用不超过四次移液操作进行处理。在一些实施方案中,所述多个生物样品用不超过三次移液操作进行处理。在一些实施方案中,所述多个生物样品用不超过两次移液操作进行处理。在一些实施方案中,所述多个生物样品用不超过一次移液操作进行处理。在一些实施方案中,所述阵列包括多个传感器,并且其中在所述处理所述多个生物样品之前、期间或之后,所述多个传感器测量来自所述多个液滴或其衍生物的信号。在一些实施方案中,所述多个传感器包括阻抗传感器、pH传感器、温度传感器、光学传感器、相机、电流测量传感器、用于生物分子检测的电子传感器、x射线传感器、作为传感器的生物材料、作为传感器的细胞、作为传感器的组织、作为传感器的化学材料、电化学传感器、电化学发光传感器、压电传感器、作为传感器的核酸、作为传感器的蛋白质、纳米颗粒传感器、小分子传感器或其任何组合。
在一些实施方案中,所述多个传感器还包括在处理所述多个生物样品时调节所述阵列的一个或多个参数的反馈回路。在一些实施方案中,所述多个传感器和所述反馈回路用于自主发现、优化反应条件或其组合。在一些实施方案中,所述多个传感器的至少一个传感器测量位置、液滴体积、生物材料的存在、生物材料的活性、液滴速度、运动学、液滴半径、液滴形状、液滴高度、颜色、表面积、接触角、反应状态、发射度、吸光度或其任何组合。在一些实施方案中,所述多个传感器的至少一个传感器的测量用于进一步处理所述多个液滴、所述多个生物样品或其组合的至少一个液滴、生物样品或其组合。
在一些实施方案中,所述进一步处理包括邻近所述阵列或在所述阵列上或其组合实时给予致动输入、输出或其组合的命令。在一些实施方案中,所述命令提供校正所述阵列的误差的指令。在一些实施方案中,所述误差是位置、液滴体积、生物材料的存在、生物材料的活性、液滴速度、液滴动力学、液滴半径、液滴形状、液滴高度、颜色、表面积、接触角、反应状态、发射度、吸光度或其任何组合的误差。在一些实施方案中,所述阵列包括多个元件,其包括:加热器、冷却器、磁场发生器、电穿孔单元、光源、辐射源、核酸测序仪、生物蛋白通道、固态纳米孔、蛋白测序仪、声学换能器、微电子机械***(MEMS)换能器、作为液体分配器的毛细管、用于使用重力分配或转移液体的孔、在孔中使用电场分配或转移液体的电极、用于光学检查的孔、液体通过膜相互作用的孔或其任何组合。
在一些实施方案中,所述阵列与液体处理单元对接,所述液体处理单元将所述多个液滴导向至邻近所述阵列。在一些实施方案中,所述液体处理单元选自机器人液体处理***、声学液体分配器、注射器泵、喷墨喷嘴、微流体装置、针、基于隔膜的泵分配器、压电泵或其任何组合。在一些实施方案中,所述阵列耦合至至少一个试剂或样品储存单元或其组合。在一些实施方案中,所述阵列还包括至少一个多孔板、管、瓶、储器、喷墨筒、板、皮氏培养皿或其任何组合。在一些实施方案中,所述管选自Eppendorf管或falcon管。在一些实施方案中,所述至少一个多孔板的多个孔是导热的、导电的或其组合。在一些实施方案中,所述至少一个试剂或样品储存单元或其组合的试剂或样品通过电场、磁场、声波、热、振动或其组合在所述孔中或在所述孔外操控。
在一些实施方案中,所述阵列包括涂层。在一些实施方案中,所述涂层是疏水性涂层。在一些实施方案中,所述涂层是亲水性涂层。在一些实施方案中,所述涂层包括疏水性涂层和亲水性涂层两者。在一些实施方案中,所述涂层通过洗涤清洁。在一些实施方案中,所述涂层减少蒸发。在一些实施方案中,所述蒸发减少了50%至100%。在一些实施方案中,所述涂层减少生物污垢。在一些实施方案中,所述生物污垢减少了10%至100%。在一些实施方案中,所述涂层抵抗生物污垢。在一些实施方案中,所述涂层是抗生物污垢的。在一些实施方案中,所述CV小于15%。在一些实施方案中,所述CV小于10%。在一些实施方案中,所述CV小于5%。在一些实施方案中,所述CV小于1%。
在一些实施方案中,所述处理所述多个生物样品包括核酸、蛋白质、细胞、盐、缓冲液或酶,其中所述液滴包含用于以下的一种或多种试剂:核酸分离、细胞分离、蛋白质分离、核酸纯化、肽纯化、生物聚合物的分离或纯化、免疫沉淀、体外诊断、外泌体分离、细胞活化、细胞扩增、核酸合成、蛋白质合成、肽合成、酶合成、化学合成、细胞培养、细胞裂解、合成细胞的产生、核酸扩增、核酸操控、细胞操控、核酸检测、蛋白质检测、基因编辑或特定生物分子的分离,并且其中所述液滴通过所述试剂操控以进行核酸分离、细胞分离、蛋白质分离、核酸纯化、肽纯化、生物聚合物的分离或纯化、免疫沉淀、体外诊断、外泌体分离、细胞活化、细胞扩增、核酸合成、蛋白质合成、肽合成、酶合成、化学合成、细胞培养、细胞裂解、合成细胞的产生、核酸扩增、核酸操控、细胞操控、核酸检测、蛋白质检测、基因编辑或特定生物分子的分离。
在一些实施方案中,所述处理所述多个生物样品包括核酸测序。在一些实施方案中,所述核酸测序包括聚合酶链反应(PCR)。在一些实施方案中,所述PCR包括高度多重PCR、定量PCR、液滴数字PCR、逆转录酶PCR或其任何组合。在一些实施方案中,所述处理所述多个生物样品包括用于基因组测序的样品制备。在一些实施方案中,所述处理所述多个生物样品包括基因的组合组装。在一些实施方案中,所述基因的组合组装包括Gibson组装、限制性酶克隆、gBlocks片段组装(IDT)、BioBricks组装、NEBuilder HiFi DNA组装、Golden Gate组装、定点诱变、序列和连接酶非依赖性克隆(SLIC)、环状聚合酶延伸克隆(CPEC)和无缝连接克隆提取物(SLiCE)、拓扑异构酶介导的连接、同源重组、Gateway克隆、GeneArt基因合成或其任何组合。
在一些实施方案中,所述处理所述多个生物样品包括提取核糖体、线粒体、内质网、高尔基体、溶酶体、过氧化物酶体、中心粒或其任何组合。在一些实施方案中,核糖体、线粒体、内质网、高尔基体、溶酶体、过氧化物酶体、中心粒或其任何组合保持完整。在一些实施方案中,所述处理所述多个生物样品包括无细胞蛋白质表达。在一些实施方案中,所述处理所述多个生物样品包括用于质粒DNA提取的制备。在一些实施方案中,所述处理所述多个生物样品包括从细胞提取核酸。在一些实施方案中,所述处理还包括提取长核酸链,其中所述长核酸链保持完整。
在一些实施方案中,所述长核酸链是至少10个碱基对。在一些实施方案中,所述长核酸链是至少100个碱基对。在一些实施方案中,所述长核酸链是至少1000个碱基对。在一些实施方案中,所述长核酸链是至少10,000个碱基对。在一些实施方案中,所述长核酸链是至少100,000个碱基对。在一些实施方案中,所述长核酸链是至少1,000,000个碱基对。在一些实施方案中,所述处理所述多个生物样品包括用于质谱的样品制备。在一些实施方案中,所述处理所述多个生物样品包括用于核酸测序的样品提取和文库制备。在一些实施方案中,所述核酸测序选自合成测序、焦磷酸测序、杂交测序、连接测序、通过检测DNA聚合期间释放的离子进行的测序、Sanger测序和单分子测序。在一些实施方案中,所述单分子测序是纳米孔测序。在一些实施方案中,所述单分子测序是单分子实时(SMRT)测序。
在一些实施方案中,所述处理所述多个生物样品包括使用寡核苷酸合成、酶合成或其任何组合的DNA合成。在一些实施方案中,所述处理所述多个生物样品包括DNA数据存储、随机存取存储的DNA、通过DNA测序的DNA数据检索或其任何组合。在一些实施方案中,所述处理所述多个生物样品包括直接整合到测序仪中的核酸提取和样品制备。在一些实施方案中,所述处理所述多个生物样品包括直接整合到质谱仪中的蛋白质提取和样品制备。在一些实施方案中,所述质谱仪还包括基质辅助的激光解吸电离质谱仪。在一些实施方案中,所述阵列将化学或生物样品直接电离到质谱仪的入口中、转移到质谱仪的入口中或其组合。在一些实施方案中,所述电离是电喷雾。在一些实施方案中,所述转移是移液。
在一些实施方案中,所述处理所述多个生物样品包括CRISPR基因组编辑。在一些实施方案中,所述CRISPR基因组编辑包括Cas9蛋白、crRNA、tracrRNA或其任何组合。在一些实施方案中,在CRISPR基因组编辑过程期间使用修复DNA模板。在一些实施方案中,所述处理所述多个生物样品包括转录激活因子样效应子核酸酶(TALEN)基因组编辑。在一些实施方案中,所述处理所述多个生物样品包括锌指核酸酶基因编辑。
在一些实施方案中,所述处理所述多个生物样品包括至少一个高通量过程。在一些实施方案中,所述处理所述多个生物样品包括针对多种细胞筛选多种化学化合物。在一些实施方案中,所述化学化合物是抗菌剂。在一些实施方案中,所述细胞是原核细胞。在一些实施方案中,所述原核细胞是细菌细胞。在一些实施方案中,所述细胞是真核细胞。在一些实施方案中,所述真核细胞是动物细胞。在一些实施方案中,所述真核细胞是哺乳动物细胞。在一些实施方案中,所述真核细胞是植物细胞。在一些实施方案中,所述真核细胞是真菌细胞。在一些实施方案中,针对生物活性筛选所述化学化合物。在一些实施方案中,所述筛选还包括使用所述阵列的传感器确定生物活性。在一些实施方案中,所述筛选还包括分离至少一种化学化合物。在一些实施方案中,所述处理所述多个生物样品包括培养细胞,从而产生培养的细胞。在一些实施方案中,所述培养的细胞在至少一个离散液滴中。在一些实施方案中,所述培养的细胞在至少一个离散物理隔室中。在一些实施方案中,确定所述培养的细胞之间或培养的细胞与至少一个生物样品之间的相互作用。
在一些实施方案中,在所述阵列或多个所述阵列上测定所述培养的细胞。在一些实施方案中,从培养物分离所述培养的细胞,从而产生分离的细胞。在一些实施方案中,将所述分离的细胞转移至外部容器。在一些实施方案中,所述外部容器是生物分子筛选协会(SBS)形式板。在一些实施方案中,制备所述分离的细胞用于核酸测序。在一些实施方案中,制备所述分离的细胞用于蛋白质分析。在一些实施方案中,制备所述分离的细胞用于代谢组学分析。在一些实施方案中,所述阵列包括多种冻干试剂、干燥试剂、储存珠或其任何组合。在一些实施方案中,复溶所述多种冻干试剂、干燥试剂、储存珠或其任何组合。在一些实施方案中,至少一个液滴或其衍生物用于复溶所述冻干试剂、干燥试剂、珠或其任何组合。在一些实施方案中,所述冻干试剂包含分子条形码。在一些实施方案中,所述冻干试剂包含寡核苷酸。在一些实施方案中,所述冻干试剂包含引物。在一些实施方案中,所述冻干试剂包含用于杂交的DNA序列。在一些实施方案中,所述冻干试剂包含酶。在一些实施方案中,所述珠包含分子条形码。在一些实施方案中,所述珠包含寡核苷酸、核酸、抗体、PCR引物、配体或其任何组合。
在一些实施方案中,所述方法还包括至少一种试剂,其中将所述至少一种试剂预制到所述阵列的部件中。在一些实施方案中,所述阵列储存作为固体、液体、气体或其任何组合的多种试剂。在一些实施方案中,所述阵列使所述多种试剂凝结、升华、解冻、蒸发或其任何组合。在一些实施方案中,所述阵列分配多种液体。在一些实施方案中,所述阵列混合多种液体。在一些实施方案中,所述处理所述多个生物样品自动进行。在一些实施方案中,所述阵列是可重复使用的,从而产生可重复使用的阵列。在一些实施方案中,所述阵列还包括可替换表面。在一些实施方案中,所述阵列还包括可替换膜。在一些实施方案中,所述阵列包括可替换筒。在一些实施方案中,所述可替换筒是膜。在一些实施方案中,使用真空以将所述膜附接至所述阵列。在一些实施方案中,可以使用粘合剂将所述可替换筒耦合至所述阵列。在一些实施方案中,所述粘合剂选自硅树脂、丙烯酸树脂、环氧树脂、压敏粘合剂、导热胶或其任何组合。在一些实施方案中,洗涤所述可重复使用的阵列,从而产生洗涤的阵列。在一些实施方案中,完全洗涤所述洗涤的阵列。在一些实施方案中,部分洗涤所述洗涤的阵列。
在一些实施方案中,所述阵列是一次性的。在一些实施方案中,所述阵列的一定体积的生物分子作为混合物操控。在一些实施方案中,所述体积的生物分子包含多个核酸、蛋白质序列或其组合。在一些实施方案中,在所述混合物上不与所述阵列的另一个部件物理接触的情况下,通过调控局部表面电荷来操控所述多个核酸、蛋白质序列或其组合。在一些实施方案中,所述混合物在液滴内。在一些实施方案中,所述液滴包括1pl至10ml的体积。在一些实施方案中,所述混合物包含具有DNA连接酶活性的蛋白质。在一些实施方案中,所述混合物包含具有DNA转座酶活性的蛋白质。在一些实施方案中,在所述混合物横向地理空间移动至少1mm的情况下操控所述阵列的所述体积的生物分子。在一些实施方案中,所述阵列包括用于进行以下的试剂:链置换扩增反应、自动维持序列复制和扩增反应、Q3复制酶扩增反应或其任何组合。
在一些实施方案中,所述阵列包括试剂,包括DNA连接酶、核酸酶、限制性核酸内切酶或其任何组合。在一些实施方案中,所述阵列包括用于制备扩增核酸产物的试剂。在一些实施方案中,所述多个生物样品来源于动物。在一些实施方案中,所述动物患有或疑似患有疾病。在一些实施方案中,所述动物是哺乳动物对象。在一些实施方案中,所述多个生物样品来源于植物。在一些实施方案中,所述多个生物样品来源于原核生物。在一些实施方案中,所述阵列是在用于疾病诊断或预后的试剂盒或***的生产中的部件。在一些实施方案中,所述阵列包括具有核酸切割活性的蛋白质。在一些实施方案中,所述阵列包括具有RNA切割活性的生物分子。在一些实施方案中,可互换组的试剂通过至少一个固相支撑物引入。在一些实施方案中,所述固相支撑物是纸条带。在一些实施方案中,所述固相支撑物是微珠。在一些实施方案中,所述固相支撑物是支柱。在一些实施方案中,所述固相支撑物是微孔条带。在一些实施方案中,可互换组的试剂通过至少一个次要支撑物引入。在一些实施方案中,所述次要支撑物是微孔条带。在一些实施方案中,所述次要支撑物是珠。
在一些实施方案中,所述阵列含有模板非依赖性聚合酶。在一些实施方案中,所述模板非依赖性聚合酶是末端脱氧核苷酸转移酶(TdT)。在一些实施方案中,所述阵列包括限制核酸聚合的酶。在一些实施方案中,所述限制核酸聚合的酶是腺苷三磷酸双磷酸酶。在一些实施方案中,所述阵列具有传感器以检测核酸分子中存在至少一个末端“C”尾。在一些实施方案中,分离所述至少一个末端“C”尾。在一些实施方案中,通过干燥储存所述阵列的所述多个生物样品。在一些实施方案中,通过再水化恢复所述阵列的所述多个生物样品。在一些实施方案中,将所述多个生物样品沉积到生物分子筛选协会(SBS)形式的多个阵列上或沉积在多个阵列的任何随机位置上,从而产生至少一个沉积的生物样品。在一些实施方案中,在准备在芯片上操控样品时使用商业声学液体处理器来沉积所述多个生物样品。在一些实施方案中,所述声学液体处理器是Echo。在一些实施方案中,所述至少一个沉积的生物样品用于无细胞合成。在一些实施方案中,所述至少一个沉积的生物样品用于组合组装大DNA构建体。
在一些实施方案中,所述处理所述多个生物样品包括以下测定中的至少一个或其任何组合:数字PCR、核酸的等温扩增、抗体介导的检测、酶联免疫测定(ELISA)、基于氧化或还原的电化学检测、比色测定、荧光测定和微核测定。在一些实施方案中,所述处理所述多个生物样品包括等温扩增至少一个所选核酸,其包括:(a)通过合并含有多种试剂的液滴来提供包含至少一个核酸的至少一个样品,所述多种试剂有效允许在没有机械操控的情况下进行所述样品的至少一个等温扩增反应,和(b)进行至少一个等温扩增反应以扩增所述核酸。在一些实施方案中,所述处理所述多个生物样品包括检测至少一个水性液滴上的聚合酶链反应(PCR)产物的装置,其中所述装置:(a)在电润湿阵列上产生含有多个核酸和蛋白质分子的至少一个液滴,(b)在所述水性液滴存在于所述阵列上时进行所述PCR反应,并且(c)用检测器查询所述液滴。
在一些实施方案中,检测PCR产物的装置还包括多个荧光报告分子。在一些实施方案中,在所述PCR反应期间通过来自至少一个猝灭分子的至少一个酶分离所述多个荧光报告分子。在一些实施方案中,所述至少一个酶包括聚合酶。在一些实施方案中,通过传感器检测所述核酸。在一些实施方案中,所述传感器检测放射性标记。在一些实施方案中,所述传感器检测荧光标记。在一些实施方案中,所述传感器检测发色团。在一些实施方案中,所述传感器检测氧化还原标记。在一些实施方案中,所述传感器是p-n型扩散二极管。在一些实施方案中,通过智能手机检测所述核酸。在一些实施方案中,所述处理所述多个生物样品包括结合所述阵列上的至少一个生物分子。在一些实施方案中,将所述至少一个生物分子固定在表面上。在一些实施方案中,将所述至少一个生物分子固定在可扩散基质上。在一些实施方案中,将所述至少一个生物分子固定在可扩散珠上。在一些实施方案中,通过编码方案鉴定所述生物分子的位置。
在一些实施方案中,所述编码方案是基于它所固定于的部分。在一些实施方案中,所述阵列在没有机械操控的情况下诱导来自两个或更多个非连续液体体积的多个生物分子的相互作用。在一些实施方案中,所述阵列制备扩增核酸产物。在一些实施方案中,所述阵列对核酸样品进行诊断检测。在一些实施方案中,所述阵列对生物样品进行诊断检测或预后检测。在一些实施方案中,所述多个生物样品疑似含有核酸生物标志物。在一些实施方案中,所述阵列包括接触至少一个液滴并被其吸收的气体源。在一些实施方案中,所述至少一个液滴在所述装置上操控。在一些实施方案中,所述多个生物样品包括用于进行以下的试剂:链置换扩增反应、自动维持序列复制、扩增反应、Q3复制酶扩增反应或其任何组合。在一些实施方案中,所述阵列从远程计算器接收至少一个指令以处理生物样品的阵列。在一些实施方案中,将所述阵列预编程以对生物样品的阵列进行所述过程。
在一些实施方案中,所述阵列接收与DNA序列相关的信息。在一些实施方案中,所述DNA序列触发自动化过程。在一些实施方案中,所述自动化过程包括将所述DNA序列转化为至少一个组成寡核苷酸序列。在一些实施方案中,将所述至少一个组成寡核苷酸序列组装、错误纠正、重组装成DNA扩增子或其任何组合。在一些实施方案中,所述DNA扩增子指导RNA、蛋白质、生物颗粒或其任何组合的产生。在一些实施方案中,所述生物颗粒来源于病毒。在一些实施方案中,所述阵列由DNA模板产生至少一个肽或抗体。在一些实施方案中,包括使用电润湿力、介电润湿(DEW)力、介电泳(DEP)作用、声学力、疏水刀(hydrophobicknife)或其任何组合,所述阵列将至少一个液滴分区成多个液滴,从而产生至少一个分区的液滴。在一些实施方案中,所述分区分配试剂。在一些实施方案中,所述分区分配样品。在一些实施方案中,将所述至少一个分区的液滴混合以进行反应。在一些实施方案中,使用传感器分析所述至少一个分区的液滴。在一些实施方案中,将所述至少一个分区的液滴与至少一个靶液滴混合以维持所述至少一个靶液滴上的恒定体积。
在一些实施方案中,所述阵列处理多相流体。在一些实施方案中,所述阵列使用介电泳力(DEP)用于细胞分选、细胞分离、操控至少一个珠或其任何组合。在一些实施方案中,所述分选或分离用于预浓缩原始临床样品中的至少一个细胞。在一些实施方案中,将所述生物样品沉积在多个阵列上。在一些实施方案中,所述多个阵列包括至少两个阵列。在一些实施方案中,所述至少两个阵列中的阵列邻近所述至少两个阵列中的另一个阵列。在一些实施方案中,所述至少两个阵列中的阵列水平邻近所述至少两个阵列中的另一个阵列。在一些实施方案中,所述至少两个阵列中的阵列垂直邻近所述至少两个阵列中的另一个阵列。在一些实施方案中,所述至少两个阵列中的阵列包括表面。在一些实施方案中,所述表面包括至少一个EWOD阵列、至少一个DEW阵列、至少一个DEP阵列、至少一个微流体阵列、玻璃、塑料或其任何组合。
在一些实施方案中,所述多个阵列包括至少一个通道、至少一个孔或其任何组合。在一些实施方案中,所述至少一个通道在至少一个表面之间穿过。在一些实施方案中,气体、液体、固体或其任何组合通过所述至少一个孔转移。在一些实施方案中,所述气体、液体、固体或其任何组合在所述多个阵列之中或之外转移。在一些实施方案中,所述气体、液体、固体或其任何组合在所述多个阵列的至少两个表面之间转移。在一些实施方案中,所述多个液滴的至少两个液滴通过至少一个可渗透膜分离。在一些实施方案中,所述多个液滴的所述至少两个液滴的组分的至少一部分通过所述至少一个可渗透膜从所述多个液滴的所述至少两个液滴的一个液滴交换至所述多个液滴的所述至少两个液滴的另一个液滴。在一些实施方案中,所述至少一个可渗透膜永久地或暂时地附接至所述阵列。
在另一方面,本公开提供了一种用于处理多个生物样品的***,所述***包括(i)邻近阵列接收包含所述多个生物样品的多个液滴,和(ii)以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述多个生物样品,从而处理所述多个生物样品。
在另一方面,本公开提供了一种用于生物样品处理的***,所述***包括:被配置用于容纳多个阵列的壳体,其中所述多个阵列的一个阵列被配置用于(i)邻近所述阵列接收包含所述多个生物样品的多个液滴,并且(ii)以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述多个生物样品。
在一些实施方案中,所述多个阵列可从所述壳体移除。在一些实施方案中,所述壳体被配置用于耦合至核酸测序平台。在一些实施方案中,所述壳体是核酸测序平台。在一些实施方案中,所述阵列的环境通过所述壳体控制,从而产生受控环境。在一些实施方案中,环境湿度、液滴涂层、温度、压力、液滴大小、光照条件或其任何组合通过所述受控环境维持。在一些实施方案中,所述壳体包括外壳。在一些实施方案中,所述外壳包括盖体、密封件、腔室、不混溶高蒸气压流体、膜或其任何组合。
本公开的另一方面提供了一种包括机器可执行代码的非暂时性计算机可读介质,所述机器可执行代码在被一个或多个计算机处理器执行时,实现上述或本文其他地方的任何方法。
本公开的另一方面提供了一种***,所述***包括一个或多个计算机处理器和与其耦合的计算机存储器。计算机存储器包括机器可执行代码,所述机器可执行代码在被将一个或多个计算机处理器执行时,实现上述或本文其他地方的任何方法。
根据以下具体实施方式,本公开的另外的方面和优点对于本领域技术人员将容易变得清楚,在以下具体实施方式中仅示出和描述了本公开的说明性实施方案。如将理解的,本公开能够有其他的和不同的实施方案,并且其若干详细信息能够在各个明显的方面进行修改,所有这些均未背离本公开。相应地,附图和说明书应当被视作是说明性质的,而不是限制性的。
在另一方面,本公开提供了一种用于处理液滴的方法,所述方法包括:在阵列上提供所述液滴,其中所述液滴包含一个或多个可检测标记,其中所述一个或多个可检测标记中的可检测标记对应于所述液滴的物理特性;使用一个或多个光源照明所述阵列上的所述液滴,其中在被所述一个或多个光源照明时,所述可检测标记生成信号;使用检测器检测所述信号;使用所述检测的信号确定所述液滴的所述物理特性;以及如果所述确定的物理特性不满足阈值,则操控所述液滴。
在一些实施方案中,所述物理特性选自液滴大小、液滴体积、液滴位置、液滴速度、液滴润湿、液滴温度、液滴pH、液滴中的珠、液滴中细胞的数量、液滴颜色、化学材料的浓度、生物物质的浓度或其任何组合。在一些实施方案中,所述液滴包含对应于所述液滴的不同物理特性的多个可检测标记,其中所述多个可检测标记包括所述可检测标记。
在一些实施方案中,所述检测器包括至少一个相机。在一些实施方案中,操控所述液滴包括计算机处理所述物理特性和阈值或值范围。在一些实施方案中,在所述阵列上在多个时间点检测来自所述液滴的所述信号。在一些实施方案中,其中所述检测器包括一个或多个滤光器,并且其中所述一个或多个滤光器用于检测所述信号。在一些实施方案中,所述方法还包括改变所述一个或多个滤光器的至少一个子集以检测来自所述液滴的另外的信号。
在一些实施方案中,所述参数是液滴体积,并且其中确定所述体积低于阈值体积,并且其中使所述液滴与一个或多个补充液滴接触。在一些实施方案中,所述补充液滴通过电润湿运动与所述液滴接触。在一些实施方案中,所述补充液滴补充所述液滴的体积的约1%至约50%。
在一些实施方案中,参数用于生成用于确定待引入所述阵列中的一个或多个另外的液滴的所述参数的机器学习模型。
在一些实施方案中,所述方法还包括加热包围所述液滴的一个或多个流体以减少所述液滴的蒸发的步骤。在一些实施方案中,所述加热通过致动置于所述阵列下方的加热器、加热置于所述阵列上方的板、加热接触所述阵列的一个或多个侧壁或其组合来进行。在一些实施方案中,所述一个或多个流体包括水,并且所述方法还包括使置于所述阵列上的区域与所述一个或多个流体接触。
在一些实施方案中,在所述区域中维持约50%至约100%的相对湿度。在一些实施方案中,使所述区域与所述一个或多个流体接触包括在引入包含用于分析的样品的液滴之前或之后将一个或多个牺牲液滴引入所述阵列中。在一些实施方案中,所述使所述区域与所述一个或多个流体接触包括将水储器置于所述区域内。在一些实施方案中,所述方法还包括将所述区域封装在腔室中。在一些实施方案中,所述方法还包括均匀地加热所述腔室。
在一些实施方案中,置于所述阵列上方的所述板包括电极。在一些实施方案中,所述电极的一个电极单个地封装。在一些实施方案中,所述电极是透明的。在一些实施方案中,置于所述阵列上方的所述板是透明的。在一些实施方案中,所述侧壁包括导体、电路板或两者。在一些实施方案中,所述电路板包括蛇形迹线。在一些实施方案中,所述阵列、置于所述阵列上方的所述板、所述侧壁或其组合还包括电阻膜加热器、热绝缘体、温度传感器或其任何组合。在一些实施方案中,所述温度传感器耦合至所述阵列的侧面,其中所述侧面与包括所述液滴的侧面相对。在一些实施方案中,置于所述阵列下方的所述加热器包括电极。在一些实施方案中,所述电极单个地封装。在一些实施方案中,所述液滴的所述体积维持在原始液滴体积的至少约30%、20%、10%、5%、1%、0.1%或0.01%内。
本公开的另一方面提供了一种在阵列上合成多核苷酸的方法,所述方法包括在所述阵列上提供液滴,其中所述液滴包含核酸分子,以及使用所述核酸分子来合成所述多核苷酸,其中所述液滴具有约1皮升至约2微升的体积,并且其中在所述合成期间,所述液滴的体积变化至多50%。
在一些实施方案中,在所述合成期间,所述体积变化至多10%。在一些实施方案中,在所述合成期间,所述体积变化至多1%。在一些实施方案中,所述多核苷酸至少部分地通过将另外的核酸分子与所述核酸分子连接来合成。在一些实施方案中,所述多核苷酸至少部分地通过将另外的核酸分子与所述核酸分子杂交来合成。在一些实施方案中,所述另外的核酸分子包含在另外的液滴中。在一些实施方案中,所述方法还包括使所述液滴与所述另外的液滴接触。在一些实施方案中,所述生物分子至少部分地通过将单个核苷酸添加至核酸分子的3'-突出端或3'平端或3'凹端来合成。
本公开的另一方面提供了一种用于操控液滴的***,所述***包括:被配置用于支撑所述液滴的阵列;多个磁体;设置在所述阵列与所述多个磁体之间的屏障,其中所述屏障包括一个或多个缺口,并且其中所述一个或多个缺口与所述多个磁体对齐;以及耦合至所述多个磁体的控制器,其中所述控制器被配置用于指令所述多个磁体中的磁体的致动以在所述阵列上操控所述液滴。
在一些实施方案中,所述***还包括支撑所述多个磁体的台,其中所述台耦合至致动器,其中所述致动器被配置用于使所述台在线性轴上移动。在一些实施方案中,所述多个磁体包括铁磁通聚焦器、铁磁性背铁或其组合。在一些实施方案中,所述屏障包括铁磁性材料。
在一些实施方案中,所述多个磁体包括一个或多个旋转可切换磁体。在一些实施方案中,所述一个或多个旋转可切换磁体被配置用于使所述多个磁体的磁体旋转。
本公开的另一方面提供了一种用于用磁场操控液滴的方法,所述方法包括:将所述液滴设置在阵列上,其中所述阵列包括屏障,其中所述屏障包括一个或多个缺口;将所述阵列置于多个磁体附近,其中所述多个磁体的磁体接触所述一个或多个缺口;致动所述多个磁体的至少一个磁体以用所述磁场在所述阵列上操控所述液滴。
在一些实施方案中,放置所述阵列包括致动被配置用于支撑所述多个磁体的台。在一些实施方案中,所述多个磁体包括铁磁通聚焦器、铁磁性背铁或其组合。在一些实施方案中,所述屏障包括铁磁性材料。在一些实施方案中,所述多个磁体包括一个或多个旋转可切换磁体。在一些实施方案中,所述一个或多个旋转可切换磁体被配置用于使所述多个磁体的磁体旋转。
本发明的另一方面提供了一种用于处理一个或多个液滴的***,所述***包括:被配置用于支撑筒的支架,所述筒包括被配置用于处理一个或多个液滴的阵列,其中所述阵列不包括覆盖的电润湿电极;和被配置用于在所述筒被支撑时指令所述一个或多个液滴的处理的计算机处理器。
在一些实施方案中,所述***还包括多个电极。在一些实施方案中,所述多个电极与所述筒电连通。在一些实施方案中,所述筒还包括电介质。在一些实施方案中,所述电介质邻近所述阵列。在一些实施方案中,所述筒还包括多个电极。在一些实施方案中,所述多个电极邻近所述阵列。在一些实施方案中,所述筒还包括另外的多个电极。在一些实施方案中,所述多个电极和所述另外的多个电极不共面。
在一些实施方案中,所述阵列包括聚合物膜。在一些实施方案中,所述阵列包括液体层。在一些实施方案中,所述液体层与所述一个或多个液滴形成液体与液体界面。在一些实施方案中,所述筒包括被配置用于维持或产生所述阵列的表面张力的框架。在一些实施方案中,所述框架在所述阵列的所述表面上生成真空压力。在一些实施方案中,所述框架包括流体分配单元。在一些实施方案中,所述框架被配置用于补充所述液体层。在一些实施方案中,所述筒还包括一个或多个另外的阵列。在一些实施方案中,所述筒可从所述支架移除。
在一些实施方案中,所述阵列通过精细间距的弹性连接器、板对板连接器、弹簧销或其任何组合与所述装置连通。在一些实施方案中,所述装置还包括被配置用于容纳所述阵列的模块。在一些实施方案中,所述模块包括一个或多个电气连接器,其中所述电气连接器与所述处理器连通并且所述多个电极耦合至所述处理器。
在一些实施方案中,所述模块包括盖体,其中所述盖体被配置用于使所述阵列与所述电气连接器接触。在一些实施方案中,所述盖体是透明的。
在一些实施方案中,所述电气连接器包括精细间距的弹性连接器、板对板连接器、弹簧销、弹簧连接器、导电浆料或其任何组合。在一些实施方案中,所述模块被配置用于容纳一个或多个另外的阵列。
在一些实施方案中,所述***还包括被配置用于发射光至所述阵列的一个或多个瓦片上的投影仪。在一些实施方案中,所述光包括特定于在所述阵列上的位置的位置信息。在一些实施方案中,所述***还包括被配置用于将所述光导向至所述阵列上的一个或多个扫描镜或检流计。
在一方面,本公开提供了用于处理样品的装置,所述装置包括:包括被配置用于支撑所述液滴的表面的阵列,其中所述阵列包括被配置用于使液滴邻近所述表面运动的电极;和设置在所述表面上或邻近所述表面设置的操控特征件,其中所述操控特征件被配置用于使所述液滴***。
在一些实施方案中,所述操控特征件包括设置在所述表面上的微结构。在一些实施方案中,所述微结构包括疏水性材料。在一些实施方案中,所述操控特征件包括置于所述表面上的亲水性区域。在一些实施方案中,所述亲水性区域被配置用于与所述液滴中包含的疏水性颗粒结合。在一些实施方案中,所述操控特征件特定于级分液滴的体积而适形。在一些实施方案中,所述操控特征件与所述表面不共面。在一些实施方案中,所述液滴具有1飞米至1毫升的体积。
本公开的另一方面提供了一种在阵列上合成多核苷酸的方法,所述方法包括:在所述阵列上提供液滴,其中所述液滴包含核酸分子;以及使用所述核酸分子来合成所述多核苷酸,其中在所述合成期间,所述液滴或其衍生物具有约1飞升至约2微升的体积;并且所述液滴或其所述衍生物的体积变化至多50%。
在一些实施方案中,在所述合成期间,所述体积变化至多10%。在一些实施方案中,在所述合成期间,所述体积变化至多1%。在一些实施方案中,所述多核苷酸至少部分地通过将另外的核酸分子与所述核酸分子连接来合成。在一些实施方案中,所述多核苷酸至少部分地通过将另外的核酸分子与所述核酸分子杂交来合成。在一些实施方案中,所述另外的核酸分子包含在另外的液滴或其衍生物中。
在一些实施方案中,所述方法还包括用检测器检测所述液滴或其所述衍生物的所述体积。在一些实施方案中,所述检测器包括至少一个相机。在一些实施方案中,在所述阵列上在多个时间点从所述液滴或其所述衍生物检测所述体积。在一些实施方案中,所述方法还包括如果所述体积不满足阈值,则操控所述液滴或其衍生物。在一些实施方案中,所述阈值包括值范围。在一些实施方案中,所述操控包括使所述液滴或其衍生物与补充液滴接触。在一些实施方案中,所述补充液滴不包含生物样品。
本公开的另一方面提供了一种用于处理多个生物样品的方法,所述方法包括:邻近阵列接收包含所述多个生物样品的多个液滴,和以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述多个生物样品,从而处理所述多个生物样品。
在一些实施方案中,所述至少一个参数包括选自以下各项的一个或多个成员:液滴大小、液滴体积、液滴位置、液滴速度、液滴润湿、液滴温度、液滴pH、液滴中的珠、液滴中细胞的数量、液滴颜色、化学材料的浓度、生物物质的浓度或其任何组合。
在一些实施方案中,所述多个生物样品通过将力场与电场组合进行处理。在一些实施方案中,所述力场通过在阵列上的流体流动、振动或其组合来生成。在一些实施方案中,所述力场选自由、声波、振动、气压、光场、磁场、重力场、离心力、水动力、电泳力、介电润湿力和毛细管力。
在一些实施方案中,所述阵列包括多个传感器,并且其中在所述处理所述多个生物样品之前、期间或之后,所述多个传感器测量来自所述多个液滴或其衍生物的信号。在一些实施方案中,所述多个传感器包括阻抗传感器、pH传感器、温度传感器、光学传感器、相机、电流测量传感器、用于生物分子检测的电子传感器、x射线传感器、电化学传感器、电化学发光传感器、压电传感器或其任何组合。在一些实施方案中,所述方法还包括在处理所述多个生物样品时,使用反馈回路中的所述多个传感器来调节所述阵列的一个或多个参数。在一些实施方案中,所述方法还包括使用所述多个传感器和所述反馈回路来自主发现、优化反应条件或其组合。在一些实施方案中,所述多个传感器的至少一个传感器测量位置、液滴体积、生物材料的存在、生物材料的活性、液滴速度、运动学、液滴半径、液滴形状、液滴高度、颜色、表面积、接触角、反应状态、发射度、吸光度或其任何组合。在一些实施方案中,所述多个传感器的所述至少一个传感器的测量用于进一步处理所述多个液滴、所述多个生物样品或其组合的至少一个液滴、生物样品或其组合。
在一些实施方案中,进一步处理包括邻近所述阵列或在所述阵列上或其组合实时给予致动输入、输出或其组合的命令。在一些实施方案中,所述命令提供校正所述阵列的误差的指令。在一些实施方案中,所述误差是位置、液滴体积、生物材料的存在、生物材料的活性、液滴速度、液滴动力学、液滴半径、液滴形状、液滴高度、颜色、表面积、接触角、反应状态、发射度、吸光度或其任何组合的误差。在一些实施方案中,所述阵列与液体处理单元对接,所述液体处理单元将所述多个液滴导向至邻近所述阵列。在一些实施方案中,所述液体处理单元选自机器人液体处理***、声学液体分配器、注射器泵、喷墨喷嘴、微流体装置、针、基于微隔膜的泵分配器、压电泵或其任何组合。在一些实施方案中,所述阵列耦合至至少一个试剂或样品储存单元或其组合。在一些实施方案中,所述液体处理单元还包括至少一个多孔板、管、瓶、储器、喷墨筒、板、皮氏培养皿或其任何组合。在一些实施方案中,所述管选自Eppendorf管或falcon管。在一些实施方案中,所述至少一个多孔板的所述多个孔是导热的、导电的或其组合。
在一些实施方案中,所述至少一个试剂或样品储存单元或其组合的试剂或样品通过电场、磁场、声波、热、振动或其组合在所述孔中或在所述孔外操控。在一些实施方案中,所述阵列包括涂层。在一些实施方案中,所述涂层是亲水性涂层。在一些实施方案中,所述涂层包括疏水性涂层和亲水性涂层两者。在一些实施方案中,所述涂层减少蒸发。在一些实施方案中,所述蒸发减少了50%至100%。在一些实施方案中,所述涂层减少生物污垢。
在一些实施方案中,所述处理所述多个生物样品包括针对多种细胞筛选多种化学化合物。在一些实施方案中,所述处理所述多个生物样品包括培养细胞,从而产生培养的细胞。在一些实施方案中,所述阵列还包括至少一种试剂,其中所述至少一种试剂被预制到所述阵列的部件中。
在一些实施方案中,其中所述阵列是可重复使用的,从而产生可重复使用的阵列。在一些实施方案中,所述阵列还包括可替换表面。在一些实施方案中,所述阵列还包括可替换筒。在一些实施方案中,所述可替换筒是膜。在一些实施方案中,使用真空以将所述膜附接至所述阵列。
在一些实施方案中,使用粘合剂将所述可替换筒耦合至所述阵列。在一些实施方案中,所述粘合剂选自硅树脂、丙烯酸树脂、环氧树脂、压敏粘合剂、导热胶或其任何组合。在一些实施方案中,所述可重复使用的阵列是可洗涤的。
在一些实施方案中,所述阵列的一定体积的生物分子作为液滴内的混合物操控,其中在所述混合物横向地理空间移动至少1mm的情况下操控所述阵列的所述体积的生物分子。在一些实施方案中,可互换组的试剂通过至少一个固相支撑物引入。在一些实施方案中,所述固相支撑物是纸条带。在一些实施方案中,所述固相支撑物是微珠。在一些实施方案中,所述固相支撑物是支柱结构。在一些实施方案中,所述固相支撑物是微孔条带。在一些实施方案中,可互换组的试剂通过至少一个次要支撑物引入。在一些实施方案中,所述次要支撑物是微孔条带。在一些实施方案中,所述次要支撑物是珠。
在一些实施方案中,所述阵列具有传感器以检测核酸分子中存在至少一个末端“C”尾。在一些实施方案中,分离所述至少一个末端“C”尾。在一些实施方案中,所述处理所述多个生物样品包括等温扩增至少一个所选核酸,其包括:通过合并含有多种试剂的液滴来提供包含至少一个核酸的至少一个样品,所述多种试剂有效允许在没有机械操控的情况下进行所述样品的至少一个等温扩增反应;进行至少一个等温扩增反应以扩增所述核酸。
在一些实施方案中,所述处理所述多个生物样品包括检测至少一个水性液滴上的聚合酶链反应(PCR)产物的装置,其中所述装置:在电润湿阵列上产生含有多个核酸和蛋白质分子的至少一个液滴;在所述水性液滴存在于所述阵列上时进行所述PCR反应;用检测器查询所述液滴。
在一些实施方案中,所述处理所述多个生物样品包括结合所述阵列上的至少一个生物分子。在一些实施方案中,所述阵列包括接触至少一个液滴并被其吸收的气体源。在一些实施方案中,包括使用电润湿力、介电润湿力、介电泳(DEP)作用、声学力、疏水刀或其任何组合,所述阵列将至少一个液滴分区成多个液滴,从而产生至少一个分区的液滴。在一些实施方案中,所述分区分配试剂。在一些实施方案中,所述分区分配样品。在一些实施方案中,将所述至少一个分区的液滴混合以进行反应。在一些实施方案中,使用所述传感器分析所述至少一个分区的液滴。在一些实施方案中,将所述至少一个分区的液滴与至少一个靶液滴混合以维持所述至少一个靶液滴上的恒定体积。在一些实施方案中,所述阵列处理多相流体。在一些实施方案中,所述阵列使用介电泳力(DEP)用于细胞分选、细胞分离、操控至少一个珠或其任何组合。
在一些实施方案中,将所述生物样品沉积在多个阵列上。在一些实施方案中,所述多个阵列包括至少两个阵列。在一些实施方案中,所述至少两个阵列中的阵列邻近所述至少两个阵列中的另一个阵列。在一些实施方案中,所述至少两个阵列中的阵列水平邻近所述至少两个阵列中的另一个阵列。在一些实施方案中,所述至少两个阵列中的阵列垂直邻近所述至少两个阵列中的另一个阵列。在一些实施方案中,所述多个阵列包括至少一个通道、至少一个孔或其任何组合。在一些实施方案中,所述至少一个通道在至少一个表面之间穿过。在一些实施方案中,气体、液体、固体或其任何组合通过所述至少一个孔转移。
本公开的另一方面提供了一种用于生物样品处理的***,所述***包括:被配置用于容纳多个阵列的壳体,其中所述多个阵列的一个阵列被配置用于邻近所述阵列接收包含所述多个生物样品的多个液滴,并且以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述多个生物样品。
在一些实施方案中,所述多个阵列可从所述壳体移除。在一些实施方案中,所述壳体被配置用于耦合至核酸测序平台。在一些实施方案中,所述壳体是核酸测序平台。在一些实施方案中,所述阵列的环境通过所述壳体控制,从而产生受控环境。在一些实施方案中,环境湿度、液滴涂层、温度、压力、液滴大小、光照条件或其任何组合通过所述受控环境维持。在一些实施方案中,所述壳体包括外壳。在一些实施方案中,所述外壳包括盖体、密封件、腔室、不混溶高蒸气压流体、膜或其任何组合。在一些实施方案中,所述外壳包括不混溶高蒸气压流体。
本公开的一方面提供了一种用于定制用于处理多个生物样品的阵列***的方法,所述方法包括从用户接收针对配置阵列***的请求,所述请求包括一个或多个规范,和使用所述一个或多个规范来配置所述阵列***以产生所述配置阵列***,所述配置阵列***被配置用于接收包含所述多个生物样品的多个液滴,并且以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV)处理所述多个液滴或其衍生物。
本公开的另一方面提供了一种用于处理一个或多个液滴的***,所述***包括:阵列,其中所述阵列包括具有电极阵列的开放配置、没有电极阵列的开放配置、具有非共面电极组的开放配置、一个板上有电极阵列且另一个板上没有电极的两个板、一个板上有非共面电极组且另一个板上没有电极的两个板、一个板上有电极阵列且另一个板上有单个电极的两个板、一个板上有非共面电极组且另一个板上有单个电极的两个板、两个板上均有电极阵列的两个板、两个板上均有非共面电极组的两个板或其任何组合,并且其中所述阵列不包括邻近所述阵列的填充液;一个或多个液体处理单元,其中所述一个或多个液体处理单元将所述一个或多个液滴导向至邻近所述阵列。
在一些实施方案中,所述一个或多个液体处理单元包括机器人液体处理***、声学液体分配器、注射器泵、喷墨喷嘴、微流体装置、针、基于微隔膜的泵分配器、压电泵、压电声学装置或其任何组合。在一些实施方案中,所述阵列耦合至至少一个试剂或样品储存单元或其组合。在一些实施方案中,所述***还包括一个或多个传感器,其中所述一个或多个传感器被配置用于检测由所述阵列上的所述液滴、所述阵列、邻近所述阵列或所述液滴的区域或其任何组合生成的信号。在一些实施方案中,所述一个或多个传感器包括阻抗传感器、pH传感器、温度传感器、光学传感器、湿度传感器、相机、电流测量传感器、用于生物分子检测的电子传感器、x射线传感器、电化学传感器、电化学发光传感器、压电传感器或其任何组合。
在一些实施方案中,所述***还包括被配置用于处理由所述一个或多个传感器检测到的信号和阈值或值范围的计算机处理器,其中所述阈值或值范围特定于所述信号。在一些实施方案中,所述***还包括反馈回路,其中所述反馈回路包括所述阵列、所述一个或多个液体处理单元、所述一个或多个传感器、所述计算机处理器或其任何组合之间的通信。在一些实施方案中,所述反馈回路被配置用于自主发现或优化所述阵列上的反应条件或两者。
在一些实施方案中,所述多个阵列包括至少两个阵列。在一些实施方案中,所述至少两个阵列中的阵列邻近所述至少两个阵列中的另一个阵列。在一些实施方案中,所述至少两个阵列中的所述阵列水平邻近所述至少两个阵列中的另一个阵列。在一些实施方案中,所述至少两个阵列中的所述阵列垂直邻近所述至少两个阵列中的另一个阵列。
附图说明
在所附权利要求书中具体阐述了本发明的新颖性特征。将通过参考阐述了利用本发明原理的说明性实施方案的以下具体实施方式和附图(在本文中也称为“图(Figure和FIG.)”)获得对本发明的特征和优点的更好的理解,在所述附图中:
图1示出了电润湿表面上的液滴的平面图。图1A表示电润湿表面上的液滴的平面图的顶视图。图1B表示电润湿表面上的液滴的平面图的侧剖视图。
图2描绘了图1的液体上液体电润湿(LLEW)表面的侧剖视图。图2A表示与LLEW表面具有较少接触的液滴。图2B表示与LLEW表面具有较多接触的液滴。液滴的接触的量通过电场控制。
图3描绘了图1的LLEW表面上液滴的侧剖视图。图3A表示正在通过电力操控的液滴。图3B表示图3A中表示的液滴的移动,其导致邻近电极的电流变化。图3C表示图3B中表示的液滴移动(其导致邻近电极的电流变化)至电润湿表面上的最终位置。
图4描绘了图1的LLEW表面上液滴的侧剖视图。图4A表示正在通过电力操控的两个液滴。图4B表示使用电力的变化合并图4A的两个液滴。图4C表示图4B的两个液滴的完全合并。
图5描绘了图1的电润湿表面上液滴的侧剖视图。图5A表示与电润湿表面具有较少接触的液滴。图5B表示与电润湿表面具有较多接触的液滴。液滴的接触的量通过电场控制。
图6描绘了图1的电润湿表面上含有生物样品的液滴的侧剖视图,其中表面呈开放配置。另外,图6示出了电润湿阵列上相对于致动电极的参考电极的不同放置。
图7示出了电路板的剖面。图7A(低倍率)和图7B(高倍率)是印刷电路板的侧面的照片。
图8示出了具有施加介电涂层的各种步骤和平面化过程的步骤的印刷电路板的侧剖视图。
图9表示用于实现光滑表面的电介质上微结构的各种制造过程。
图10描绘了电极阵列上液滴的运动。
图11描绘了如本文所述的***的各种阵列。图11A表示实验室设备的透视图。图11B-E表示本文所述的***的示例性处理站的顶视图。图11F-H表示本文所述的***的示例性处理站的透视图。图11I-J表示本文所述的示例性电润湿装置的处理站的侧剖视图。
图12描绘了本文所述的电润湿阵列的实例。图12A表示本文所述的示例性电润湿装置的两种配置的分解图。图12B表示本文所述的用于光电润湿(optoelectrowetting)的示例性电润湿阵列的侧剖视图。图12C表示本文所述的用于光致电润湿(photoelectrowetting)的示例性电润湿阵列的侧剖视图。
图13表示用于本文所述的阵列的计算机***的草图。
图14示出了用于操控液体的阵列,其可以使用电润湿、介电润湿或介电泳以用于分配液体和液滴产生。
图15描绘了用于计算机视觉***以监测液滴的阵列。
图16描绘了用于包括滤光器的计算机视觉***的阵列。
图17描绘了用于监测液滴的示例性计算机视觉配置。
图18描绘了用于可以监测液滴的特性(例如,体积变化)的计算机视觉***的阵列。
图19描绘了用于阵列的可视化或光学检查的阵列设计。
图20示出了用于减少液滴蒸发的腔室的实例。
图21示出了用于减少液滴蒸发的腔室的实例。
图22示出了用于遮盖以减少液滴蒸发的开放板(22A)实例和封闭板(22B)实例。
图23示出了用于减少液滴蒸发的浸没的实例。
图24示出了覆盖滴液表面以减少液滴蒸发的膜的实例。
图25示出了用于减少液滴蒸发的密封件(侧视图:25A;顶视图:25B)的实例。
图26描绘了用于控制液体蒸发的配置。
图27示出了可以主动控制温度的示例性阵列。
图28描绘了用于包括温度元件(例如,加热、冷却和温度感测元件)的阵列的内部部件。
图29描绘了用于补充液体蒸发的配置。
图30描绘了用于将磁场引入到可以控制表面上的液滴运动的阵列上的磁体的配置。
图31示出了用于控制阵列的磁场的示例性配置。
图32描绘了参考电极设计和放置的阵列设计(顶视图和侧视图)。
图33描绘了网格或单线参考电极设计和放置的阵列设计。如图所示,参考电极阵列可以与致动电极阵列不共面。
图34示出了阵列的参考电极或其组的位置的实例。
图35示出了用于电极阵列上的参考电极放置的示例性***和方法。图35A表示导电介电层。图35B表示充当参考电极的液体涂层。图35C表示导电电离颗粒。
图36描绘了电介质上电润湿(EWOD)驱动的磁珠洗涤的实例。
图37表示开放(37A)和封闭(37B)一次性筒的设计和部件的实例。
图38描绘了相对于电子器件单独构造的阵列瓦片。
图39示出了用于处理阵列上的大体积液体的示例性技术。
图40描绘了用于阵列多重复用的示例性电路。
图41示出了用于阵列多重复用的具有可重新配置托盘的可重新配置隔间。
图42描绘了粘结膜或筒的实例。
图43描绘了用于堆叠阵列的介电层和光滑层的示例性配置。
图44描绘了可以容纳聚合物膜层的框架的配置的实例。
图45描绘了包括处于张力下的聚合物膜层的阵列的配置的实例。
图46描绘了用滚筒、分配器或其组合施加聚合物膜层的配置。
图47示出了用于单细胞分离、细胞条形编码和细胞追踪的设计(47A)和方法(47B和47C)的实例。
图48示出了水平(图48A和图48B)和垂直(图48C)多层芯片设计的实例。图48B示出了具有孔和通道的多层设计。
图49示出了用于聚合物印刷的示例性设计(图49A和图49B)和流程(图49C)。相同的***可以用于基于聚合物的数据存储。
图50示出了用于分离液滴的膜的示例性开放***(图50A)和封闭***(图50B)。
图51描绘了用于电容感测的阵列的配置。
图52示出了经历电穿孔的开放阵列(图52A)上的液滴的实例。图52B示出了图52A中描绘的开放阵列的侧视图。
图53示出了可以用电场进行电穿孔的阵列的实例。图53B和图53C示出了本文所述的两板***的侧视图。
图54表示用于液滴感测和液滴可视化的电容传感器的示例性设计。
图55示出了用于可以用于进行聚合酶链反应(PCR)和定量PCR(qPCR)的阵列的示例性配置。
图56描绘了能够控制开放表面上的微升大小、纳升大小或皮升大小的液滴的阵列。
图57示出了用于基于光学的检测阵列的示例性配置。
图58描绘了二代测序文库制备平台的实例。
图59表示本文所述的示例性***的作为液滴体积的函数的蒸发时间。
图60描绘了示例性二代测序芯片和阵列设置。
图61描绘了包括本文所述的多个阵列的示例性工厂规模盒。
图62描绘了用于二代测序制备的文库制备的示例性配置。
图63示出了使用本文所述的阵列进行二代测序(NGS)文库制备的示例性配置。
图64描绘了使用本文所述的***和方法分离的DNA的产量和大小的数据。
图65描绘了使用本文所述的***和方法分离的DNA的大小分布的数据。
图66描绘了使用本文所述的***和方法合成和组装生物聚合物(例如,DNA)的配置。图66A和图66B示出了提供DNA合成的示例性流程。图66C示出了进行核苷酸的逐步添加以合成长分子DNA的单反应位点的示意图。
图67描绘了本文所述的阵列瓦片。
图68示出了使用本文所述的***和方法进行NGS文库制备的芯片上相对于芯片外实验的文库大小分布。
图69描绘了使用本文所述的***和方法进行NGS文库制备的芯片上相对于芯片外实验的测序文库的质量。
图70描绘了使用本文所述的***和方法进行NGS文库制备的芯片上相对于芯片外实验的测序文库的重复水平。
图71描绘了使用本文所述的***和方法进行NGS文库制备的实验的衔接子污染水平。
图72描绘了使用本文所述的***和方法进行NGS文库制备的实验的跨人基因组的水平覆盖率。
图73描绘了使用本文所述的***和方法进行NGS文库制备的实验的单核苷酸多态性(SNP)灵敏度。
图74描绘了使用本文所述的***和方法的示例性示意性NGS流程。示例性流程包括在本文所述的阵列上操控(例如,裂解细胞、消化蛋白质和DNA清除)生物样品。
图75例示了本文所述的模块和盖体的实施方案。
图76例示了本文所述的模块和投影仪的实施方案。
图77描绘了使用本文所述的***和方法进行文库定量期间***过程的实施方案。
图78描绘了在本文所述的阵列上进行的逆转录环介导的等温扩增(RT-LAMP)过程的实施方案。
图79描绘了在本文所述的阵列上使用LAMP染料和荧光相机检测病毒RNA的实施方案。
图80描绘了在本文所述的RT-LAMP扩增之后通过凝胶电泳进行的分析的结果的实施方案。
图81A-图81B描绘了将抗体或抗原与本文所述的阵列的表面连接的实施方案。
图82描绘了在本文所述的阵列上检测病毒RNA抗体的实施方案。
图83A-图83F描绘了在本文所述的阵列上检测病毒RNA抗体的实施方案。
图84示出了根据本文所述的一些实施方案用于DNA组装以进行基因扩增和/或蛋白质表达过程的流程图。
图85描绘了本文所述的Gibson DNA组装方法的实施方案。
图86描绘了根据本文所述的一些实施方案将液滴沉积在阵列上以用于连续DNA组装、纯化和扩增。
图87示出了在本文所述的阵列上进行的合成GFP基因的PCR扩增之后通过凝胶电泳进行的分析的结果。
图88示出了根据本文所述的一些实施方案的Golden Gate组装方法。
图89示出了根据本文所述的一些实施方案的阵列上的电泳装置的实施方式。
图90描绘了如本文所述的DNA克隆的方法。
图91描绘了根据本文所述的一些实施方案的包括用琼脂糖涂覆的界定表面的电润湿(EWOD)阵列。
图92示出了根据本文所述的一些实施方案的滚环扩增方法。
图93描绘了根据本文所述的一些实施方案的细胞筛选过程。
图94描绘了根据本文所述的一些实施方案的在阵列上实施的剪切模块。
图95描绘了根据本文所述的一些实施方案的液滴***机构。
图96描绘了根据本文所述的一些实施方案的液滴***机构。
图97描绘了根据本文所述的一些实施方案的液滴等分机构。
图98描绘了根据本文所述的一些实施方案的液滴等分机构。
图99描绘了根据本文所述的一些实施方案的废弃物处置机构。
图100A-图100B描绘了根据本文所述的一些实施方案的阵列。
图101描绘了根据本文所述的一些实施方案的阵列。
图102A-图102B描绘了根据本文所述的一些实施方案的阵列。
图103A-图103B描绘了根据本文所述的一些实施方案的阵列。
具体实施方式
尽管本文已经示出和描述了本发明的各个实施方案,但对于本领域技术人员容易理解的是,此类实施方案仅以示例的方式提供。本领域技术人员可以在未背离本发明的情况下想到许多更改、改变和替代。应当理解,可以采用针对本文所描述的本发明实施方案的各种可选方案。
每当术语“至少”、“大于”或“大于或等于”在一系列两个或更多个数值中的第一数值之前时,术语“至少”、“大于”或“大于或等于”适用于此系列数值中的每个数值。例如,大于或等于1、2或3等同于大于或等于1、大于或等于2、或大于或等于3。
每当术语“不大于”、“小于”或“小于或等于”在一系列两个或更多个数值中的第一数值之前时,术语“不大于”、“小于”或“小于或等于”适用于此系列数值中的每个数值。例如,小于或等于3、2或1等同于小于或等于3、小于或等于2、或小于或等于1。
如本文所用,术语“滑动角”通常是指给定大小的液滴开始在重力下移动的相对于水平的角度。例如,将5微升(μl)液滴保持在4°下但允许其在5°下滑动的表面可以被称为具有5°的5μl滑动角。对于各种应用,可以使用小于或等于70°、60°、50°、40°、30°、25°、20°、15°、10°、5°、3°、2°、1°或更小的5μl滑动角。滑动角越小,表面越光滑,并且通常使液滴跨表面移动所需的电压越低。
如本文所用,术语“接触角滞后”通常是指在前进接触角与后退接触角之间观察到的差值。例如,在具有较低表面附着力的表面中,在液体液滴跨表面移动时,前沿与表面之间相对于后沿与表面之间的接触角可以基本上相同。然而,在具有较高附着力的表面中,前接触角与后接触角之间的差值可能变得更大。低表面粗糙度、高表面疏水性和低表面能可以使此角度的差值较小。可以使用小于或等于70°、60°、50°、40°、30°、25°、20°、15°、10°、7°、5°、3°、2°或更小的接触角滞后(即,前接触角与后接触角之间的差值)。
如本文所用,术语“液滴”通常是指离散或有限体积的流体(例如,液体)。液滴可以通过界面将一相与另一相分离来生成。液滴可以是与另一相相分离的第一相。液滴可以包括单相或多相(例如,含有聚合物的水相)。液滴可以是邻近表面设置并且与分相(例如,气相,诸如空气)接触的液相。
如本文所用,术语“生物样品”通常是指生物材料。这种生物材料可以表现出生物活性或是生物活性的。这种生物材料可以是或可以包括脱氧核糖核酸(DNA)分子、核糖核酸(RNA)分子、多肽(例如,蛋白质)或其任何组合。生物样品(或样品)可以是组织样品,诸如活检、芯针活检、针吸取物或细针吸取物。样品可以是流体样品,诸如血液样品、尿液样品、粪便样品或唾液样品。样品可以是皮肤样品。样品可以是脸颊拭子。样品可以是血浆或血清样品。样品可以是植物来源样品、水样品或土壤样品。样品可以是外星物质。外星样品可以含有生物材料。样品可以是无细胞(或不含细胞)样品。无细胞样品可以包括细胞外多核苷酸。细胞外多核苷酸可以由身体样品分离,该身体样品可以选自血液、血浆、血清、尿液、唾液、粘膜***物、痰液、粪便和泪液。样品可以包括真核细胞或其多个真核细胞。样品可以包括原核细胞或其多个原核细胞。样品可以包括病毒。样品可以包括来源于生物体的化合物。样品可以来自植物。样品可以来自动物。样品可以来自疑似患有或携带疾病的动物。样品可以来自哺乳动物。
如本文所用,术语“甘油%”通常是指与水溶液中的甘油相比溶液的粘度,其中水中甘油的量(按体积计)通过百分比值来确定。例如,具有约“30%甘油”的粘度的本文所述的溶液表示溶液的粘度是包含约30%甘油的水溶液中甘油的当量。
如本文所用,术语“对象”通常是指动物,诸如哺乳动物(例如,人)或鸟类(例如,鸟)或其他生物体,诸如植物。对象可以是脊椎动物、哺乳动物、啮齿类动物(例如,小鼠)、灵长类动物、猿或人。动物可以包括但不限于农场动物、运动动物和宠物。对象可以是健康或无症状个体、患有或疑似患有疾病(例如,癌症)或易患疾病的个体、需要疗法或疑似需要疗法的个体或其任何组合。对象可以是患者
如本文所用,术语“变异系数”通常是指重复性和精密度。这可以通过等式1来给出,其中s是不同材料的响应度的标准偏差,并且x是所有材料的平均响应度。
Figure GDA0003716418020000341
如本文所用,术语“串扰”通常是指液滴的污染。串扰可以是指从另一个液滴获取的液滴、生物样品或其组合的百分比。如果p1表示液滴中的目标材料并且p2是目标液滴中存在的来自其他液滴的总材料,则串扰可以通过等式2给出。
Figure GDA0003716418020000342
电润湿装置和***
参考图1(图1A和1B),电润湿装置可用于使单个的水滴(或其他水性、极性或导电溶液)从一个地方移动到另一个地方。水的表面张力和润湿特性可以使用电润湿效应通过电场强度来改变。电润湿效应可以由固体与液体之间施加的电势差异导致的固液接触角变化而产生。可在液滴的宽度上变化的润湿表面张力的差异以及接触角的相应变化可以提供动力以引起液滴移动,而没有移动部件或物理接触。电润湿装置(100)可以包括:带有介电层(130)的电极(120)网格,该介电层(130)具有覆盖电极(120)的适当的电优先级和表面优先级,其全部铺设在刚性绝缘基板(140)上。
电极网格的表面可以制备成使得它具有与水的低附着力。这允许水滴(110)通过电场的梯度和跨水滴宽度的表面张力产生的小力沿表面移动。低附着力的表面可以减少液滴留下的痕迹。较小的痕迹可以减少液滴交叉污染,并可以减少液滴运动过程中的样品损失。对表面的低附着力还可允许液滴运动的低致动电压和液滴运动的可重复行为。具有若干方式来测量表面与液滴之间的低附着力,包括滑动角和接触角滞后,例如使用接触角测角器或电荷耦合装置(CCD)相机。
有若干方式来实现低表面附着力;例如,机械抛光、化学蚀刻或其组合,直至在几纳米内平滑,施加涂层来填充表面不规则,施加液体来填充表面不规则,对表面进行化学改性以产生期望的表面特性(疏水性、亲水性、抵抗生物污垢、随电场强度而变化等)。
用于电润湿的液体上液体电润湿(LLEW)
参考图2A和图2B,称为“液体上液体电润湿”(LLEW)的电润湿机制利用了在液-液-气界面(200)处发生的电润湿现象。浮在一层低表面能液体(210)(诸如油)的表面上并且基本上被气体(诸如空气、氮气、氩气等)包围的液滴(110)在接触线处产生液-液-气界面(200)。油(210)可以通过固体基板的带纹理的表面(220)被稳定于固体基板上的适当位置,并且金属电极(120)的导电层可以嵌入该固体的主体中。参考图2B,当跨液滴(110)的高度施加电势时,液-液-气界面(200)使液滴(110)润湿油(210)并且在仍然浮在油(210)上的同时在表面上扩散。
参考图3A、图3B和图3C,液体上液体电润湿技术可以用于操控包含生物和化学样品的液滴(110)。在图3A中,液滴(110)从左向右运动,并且正好被最左电极(120a)上的正电压(302)吸引到三个电极中的最左的电极(120a)上,因此在液-液表面添加电场并增强润湿性。在图3B中,将电压从最左的电极(120a)撤离并施加到中心电极(120b)。由于中心电极(120b)上的增强的润湿性,液滴已经被吸引到图3B中的中心位置。在图3C中,将电压从左电极(120a)和中心电极(120b)撤离并施加到右电极(120c),并且在右电极(120c)上的增强的润湿已经将液滴吸引到右边。
参考图4A、图4B和图4C,可以使用差分润湿在电极阵列(例如,120d、120e和120f)上的LLEW表面(400)上合并两个液滴(例如,110a和110b)。在图4A中,两个液滴已被吸引到最左电极和最右电极(分别120d和120f)。在图4B中,从左电极和右电极去除电压(分别120d和120f),并将其施加到中心电极(120e)。这两个液滴被从左和右吸引到中心并开始合并(410)。在图4C中,两个液滴的合并完成(420)。
参考图3A、图3B、图3C、图4A、图4B和图4C,这种微流体选择性润湿装置可以能够进行例如微流体液滴致动,诸如液滴输送、液滴合并、液滴混合、液滴***、液滴分配、液滴形状变化或其组合。然后,该LLEW液滴致动可用于微流体装置,以在用于医学诊断学装置中以及在许多芯片上实验室应用中使生物学实验(诸如液体测定)自动化。
用于液滴操控的电介质上电润湿(EWOD)
参考图5A和图5B,电介质上电润湿(EWOD)是如下现象:其中可以通过跨液滴和导电电极(120,S)之间的介电膜(530)的电场来调节水性液体、极性液体或导电液体(L)的润湿性。从电极(120)添加或减去电荷可以改变绝缘介电层(530,I)的润湿性,并且润湿性变化反映在液滴的接触角(540)的变化中。接触角的变化继而可以导致液滴改变形状、移动、***成较小的液滴或与另一个液滴合并。如等式4所示,接触角(540)是施加电压的函数。
液体在固体表面上的润湿行为(润湿或润湿性)是指液体如何在固体表面上扩散。液滴在被气体(例如,空气)包围的固体表面上的润湿性由固体、液体和气体介质之间的界面张力控制。对于不可移动的液滴,润湿性根据与固体表面的接触角(540)来测量,其由Young等式控制(等式3):
γSL=γSGLGcos(θe)等式3
其中γSL是固-液表面张力,γLG是液气表面张力,γSG是固-气表面张力以及θe是平衡时的接触角。
Gabriel Lippman观察到,在施加电压时,电解质中汞的毛细管液位发生变化。然后通过Lippmann-Young等式(等式4)描述这种现象(电毛细现象):
Figure GDA0003716418020000361
θ0是当电场为零(即未施加电压)时的接触角,以及θu是当施加电压U时的接触角,并且c是电极和液滴之间的每单位面积的电容。
电润湿阵列的制造方法
电润湿装置可以用于输送并混合可以含有生物液体的液体,该电润湿装置可以由绝缘基板(140)上的电极阵列(120)、薄介电层(130)和最终光滑(低表面能)涂层(如有需要)组成。有时介电层本身可以在具有或没有另外的化学或形貌改性的情况下提供足够的疏水和光滑行为。
可以使用以下方法中的一种或多种的某种组合来制造绝缘基板(140)上的电极网格(120)-印刷电路板制造(PCB制造)、CMOS或HV CMOS或其他半导体制造方法,其使用薄膜晶体管(TFT)、有源矩阵或无源矩阵背板技术,或任何其他能够在绝缘基板上铺设导电电路的方法制造。为了在运动和混合过程中分离液体,可用以下描述的许多方法中的一种方法用电介质覆盖电极阵列的表面。
PCB和表面电极可以使用薄膜晶体管(TFT)、有源矩阵或无源矩阵背板技术制造。
与液滴相互作用的电介质的顶表面的化学性质和纹理可以控制液滴成功和重复运动所需的电压。由于化学组成和物理纹理,电润湿装置上的液滴在运动时可能出现两种现象:液滴钉扎和接触角滞后。液滴钉扎现象是指液滴在移动时被卡在任何局部表面缺陷上。接触角滞后是液滴运动时的前进接触角和后退接触角之差。由于液滴钉扎和高接触角滞后,电润湿表面上的液滴可能需要显著高的电压。表面的化学组成、表面的纹理和滑度以及表面的平滑度也可能导致液滴在移动时留下痕迹。此痕迹可以简单地是仅一个分子或多至超过液滴的99%。
为了减少钉扎、接触角滞后和液滴留下的痕迹,使覆盖电极阵列的电介质平滑,然后进行化学改性以产生具有低表面能的表面。表面能可以是与两种介质之间的界面处的分子间力相关的能量。与低表面能表面相互作用的液滴被该表面排斥并且被认为是疏水的。介电层本身可能为液滴运动提供足够的光滑表面。
以下部分描述了可能被用于制造电润湿装置的各种材料:用于铺设导电材料的基板,用于电极和互连的导电材料,介电材料,用于沉积介电材料、在电介质上实现平滑表面的方法,以及用于为液滴运动提供光滑表面的疏水性涂层材料。
用于电润湿的基板
可以通过直接在电极阵列(120)上产生光滑的表面(就低表面能而言)来形成电润湿微流体装置。电极阵列由导电板组成,该导电板充电以致动液滴。阵列中的电极可以以任意布局,例如矩形网格或离散路径的集合布置。电极本身可以由以下制成:一种或多种导电金属(包括金、银、铜、镍、铝、铂、钛)、一种或多种导电氧化物(包括铟锡氧化物、掺杂铝的氧化锌)、一种或多种导电有机化合物(包括PEDOT和聚乙炔)、一种或多种半导体(包括二氧化硅)或其任何组合。用于布置电极阵列的基板可以是任何厚度和任何刚度的任何绝缘材料。
电极阵列可以在标准刚性和柔性印刷电路板基板上制造。用于PCB的基板可以是FR4(玻璃-环氧树脂)、FR2(玻璃-环氧树脂)、Rogers材料(碳氢化合物-陶瓷)或绝缘金属基板(IMS)、聚酰亚胺膜(示例性商业品牌包括Kapton、Pyralux)、聚对苯二甲酸乙二酯(PET)、陶瓷或其他可商购获得的1μm至10,000μm厚度的基板。在一些实施方案中可以利用500μm至2000μm的厚度。
电极阵列还可以由以下制成:导电元件、半导电元件或其任何组合,其可以用有源矩阵技术和无源矩阵技术诸如薄膜晶体管(TFT)技术来制造。电极阵列也可以由利用传统CMOS或HV-CMOS制造技术制造的像素阵列制成。
电极阵列还可以由透明导电材料制成,该透明导电材料例如沉积在玻璃板、聚对苯二甲酸乙二醇酯(PET)和任何其他绝缘基板上的铟锡氧化物、掺杂铝的氧化锌(AZO)、掺杂氟的氧化锡(FTO)。
电极阵列也可以用沉积在玻璃、聚对苯二甲酸乙二醇酯(PET)和任何其他绝缘基板上的金属制成。
参考图6A,在一些情况下,电润湿微流体装置(100)可以由不具有第二板的共面电极(例如,相同层上的电极,120g和120h)组成,并且液滴(110)可以浮在电极平面上方的开放表面上。在这种配置中,参考电极(例如,接地信号,120g)和致动电极(120h)可能位于相同平面上,铺设在印刷电路板基板上(140),并且在电极上方具有薄绝缘体(130)。液滴浮在该绝缘层上,而不夹在两个板之间。在一些实施方案中,与致动电极相比,参考电极(120g)可以具有不同的几何形状。在一些实施方案中,将介电元件或层放置成使得液滴(110)可以与不同极性的电极(120)不接触,使得液滴可以暴露于电场而非电流。
参考图6B,在一些实施方案中,电润湿微流体装置可以由两层电极组成(一层用于参考电极(120g),并且一层用于致动电极(120h)),在基板(140)中一层位于另一层的顶部(与其中液滴在板之间的电极夹层相反)。在此,液滴(110)可以浮在开放表面上并且可以位于两层电极上方。两层电极(120g和120h)通常被绝缘体的薄层(602)(例如10nm至30μm)隔开。在一些实施方案中,具有参考电极的层(120g)可以更靠近液滴。最上层的参考电极(120g)可以直接与液滴接触。参考电极层的厚度可以小于500nm,并且可以涂覆有疏水材料。具有参考电极的第二层可以是任何任意形状的单个连续迹线。
参考图6C,从上至下的层可以被布置为疏水层(610)、具有电极(120g)的层(例如,参考或接地)、介电层(130)、致动电极(120h)的层、以及刚性绝缘基板(140)。液滴(110)可以浮在疏水层(610)的顶部开放表面上。因为电极(120)可以是金属,所以介电层(130)可以使两个非共面电极阵列分开。
在构造电润湿微流体装置(100)时,可以使用多层层压板(1至50层)来隔离多层电气互连布线(2至50层)。层压板的最外层中的一层可以包含用于致动液滴的电极焊盘(120),并且可以包含参考电极。互连可以将电焊盘连接到高压以用于致动和用于电容感测。致动电压可以为1V至350V。该致动电压可以是AC信号或DC信号。
在电极阵列上产生平滑的介电表面
为了以电方式将液滴与电极阵列分离,可以将介电层(130)施加在电极阵列(120)的顶表面上。此介电层(130)的顶表面可以形成有对液滴运动提供很少或没有阻力的顶表面,使得液滴可以通过低致动电压(小于100V DC、小于80V、小于50V、小于40V、小于30V、小于20V、小于15V、小于10V、小于8V或更小,取决于平滑度、光滑性、疏水性或其任何组合)移动。为了获得低阻力的光滑表面,电介质表面可以具有平滑的表面形貌,并且可以是疏水的或以其他方式提供对液滴的低附着力。也可以对介电表面直接施加化学处理。
平滑的形貌表面通常由其粗糙度值表征。通过实验发现,实现液滴运动所需的电压可以随着表面变得更平滑而变化。平滑度可以是小于2μm、1μm、500nm或更小。
电极阵列上方的平滑介电表面可以通过诸如以下的技术的某种组合来形成:
1.两步法,其中可以修补表面缺陷以实现相对平滑表面,并且然后它可以用介电材料覆盖。修补缺陷可以用光致抗蚀剂、环氧树脂或灌封胶来进行。第二介电层可以是相同的材料或聚合物膜。
2.第二种方法可以在电极阵列上沉积过量的光致抗蚀剂或环氧树脂,然后将过量的材料抛光掉至所需的厚度和表面粗糙度。
3.第三种方法可以将薄的聚合物膜拉伸并粘合到表面上。
为了防止液滴附着至经平滑处理的介电表面130上,可以通过以下一种或多种方法进一步改性该表面以使其光滑:
1.改性表面化学
2.改性表面形貌
3.施加光滑液体涂层,其被称为液体上液体电润湿(LLEW)。
以下部分详细描述了将电极阵列的粗糙的非光滑表面改性为平滑的光滑表面的各种方法。
用光致抗蚀剂/环氧树脂/灌封胶进行平滑处理
参考图7A和图7B,通过典型工艺制造的印刷电路板(PCB)可以具有以下形式的表面粗糙度:电极之间的峡谷状部(间隙)、用于在多层之间建立连接的孔(也称为通孔)、用于焊接通孔部件的孔以及制造错误引起的任何其他缺陷等。表面缺陷的典型尺寸可以在30μm至300μm的范围内,并且可能小至1μm,其取决于制造工艺而变化。
可以单独使用或结合使用多种方法来减少这些表面缺陷,以实现粗糙度值小于1μm、更大或更小的平面,这进而可以在较低电压下提供期望的润湿特性和性能。
可以通过在峡谷状部之间流动光致抗蚀剂、环氧树脂、灌封胶或液体聚合物来获得平滑的表面。目标光致抗蚀剂可以在尺寸小于10μm(在任何维度上)的峡谷状部之间流动,并具有小于8500厘泊动态粘度。市售的SU-8光致抗蚀剂是其很好的实例。用于此目的的合适液体聚合物可以是例如液体聚酰亚胺。
参考图8A,为了填充电极(120)之间的峡谷状部,可以通过施加光致抗蚀剂、环氧树脂、灌封胶、液体聚合物或另一个电介质的涂层(804)来实现电极阵列的大致平坦的表面(802)。该材料应可以具有填充间隙的特性,以使其能够流入较小的间隙(例如,100μm(宽度)×35μm(高度)),并填充较大的间隙。然后可以使涂层固化以实现期望范围内的粗糙度值(可以是1μm左右)的表面。金属电极表面可以暴露或被涂层覆盖。
在平滑的光致抗蚀剂/环氧树脂/灌封胶上产生电介质
一旦可以通过流动光致抗蚀剂或环氧树脂或灌封胶来修补表面缺陷(804),可以对电极阵列的最顶部表面进行平坦化(802)。参考图8B,基本上平面的表面可以具有金属电极(120),其可以具有另外的介电涂层(130),该另外的介电涂层(130)将金属电极(120)包围以将液滴与带电电极分离,同时允许电场传播到液滴仍然可以被电场影响的地方。此涂层(130)的厚度的范围可以是10nm至30μm。介电层(130)可以通过经由各种涂覆方法进行的各种沉积薄膜、通过如接下来所述粘结聚合物膜或通过任何其他薄膜沉积技术来形成为薄膜。
沉积薄膜涂层作为电介质
参考图8B,顶部平坦化的表面(802,暴露的金属电极(120)和图8A的光致抗蚀剂(804))可以涂覆有相同的光致抗蚀剂(或环氧树脂或灌封胶)材料或具有不同介电特性、结合特性和平滑特性的不同材料的另外的层,以产生将液滴与电极电隔离的介电层(130)。光致抗蚀剂可以通过旋涂、喷涂、化学气相沉积、滴涂、浸涂等来施加。
平坦化表面(802)还可以通过某种形式的化学气相沉积来用介电薄膜(130)涂覆。这种沉积可以产生遵循涂覆表面的形貌的膜。用于气相沉积的可商购获得的示例性类别的材料被称为保形涂层材料并且可以良好地适用于可规模化制造。保形涂层材料包括例如聚对二甲苯保形涂层、环氧树脂保形涂层、聚氨酯保形涂层、丙烯酸保形涂层和氟碳化合物保形涂层。可以通过气相沉积使用的其他涂层材料包括例如二氧化硅、氮化硅、氧化铪、五氧化二钽、二氧化钛或其任何组合。
粘合聚合物膜以形成最顶部的电介质
参考图8C,顶部平坦化的表面(802,金属电极(120)和光致抗蚀剂(804))可以覆盖有聚合物膜(816)的另外的层,以使液滴与电极隔离。膜(816)可以被拉伸以消除皱褶,并确保另外的平滑度。可以通过热粘合或通过真空抽吸或通过静电将其向下吸附或简单地通过将其机械地保持在适当位置而将聚合物膜保持在电极阵列上。
使用过量的光致抗蚀剂并抛光成平滑的介电表面
参考图8D,可以通过如下来获得平滑的介电表面:用光致抗蚀剂或其他可固化的介电材料(820)涂覆电极阵列,然后抛光(822)最顶部的表面以获得平滑表面(824)。可以使用,例如,旋涂、喷涂、气相沉积或浸涂的技术来涂覆光致抗蚀剂/介电材料。
此方法可以包括用可固化电介质(820)涂覆电极阵列(120)至显著高于电极的高度的厚度。例如,如果测量电极的高度为35μm,则电极的顶表面上方的介电涂层厚度可以为至少70μm。可以使用通常大于电极网格阵列的抛光垫用细磨料和化学浆料抛光(822)电介质。可以继续抛光工艺,直至电极上方的电介质具有高于电极的期望厚度(小于500nm至15μm或更多)。抛光步骤还可以使表面平滑至具有小于0.5μm、1μm并且更优选地比500nm或200nm、100nm更平滑或更小的粗糙度值的平面粗糙度。在抛光之后,用疏水性涂层进行的后续行为可以是期望的。具有或没有疏水性涂层的薄平滑表面可以提供足够的电润湿力以在较低的电压下移动液滴。
聚合物膜作为平滑的介电表面
参考图8E,在一些情况下,可以使用薄的聚合物膜(830)(1μm至20μm)在电极阵列的正上方形成平滑的介电表面。在一些实施方案中,可能不需要使用光致抗蚀剂、环氧树脂或灌封胶来修补一些峡谷状部的预处理—这些腔(832)可能充满空气。代替地,可以将膜直接施加到未改性的电极表面上。在这些情况下,首先将膜拉伸(834)以去除任何皱褶,然后将其粘结至电极表面。低表面自由能的聚合物膜可以用于这种用途。许多氟化聚合物,例如PTFE(聚四氟乙烯)、ETFE(乙烯四氟乙烯)、FEP(氟化乙烯丙烯)、PFA(全氟烷氧基烷烃)和其他具有低表面能的氟聚合物,可以适用于电润湿。聚二甲基硅氧烷(PDMS)是另一种具有低表面能的材料,其可用作电润湿的电介质。这些低表面能聚合物膜需要另外的疏水材料层,以进一步降低表面能,以实现低附着力和良好的电润湿液滴运动。由具有较高表面自由能的聚合物(例如聚丙烯、聚酰亚胺、密拉(Mylar)、聚偏二氟乙烯(PVDF))制成的膜也可以适用于电润湿,但是它们可能需要另外的疏水性材料涂层或表面改性以助于液滴运动。
产生最终的光滑表面光洁度
电润湿微流体装置的表面可以被进一步处理以减少或消除液滴对顶表面的附着。这种另外的处理可以允许通过较低的致动电压使液滴从一个位置重复移动到另一位置。为了将平滑的介电表面变成用于液滴的光滑的低附着力表面,可以通过化学改性或表面形貌改性将介电材料的表面转变为疏水性表面。可选地,可以通过在平滑的电介质上或直接在电极阵列上产生薄的润滑液体层来产生该光滑表面。疏水涂层材料可以使在倾斜3°或更大角度的表面上的1μl液滴滑落。以下部分将详细描述这些方法。
对固体电介质改性以实现期望的表面能
在一些实施方案中,平滑的介电表面可能没有足够低的表面能以允许由电润湿引起的液滴运动。为了进一步降低表面能,可以对介电表面进行化学或形貌改性。
在一些实施方案中,平滑的介电表面可能具有过低的表面能而不能允许通过由电润湿诱导的液滴运动。为了增加表面能,可以对介电表面进行化学或形貌改性。
表面化学改性(功能化)
参考图8F,表面能可以通过以下降低:化学改性,例如通过在电极(120)、电介质(130)或其任何组合上涂覆疏水性或低表面能材料(840),例如基于氟碳化合物的聚合物(氟聚合物)、聚乙烯、聚丙烯或其他疏水性表面涂层。
表面涂层还可以通过一种或多种方法(包括旋涂、浸涂、喷涂、滴涂、化学气相沉积或其他方法)施加。
在一些情况下,可能期望选择可以充当电介质(使液滴相对于电垫的电荷绝缘,同时允许电场传播)和疏水性涂层或亲水性涂层或两者(以降低附着力并允许平滑液滴运动)的保形涂层。
表面形貌改性
为了在电介质的表面上引起疏水性,可以在微观水平上改性其形貌。这样的改性可以包括使表面图案化以产生微观柱(微柱)或微球的沉积。
产生微柱
参考图9A,可以在介电层(130)的膜上产生微柱结构(910)。电极阵列上方的最顶层可以用作疏水表面。
参考图9B、图9C和图9D,可以通过例如,首先热粘合聚丙烯、聚四氟乙烯(PTFE)、密拉、乙烯四氟乙烯(ETFE)、氟化乙烯丙烯(FEP)、全氟烷氧基烷烃(PFA)、其他基于碳氟化合物的聚合物或其他低表面能聚合物的聚合物膜(920,130)来产生微柱结构,作为电极上的电介质。可以将聚合物表面压靠在微柱模板(922),例如具有尺寸为1μm至5μm的孔的聚碳酸酯膜(或其他多孔膜作为模板)上。参考图9C,在热量和压力(924)下,聚碳酸酯微柱模板可将其自身压印到介电膜中。参考图9D,当聚碳酸酯膜被剥离时,它留下如结构(910)的微观柱。
在另一可选方案中,可以在平面化的电极阵列上(在电极阵列被平面化之后)用例如聚二甲基硅氧烷(PDMS)弹性体产生微柱结构(910)。在该方法中,PDMS弹性体可通过旋涂法浇铸成薄膜。然后可以将聚碳酸酯膜压靠在PDMS表面上。PDMS膜可以经固化以固体化。然后可以溶解聚碳酸酯膜。
在另一可选方案中,可以将聚合物(例如ETFE、PTFE、FEP、PFA、PP、密拉和PVDC)或弹性体(PDMS、有机硅)粘合至电极阵列,然后可以用激光蚀刻以形成微柱。
在另一可选方案中,可将光致抗蚀剂材料沉积到电极阵列上,然后可以用激光蚀刻以产生微柱。也可以使用光刻技术对光致抗蚀剂进行图案化和蚀刻。
微球
参考图9E,用于对形貌进行改性以实现光滑或低附着力表面的替代性方法可以是沉积粒径小于200nm至2μm或更大的微球(930)。微球可以紧密堆积以使表面疏水。这种微球颗粒的良好候选者是二氧化硅珠。为了使表面光滑,这些微球可以被有机官能的,例如烷氧基硅烷分子覆盖。可选地,可以沉积基于碳氟化合物的微球(PTFE、ETFE),并且可以不需要另外的涂层。
光滑的液体涂层和液体上液体电润湿(LLEW)
在LLEW中在薄膜液体层上的液滴
在LLEW中,液滴可以浮在低表面能润滑油的薄膜上。可以在低表面能纹理化固体表面上形成油的薄膜。可以选择纹理化固体和润滑油,使得润滑油完全润湿固体,并且保持与液滴的液体不相互作用。一旦纹理化固体的主体被油填充,就可以在油填充体正上方形成油的薄层。顶部上油层的自流平性质可以在下面表面的形貌中隐藏任何不均匀性。因此,具有非常高粗糙度(几十微米)的电极阵列的表面可以用润滑油的薄膜转化为近乎分子水平的平滑表面。
该分子水平的平滑表面可以为液滴运动提供非常小的摩擦,并且液滴可以出现很少液滴钉扎甚至没有液滴钉扎。在如此平滑的表面上的液滴可以具有非常小的接触角滞后(低至2°)。所产生的低接触角滞后和不存在液滴钉扎可以导致在可靠液滴操控下极低的致动电压(1V至100V)。
大部分固体中的油可能被困在构成固体纹理的不规则部或孔中。与平滑的无纹理表面上的油层相反,纹理化固体中的油对固体表面可以具有足够的亲和力并与之发生分子相互作用,从而降低重力的影响。当倾斜或倒置时,将油捕获在纹理内可以使表面保留其油层及其特性。由于油可能不离开固体表面,因此被移动的液滴可能浮在润滑油上移动,并且它可以与润滑油表面相互作用,而不与下面的纹理化固体相互作用。结果,液滴可以在下面的固体上几乎不留痕迹。如果油与液滴不混溶,则液滴可以在液膜层上移动而在两个连续的液滴交叉路径之间没有任何污染。
纹理化的固体可以由规则或不规则的微纹理构成。实例包括:
·具有规则间隔的微观柱结构的固体,具有微米级的间隔。
·具有规则间隔的空隙的固体;空隙可以是任意形状。
·纤维的随机矩阵。
·具有不规则间隔的微观柱结构的固体,具有微米级的间隔。
·具有随机间隔的空隙的固体;空隙可以是任意形状。
·可以使用多孔材料,例如多孔铁氟龙、多孔聚碳酸酯、多孔聚丙烯、多孔纸和多孔织物,作为不规则或规则的微纹理化固体。
润滑油可以是任何低能油,例如硅油、杜邦Krytox油、Fluorinert FC-70或其他油。可以选择润滑油,以使油与液滴不混溶。与液滴溶剂不混溶的润滑剂可以在来自液滴的内容物向油中的扩散较小的情况下提高液滴浮在润滑剂或油上的能力,反之亦然。润滑油的粘度可能影响电润湿过程中的液滴流动性;其中较低的粘度促进更高的流动性。合适的润滑油可能通常是不挥发的并且与目标漂浮液滴不混溶。如果液滴包含生物构建体,则可能需要生物相容性油。在具有用于温育和热循环(例如,用于聚合酶链式反应)的片上加热元件的LLEW装置中,可以选择油以承受加热和高温。具有足够高的介电常数的油可降低引起液滴运动的致动电压。
产生用于LLEW的纹理化固体
在LLEW中,充油的纹理化固体可以充当电极阵列和液滴之间的电屏障,并且还可以为液滴运动提供光滑的表面。存在可以在电极阵列上产生纹理化的介电表面的许多不同的方法。
通过粘结聚合物或其他介电材料作为膜,可以在电极阵列上形成纹理化的固体表面。在粘结到电极阵列之前,膜本身可以被纹理化。可选地,可以将非纹理化的膜粘结到电极阵列上,然后通过例如激光蚀刻、化学蚀刻或光刻技术来进行纹理化。
可选地,可以在电极阵列上涂覆诸如光致抗蚀剂(SU-8)的光敏材料层。可以通过化学蚀刻、激光蚀刻或任何其他光刻技术来对光致抗蚀剂进行图案化。
可选地,可以通过在电极阵列上涂覆非常薄的弹性材料(例如PDMS)层,然后使用软光刻技术来选择性地产生孔,来产生纹理化的固体。在产生薄的弹性体层之后,PDMS的表面也可以被激光蚀刻以产生纹理。
可选地,可以如下产生纹理化的固体–
·施加保形涂层或液态可光成像(LPI)阻焊剂或干膜可光成像的阻焊剂
·用激光或通过物理冲压来蚀刻该涂层的表面。
·直接在电极阵列上生长聚合物网格。
·一次生长一个分子以达到所需的结构。
在纹理化的固体上施加润滑油
纹理化固体层可以通过旋涂、喷涂、浸涂、刷涂、滴涂或通过从储器分配来用润滑油填充。
通过在装置的***产生物理或化学屏障,可以防止润滑油从LLEW芯片流出。
液体上液体电润湿(LLEW)的独特特性
LLEW阵列具有两个独特的特性,这些特性是生物样品操控所期望的。因为LLEW阵列具有这样的平滑表面,所以可以显著降低电润湿致动电压。此外,LLEW表面架构还可以通过降低留下的痕迹液滴以及改善清洁机制来减少样品之间的交叉污染。
低致动电压
LLEW电极阵列上的油表面的近乎分子水平的平滑度可以减少或消除液滴的钉扎。由浮在油表面上的水溶液制成的液滴可以很少或根本没有从表面拖曳,因此前进角和后退角之间有很小的差。消除这两种现象可以导致致动电压降低。可以在低至1V的电压下致动液滴。
在LLEW装置中,浮在油薄层上的液滴可能从不与油下方的固体介电基板物理接触。这样可以减少或消除留下的材料量,从而减少经过相同点的样品之间的交叉污染。
通过洗涤LLEW装置表面进行清洁
当LLEW装置被固体颗粒(诸如灰尘)污染时,作为清洁程序的一部分,可以在污染物上操纵液滴以从液膜表面去除污染物。该清洁程序可以进一步扩展以清洁电润湿装置的整个表面。例如,可以在LLEW微流体芯片上的两次生物学实验之间使用清洁程序,以减少交叉污染。在一些情况下,当液滴长时间停留在某个位置时,一些分子可能从该液滴扩散到下方的油中。液滴通过扩散留下的任何残留物也可以用类似的洗涤程序进行清洁。
当在LLEW装置上输送液滴时,液滴可能携带并耗尽表面的油膜。表面上的油可以通过从外部储器,例如,从喷墨筒、注射泵或其他分配机构注入油来补充。
可以彻底洗掉润滑油表面,并更换一层新鲜的油,以防止两次连续实验之间发生交叉污染。
电润湿的应用
任意大的开放面
可以在不将液滴夹在电极阵列和盖板(中性玻璃或上电极阵列,或仅是大的接地电极)之间的情况下,在开放表面上操控液滴。可以使用液滴上方的盖板,该盖板不与液滴物理接触。
电极阵列与在开放表面和任意大面积上的电润湿可以允许致动体积为1纳升至1毫升(相距6个数量级)的液滴。该实施在单个装置上以数字方式显示了多尺度流体操控。
可以准备任意大尺寸的电极的二维阵列(网格)以用于电润湿液滴致动。与规定的一维轨道相比,二维阵列可以允许液滴的多个路径。可以利用这些网格来避免两种不同组成成分的液滴之间的交叉污染。例如,二维网格可以允许并行地致动多个液滴。携带不同溶质的液滴可以在单独的并行轨道上运行以减少污染。多个不同的生物学实验可以并行进行。
液滴运动、合并和***
可以在开放表面电润湿装置上移动、合并、***液滴或其任何组合。相同的原理适用于两板配置(液滴被夹)。
图10A、图10B和图10C示出了电极阵列(120)上液滴(110)的运动。在图10A中,向电极(120i)施加电压可以使覆盖表面具有疏水性,并且液滴然后可以使其润湿。当在两个相邻电极上施加电压时,液滴可以跨两个致动电极扩散,如图10B中所见。当从电极(120i)去除电压并施加到另一个相邻的电极(120j)时,表面返回到初始疏水状态,并且液滴被推出,如图10C所示。通过顺序控制施加到电极网格的电压,可以精确控制液滴在表面上的位置。
参考图10D、图10E和图10F,两个液滴可以合并。当两个液滴被拉向相同电极120k时,它们由于表面张力而可以自然合并。可以应用该原理来合并许多液滴,以产生散布在多个电极上的较大体积的液滴。
参考图10G、图10(h)和图10I,可以通过跨多个电极(至少三个电极)施加的一系列电压将液滴分成两个较小的液滴。在图10G中,单个大液滴在单个电极(120l)上方固结。在图10H中,将相等的电压同时施加到三个相邻的电极上,这可以使得单个液滴散布在三个相邻的电极上。在图10I中,关闭中心电极(120l)可以迫使液滴移出到两个外部电极(120m和120n)。由于在两个外部电极上具有相等的电势,因此液滴可以随后***为两个较小的液滴。
盒中实验室(台式数字湿式实验室)
到目前为止描述的制造方法的任何组合均可以用于本部分中描述的应用。
图11A示出了基于数字微流体的“台式数字湿式实验室”(1100)。该装置可以提供通用机器,其可以使各种各样的生物学方案/测定/检测自动化。盒可以具有可以打开和关闭的盖子。盖子可以具有透明窗口(1102)以观察液滴在电极阵列上的运动,该电极阵列可以形成为数字微流体芯片。盒可以容纳能够移动、合并、***液滴的数字微流体芯片(1111),其中液滴携带生物试剂。微流体芯片还可以具有一个或多个加热器或冷却器,其能够将液滴加热到高达150摄氏度或更高或者将液滴冷却到低至-20摄氏度或更低。
液滴可通过一个或多个“液体分配器”(1130)分配到芯片上。每个液体分配器可以是例如,电流体泵、注射泵、简单管、自动移液器、喷墨喷嘴、声喷射装置或其他压力或非压力驱动装置。液滴可以从标有“试剂筒”(1140)的储器中送入液体分配器。“盒中实验室”可具有高达数百个直接与微流体芯片对接的试剂筒。
液滴可以从数字微流体芯片移动到微板(例如,1115和1125)上。微板可以是具有可以容纳样品的孔的板。微板在任何地方在单个板上可以具有一个至一百万个孔。多个微板可以与盒中的芯片对接。为了将液滴从微流体芯片分配至微板,可以使用具有各种几何形状的电润湿芯片。在一些情况下,分配芯片可以呈类似于移液管尖端的锥形形式。在另一个实施方案中,分配孔可以是圆柱形。在另一个实施方案中,分配孔可以是在中间具有间隙的两个并行板。在另一个实施方案中,分配孔可以是单个开放表面,其中至少一个液滴在开放表面上移动。分配机构还可以使用多种其他结构,例如电流体泵、注射器泵、管、毛细管、纸、芯(wick)或甚至芯片中简单的孔。
“盒中实验室”可以是空调调节的,以调节内部温度、湿度、光照条件、液滴大小、压力、液滴涂层、氧气浓度或其任何组合。盒的内部可以处于真空。盒的内部可以用各种气体的组合来吹扫。气体可以包括空气、氩气、氮气或二氧化碳。
位于盒中心的数字微流体芯片(1111)可以被移除、洗涤和更换。
在盒中心的数字微流体芯片(1112)可以是一次性的。
数字微流体装置可以包括用于执行各种测定的传感器,例如光谱仪或声学换能器。
数字微流体装置可以包括基于磁珠的分离单元,用于DNA大小选择、DNA纯化、蛋白质纯化、质粒提取以及任何其他使用磁珠的生物学工作流程。该装置可以同时执行许多基于磁珠的操作-在单个芯片上可以执行从一次至百万次操作。
盒可以配备有多个相机,这些相机从顶部、侧面和底部观察芯片。相机可用于在芯片上定位液滴,测量液滴体积,测量混合以及分析进行中的反应。可以将来自这些传感器的信息作为反馈提供给控制流向电极的电流的计算机,使得可以通过精确的液滴定位、混合等来精确控制液滴,以实现高通量。来自这些传感器的信息可以被提供至机器学习算法或神经网络。
盒中实验室可用于执行微孔板操作,例如板冲压、连续稀释、板复制和板再排列。
盒中实验室可以包括用于PCR扩增和DNA组装(Gibson组装、Golden Gate组装)、分子克隆、DNA文库制备、RNA文库制备DNA测序、单细胞分选、细胞温育、细胞培养、细胞测定、细胞裂解、DNA提取、蛋白质提取、RNA提取、RNA和无细胞蛋白质表达的设备。
处理站
电润湿芯片(具有或没有盒中实验室外壳)可以包括一个或多个用于各种功能的站。
混合和分区站
参考图11B,电润湿装置可以包括一个或多个混合站(1120)。左侧是可以并行操作的基于电润湿的混合站的2×2集合。单个混合站(1120)具有3×3的致动电极网格。每个混合站(1120)可用于混合生物样品、化学试剂和液体。例如,两种试剂的液滴可以在混合站处聚集在一起,然后通过使合并的液滴围绕3×3网格的外部八个电极运行,或通过设计为混合两种原始液滴的其他模式运行来进行混合。每个混合站之间的中心至中心间隔可以为9mm,等同于标准96孔板的间隔。
混合站(1120)可以被扩展为具有许多不同的配置。每个单个混合器可以由以A×B图案的任何数量的致动电极组成。此外,混合器之间的间隔是任意的,并且可以改变以适合应用(例如其他SDS板)。并行混合站还可以具有以M×N图案(1122)的任何数量的单个混合器。并行混合站可以具有顶板的任何配置,包括但不限于开放面、封闭板或具有液体进入孔的封闭板。
混合站(1120)可以用作分区站。分区站可以使用电润湿力来将一个液滴分区为多个液滴。除了电润湿力之外,可以使用其他方法(包括介电润湿力、介电泳作用、声学力、疏水刀或其任何组合)来对液滴进行分区。分区可以用于各种目的,诸如分配试剂或样品。分区的液滴然后可以与其他液滴混合以在其他液滴中进行反应。分区的液滴可以通过与非分区的液滴相同的传感器和方法来分析。
分区的液滴可以与靶液滴混合以维持至少一个靶液滴的恒定体积,其中所述至少一个靶液滴已经损失体积(例如由于蒸发、本身被分区等)。使液滴混合的指令可以来自附接装置,诸如计算机或智能手机。
温度控制站
参考图11C,电润湿芯片可以包括一个或多个温度控制站(1128)。每个站(1128)可以集合一个或多个待应用于液体样品的功能,诸如混合、加热(例如,加热至高达且包括150摄氏度的温度)、冷却(例如,冷却低至且包括-20摄氏度)、补偿由于蒸发导致的流体损失以及均化样品的温度。加热或冷却可以通过金属迹线、箔式加热器、基板外部的Peltier元件或其组合来实现。在一些情况下,根据每个元件的传热功率和站之间的导热水平,个体化加热元件可以允许每个站被控制至单独温度,例如-20℃、25℃、37℃和95℃。
并行温度控制站可以与并行混合站相同的配置中的任一个来配置。
加热器可以具有小于或等于约150℃、125℃、100℃、75℃、50℃、25℃或更小的最大温度。加热器可以是热电的、电阻的或通过传热介质(例如,循环热水回路)加热。冷却器可以具有大于或等于约-50℃、-25℃、-10℃、-5℃、0℃、10℃或更大的最小温度。冷却器可以是热电的、蒸发的或通过传热介质(例如,冷水机)冷却。
如本文所述的温度控制站可以被配置用于精确地控制并操控施加至液体样品的温度。在一些实施方案中,温度控制站被配置用于使液体样品加热/冷却约0.1℃至约1℃。在一些实施方案中,温度控制站被配置用于使液体样品加热/冷却约0.1℃至约0.2℃、约0.1℃至约0.3℃、约0.1℃至约0.4℃、约0.1℃至约0.5℃、约0.1℃至约0.6℃、约0.1℃至约0.7℃、约0.1℃至约0.8℃、约0.1℃至约0.9℃、约0.1℃至约1℃、约0.2℃至约0.3℃、约0.2℃至约0.4℃、约0.2℃至约0.5℃、约0.2℃至约0.6℃、约0.2℃至约0.7℃、约0.2℃至约0.8℃、约0.2℃至约0.9℃、约0.2℃至约1℃、约0.3℃至约0.4℃、约0.3℃至约0.5℃、约0.3℃至约0.6℃、约0.3℃至约0.7℃、约0.3℃至约0.8℃、约0.3℃至约0.9℃、约0.3℃至约1℃、约0.4℃至约0.5℃、约0.4℃至约0.6℃、约0.4℃至约0.7℃、约0.4℃至约0.8℃、约0.4℃至约0.9℃、约0.4℃至约1℃、约0.5℃至约0.6℃、约0.5℃至约0.7℃、约0.5℃至约0.8℃、约0.5℃至约0.9℃、约0.5℃至约1℃、约0.6℃至约0.7℃、约0.6℃至约0.8℃、约0.6℃至约0.9℃、约0.6℃至约1℃、约0.7℃至约0.8℃、约0.7℃至约0.9℃、约0.7℃至约1℃、约0.8℃至约0.9℃、约0.8℃至约1℃或约0.9℃至约1℃。在一些实施方案中,温度控制站可以被配置用于使液体样品加热/冷却约0.1℃、约0.2℃、约0.3℃、约0.4℃、约0.5℃、约0.6℃、约0.7℃、约0.8℃、约0.9℃或约1℃。在一些实施方案中,温度控制站可以被配置用于使液体样品加热/冷却至少约0.1℃、约0.2℃、约0.3℃、约0.4℃、约0.5℃、约0.6℃、约0.7℃、约0.8℃或约0.9℃。在一些实施方案中,温度控制站可以被配置用于使液体样品加热/冷却至多约0.2℃、约0.3℃、约0.4℃、约0.5℃、约0.6℃、约0.7℃、约0.8℃、约0.9℃或约1℃。在一些实施方案中,温度控制站可以被配置用于使液体样品加热/冷却约0.5℃。在一些实施方案中,温度控制站被配置用于使液体样品加热/冷却,以使液体样品的温度维持在靶温度的约0.1℃至约1℃内。
磁珠站
参考图11D,磁珠洗涤站(1134)可以在电极网格上包含具有核酸、蛋白质、细胞、缓冲液、磁珠、洗涤缓冲液、洗脱缓冲液和其他液体的样品(1136)。该站可以被配置用于混合样品和试剂,按顺序施加加热或其他工艺,以对特定生物分子进行诸如以下操作:核酸分离、细胞分离、蛋白质分离、肽纯化、生物聚合物的分离或纯化、免疫沉淀、体外诊断、外泌体分离、细胞活化、细胞扩增、分离或其任何组合。除了混合和加热液体之外,每个磁珠站还可以具有局部打开和关闭强而变化的磁场的能力,这可能又导致磁珠移动到例如电润湿芯片的底部。每个磁珠站还可以具有通过电润湿力或通过其他力去除多余的上清液并洗涤液体的能力。
在一些情况下,样品可以在单板电润湿装置的开放表面上。在一些情况下,样品可以夹在两个板之间。多个磁珠站可以被配置用于并行操作,如以上针对并行混合站所述。
核酸递送站
参考图11E,电润湿芯片可以包括一个或多个核酸递送站(1140)。每个核酸递送站可以被设计为通过各种***方法将遗传物质(1142)、其他核酸和生物制剂***细胞。可以通过施加强电场、施加强磁场、施加超声波、施加激光束或其他技术来执行该***。可以将一个或多个核酸递送站配置为电润湿装置上的单件,或者可以提供多个核酸递送站以并行操作。
光学检查站
参考图11F和11G和11H,可以在电润湿装置(100)上提供使用光学检测和测定方法的一个或多个光学检查站(1150)。光源(1152)(例如,宽谱光、单频等)可以穿过光学器件(1154)以调节光(其可以包括例如滤光器、衍射光栅、镜子等)并照明置于电润湿装置上的样品(1156)。可以置于电润湿装置的相同侧或另一侧上的光学检测器(1158)可以被配置用于检测穿过样品的光谱以用于分析。光学检查可以用于测量例如核酸浓度、测量核酸质量、测量细胞密度、测量两种液体之间的混合程度、测量样品体积、测量样品荧光、测量样品吸光度、蛋白质定量、比色测定、光学测定或其任何组合。
如图11F所示,在单板电润湿装置(100)的情况下,样品(1156)可以在开放表面上。如图11G所示,样品(1156)可以被夹在两个板(100、1160)之间。在一些实施方案中,电润湿芯片和电极可以是透明的。在一些实施方案中,样品所定位于的电极中可以具有孔,以允许光从光源穿过样品到光学检测器,或引入样品、试剂或反应物。
参考图11H,可以对以用于光学检测的2×2样品形式或96孔板形式或任何M×N形式布置的样品进行光学检测以测量例如一百万个样品。样品和相应的测量单元可以以任何规则和不规则的形式布置。
液体处理站
参考图11I和11J,电润湿装置可以包括一个或多个站(1170、1180),用于将生物样品、化学试剂和液体从源孔、板或储器加载到电润湿芯片(100)上。
在图11I中,可以通过声学液滴喷射将液滴加载到电润湿表面上。源板可以将液体保持在孔(1164)中,并且可以经由声耦合流体(1166)与压电换能器(1162)耦合。来自压电声学换能器(1162)的声能可以集中到孔(1164)中的样品上。注意,在图11I中,电润湿芯片(100)位于顶部,并且被倒置。液滴(110)可以由于通过电压诱导的另外的润湿力而附着于电润湿芯片(100),这有助于设备(1170)的液滴分选功能。通过声能从孔(1164)喷射的液滴(1168)可以附着至上部电润湿装置(100)或可以合并到已移动到声学注入站的液滴中。
参考图11J,电润湿装置可以包括一个或多个站(1180),其被设计为通过基于微隔膜泵(1184)的分配器将生物样品、化学试剂和液体(1182)加载到电润湿芯片上。
图11I的声学液滴喷射技术或微隔膜泵(1184)可以用于分配微微升、纳升或微升体积的液滴。置于源板上方(图11I)的电润湿装置(100)捕获从孔板喷射的液滴(1168),并通过电润湿力保持液滴。以这种方式,可以将包含核酸、蛋白质、细胞、盐、缓冲液、酶和任何其他生物和化学试剂的样品分配到电润湿芯片上。在一些实施方案中,(图11J),电润湿板(100)位于底部,并且声学液滴喷射换能器(图11I的1162)或微隔膜泵(1184)位于顶部。输入阀(1186)和较大的微隔膜泵(1188)可以用于计量进入微隔膜泵(1184)的流体流量。在这种方法中,分配器可用于将样品放在处于任意位置的电润湿芯片上。
在一些情况下,电润湿芯片可以处于开放板配置(没有第二板),并且液滴可以直接被加载到芯片上。在一些情况下,电润湿芯片可以具有第二板,该第二板将液滴夹在电极阵列和接地电极之间。在一些情况下,第二板(有或没有接地的盖板)可以带有孔,以允许液滴通过。在一些情况下,可以先将液滴加载到开放板上,然后再添加第二板。在一些情况下,当芯片位于声学液体处理器内部时,加载到电润湿芯片上的液体准备执行工作流程。在一些情况下,当芯片位于声学液体处理器或微隔膜泵的外部时,加载到电润湿芯片上的液体准备执行工作流程。在一些情况下,当执行工作流程时,液体被加载到电润湿芯片上。在一些情况下,声学液滴喷射器或微隔膜泵可以安装在能够在电润湿装置上运动的可定位筒(有些如3D打印机喷嘴)上,使得可以在电润湿装置上的特定点处注入液滴。
在一些情况下,源和目的地都可以是电润湿芯片。在这种情况下,可以将芯片组织成使得它们的电极阵列彼此面对。在一些情况下,液滴可以在顶部和底部电润湿芯片之间转移,使用声场或电场和不同的润湿亲和力在顶部之间来回转移。在此,芯片的两侧可以都有声学换能器和耦合流体。在一些情况下,电润湿芯片上的样品可以是源,并且目的地可以是孔板。此处,使用声学液滴喷射可以将样品从电润湿芯片转移到孔板上。
孔板中的孔之间的间隔以及因此液体被加载到电润湿芯片上(并从中转移出)的形式可以是标准孔板形式或任何其他SDS孔板形式或任何任意形式。板中的孔的数量可以是在一个至一百万个的范围内的任意数量。
加载有来自声学液滴喷射装置或微隔膜泵装置的样品的电润湿芯片可以与混合站、温育站、磁珠站、核酸递送站、光学检查站的功能、其他功能或其任何组合中的一个或多个组合。
可选实施方式
液滴在开放表面上(单板配置)或夹在两板之间(两板配置)
参考图12A,对于电润湿液滴操控,液滴可被置于开放表面(单板)(1200)上或夹在两板(双板)(1202)之间。在双板配置(1202)中,液滴可被夹在通常间隔100μm-500μm的两个板(100、1210)之间。两板配置具有用于在一侧提供致动电压的电极(120),而另一侧(1210)可以提供参考电极(例如公共接地信号)。在两板配置中液滴与参考电极的恒定接触从液滴上的电场提供更强的力,因此可以对液滴进行可靠的控制。两板配置(1202)的液滴可以在较低的致动电压下***。在单板配置(1200)中,致动电极和参考电极在相同侧。
通过上述表面处理可以改善两板电润湿***。在两板***中,液滴被夹在间隔较小距离的板之间。板之间的空间可以充有另一种流体或仅充有空气。使用上述技术将两板的面向液体的表面平滑至2μm、1μm或500nm,可以允许两板***在较低的电压下操作,从而减少液滴的钉扎,减少留下的痕道,减少交叉污染,并减少样品损失。
光电润湿和光致电润湿
参考图12B和12C,将电势直接施加到电极阵列是使用电润湿来致动液滴的一种方式;但是,存在与常规的电润湿机构不同的可选电润湿机构。本文中描述了两种值得注意的机构(两者均使用光来致动液滴)-光电润湿和光致电润湿。如上所述的用于制造电润湿阵列、产生平滑表面和光滑表面的一般原理不仅适用于先前描述的常规电润湿,而且还适用于光电润湿、光致电润湿和其他形式的电润湿。
可以将液膜置于光导体的网格上,以产生“液体上液体光电润湿”。代替在润滑液层下方具有电极的网格,该网格可以由光活性光导体形成,其可以是焊盘的网格,也可以作为单个光电导电路。照在光导体上的光可形成图案并提供电润湿效果。可以选择纹理化的固体和油以使其对光足够透明,从而使下面的表面暴露于光以产生差分润湿。
光电润湿
参考图12B,光电润湿机构(1230)可以在常规的电润湿电路(100,左侧)下方使用光导体(1232),并附接有AC电源(1234)。在正常(暗)条件下,***的大部分阻抗位于光导区域(1232)中,因此,大部分的电压降可能在此处发生。但是,当光(1236)照在***上时,载流子的产生和复合导致光导体(1232)的电导率峰值,并且跨光导体(1232)的电压降减小。结果,在绝缘层(130)上产生电压降,从而改变接触角,(540)相对于(1238),其作为电压的函数。
光致电润湿
参考图12C,光致电润湿(1250)是使用入射光对表面(通常是疏水性表面)的润湿特性的改性。尽管在位于介电涂层的导体(液体/绝缘体/导体堆叠110/130/120)上的液滴中观察到了普通的电润湿,但是可以通过用半导体(1252)(液体/绝缘体/半导体堆叠)代替导体(120)观察到光致电润湿。
半导体(1252)的带隙上方的入射光(1254)通过在下面的半导体(1252)的耗尽区中产生的电子-空穴对产生光感应载流子。这导致绝缘体/半导体堆叠(130/1252)的电容发生改变,从而改变位于堆叠表面上的液滴的接触角。该图示出了光致电润湿效应的原理。如果绝缘体是疏水的,则在零偏压(0V)下,导电液滴(1258)具有大接触角(左图)。随着偏压的增加(对于p型半导体为正,对于n型半导体为负),液滴(1260)散开-即接触角减小(中图)。在存在光(1254)(具有比半导体(1252)的带隙更优的能量)的情况下,由于绝缘体/半导体界面(130/1252)处空间电荷区域的厚度减小,液滴(1262)更加散开。
计算机***
可以通过适当编程的通用计算机、专用计算机和计算装置来实现本文描述的各种过程。通常,处理器(例如,一个或多个微处理器、一个或多个微控制器、一个或多个数字信号处理器)将(例如,从存储器或类似装置)接收指令,并执行那些指令,从而执行由那些指令定义的一个或多个过程。指令可以以一种或多种计算机程序、一种或多种10脚本或其他形式来体现。可以在一个或多个微处理器、中央处理单元(CPU)、计算装置、微控制器、数字信号处理器或类似装置或其任意组合上执行处理。可以使用各种介质来存储和传输实现该处理的程序以及对其进行操作的数据。在一些情况下,可以使用硬连线电路或定制硬件来代替可以实现过程的一些或全部15软件指令,或与其结合。可以使用不同于所描述的那些的算法。
程序和数据可以被存储在适合于该目的的各种介质中,或者可以被计算机、处理器或类似装置读取和/或写入的异质介质的组合中。介质可以包括非易失性介质、易失性介质、光学或磁性20介质、动态随机存取存储器(DRAM)、静态随机存取存储器、软式盘、软盘、硬盘、磁带、任何其他磁性介质、CD-ROM、DVD、任何其他光学介质、打孔卡、纸带、任何其他带孔图案的物理介质、RAM、PROM、EPROM、FLASH-EEPROM、任何其他存储器芯片或盒带或其他存储技术。传输介质包括同轴电缆、铜线和光纤,包括25包含耦合至处理器的***总线的电线。
可以使用数据库管理***或临时存储器组织方案来实现数据库。可以容易地采用所描述的数据库结构的可选数据库结构。数据库可以从访问此类数据库中的数据的装置本地或远程地进行存储。
在一些情况下,可以在包括与一个或多个装置进行通信(例如,经由通信网络)的计算机的网络环境中执行处理。计算机可以通过任何有线或无线介质(例如因特网、LAN、WAN或以太网、令牌环、电话线、电缆线、无线电信道、光通信线、商业在线服务提供商、公告板***、卫星通信链接、或其组合)直接或间接与装置通信。每个装备本身可以包括适于与计算机通信的计算机或其他计算装置,例如基于
Figure GDA0003716418020000601
或CentrinoTM处理器的计算机或其他计算装置。任何数量和类型的装置均可以与计算机通信。
服务器计算机或集中授权机构可以是必需的,也可以不是必需的。在各种情况下,网络可以包含也可以不包含中央授权装置。可以在中央授权服务器、多个分布式服务器中的一种或其他分布式装置上执行各种处理功能。
本公开提供了被编程以实现本公开方法的计算机***。图13示出了计算机***1301,其被编程或以其他方式被配置用于在本文所述的***上操控一个液滴或其多个液滴。计算机***1301可以调节本公开的样品操控的不同方面,例如液滴大小、液滴体积、液滴位置、液滴速度、液滴润湿、液滴温度、液滴pH、液滴中的珠、液滴中细胞的数量、液滴颜色、化学材料的浓度、生物物质的浓度或其任何组合。计算机***1101可以是用户的电子装置或相对于电子装置位于远处的计算机***。电子装置可以是移动电子装置。
计算机***1301包括中央处理单元(CPU,本文也称为“处理器”和“计算机处理器”)1305,其可以是单核或多核处理器,或者用于并行处理的多个处理器。计算机***1301还包括存储器或存储位置1310(例如,随机存取存储器、只读存储器、闪存)、电子存储单元1315(例如,硬盘)、用于与一个或多个其他***通信的通信接口1320(例如,网络适配器)以及***装置1325诸如高速缓存、其他存储器、数据存储、电子显示适配器或其任何组合。存储器1310、存储单元1315、接口1320和***装置1325通过通信总线(实线)(诸如主板)与CPU1305通信。存储单元1315可以是用于存储数据的数据存储单元(或数据储存库)。借助于通信接口1320,计算机***1301可以可操作地耦合至计算机网络(“网络”)1330。网络1330可以是因特网(Internet)、互联网(internet)、外联网或其任何组合,或与因特网通信的内联网、外联网或其任何组合。在一些情况下,网络1330是电信、数据网络或其任何组合。网络1330可以包括一个或多个计算机服务器,其可以实现分布式计算,诸如云计算。在一些情况下,借助于计算机***1301,网络1330可以实现对等网络,这可以使耦合至计算机***1301的装置表现为客户端或服务器。
CPU 1305可以执行机器可读指令序列,其可以体现在程序或软件中。指令可以存储在存储器位置(诸如存储器1310)中。指令可以被引导到CPU 1305,其可以随后对CPU1305进行编程或以其他方式进行配置,以实现本公开的方法。由CPU 1305进行的操作的实例可以包括提取、解码、执行和写回。
CPU 1305可以是电路(诸如集成电路)的一部分。***1101的一个或多个其他部件可以包括在电路中。在一些情况下,电路是专用集成电路(ASIC)。
存储单元1315可以存储文件,诸如驱动程序、库和保存的程序。存储单元1315可以存储用户数据,例如用户偏好和用户程序。在一些情况下,计算机***1301可以包括计算机***1301外部的一个或多个另外的数据存储单元,诸如位于通过内联网或因特网与计算机***1301通信的远程服务器上。
计算机***1301可以通过网络1330与一个或多个远程计算机***通信。例如,计算机***1301可以与用户的远程计算机***(例如,移动电子装置)通信。远程计算机***的实例包括个人计算机(例如,便携式PC)、平板(slate/tablet)PC(例如,
Figure GDA0003716418020000621
iPad、
Figure GDA0003716418020000622
Galaxy Tab)、电话、智能手机(例如,
Figure GDA0003716418020000623
iPhone、支持安卓的装置、
Figure GDA0003716418020000624
)或个人数字助理。用户可以经由网络1330访问计算机***1301。
如本文所述的方法可以通过存储在计算机***1301的电子存储位置上(例如,存储在存储器1310或电子存储单元1315上)的机器(例如,计算机处理器)可执行代码来实现。机器可执行或机器可读代码可以以软件的形式提供。在使用期间,代码可以由处理器1305执行。在一些情况下,可以从存储单元1315中检索代码,并将其存储在存储器1310上,以备处理器1305访问。在一些情况下,可以排除电子存储单元1315,并且机器可执行指令存储在存储器1310上。
代码可以被预编译和配置成与具有适于执行代码的处理器的机器一起使用,或者可以在运行时被编译。可以用编程语言提供代码,可以选择所述编程语言以使代码能够以预编译或编译的方式执行。
本文提供的***和方法的方面,诸如计算机***1301,可以在编程中实现。所述技术的各个方面可以被认为是“产品”或“制品”,通常是机器(或处理器)可执行代码、相关数据或其任何组合的形式,其被承载或包含在一种类型的机器可读介质中。机器可执行代码可以存储在电子存储单元(诸如存储器(例如,只读存储器、随机存取存储器、闪存)或硬盘)上。“存储”类型的介质可以包括计算机、处理器等的任何或所有有形存储器或其相关模块,诸如各种半导体存储器、磁带驱动器、磁盘驱动器等,它们可以在任何时候为软件编程提供非暂时性存储。软件的全部或部分有时可以通过互联网或各种其他电信网络进行通信。例如,此类通信可以使得能够将软件从一台计算机或处理器加载到另一台计算机或处理器中,例如,从管理服务器或主计算机加载到应用服务器的计算机平台中。因此,可以承载软件元素的另一种类型的介质包括光、电和电磁波,诸如通过有线和光学陆线网络以及各种空中链路在本地装置之间的物理接口上使用的。携带此类波的物理元件,诸如有线或无线链路、光链路等,也可以被认为是承载软件的介质。如本文所用,除非限于非暂时性的、有形的“存储”介质,否则如计算机或机器“可读介质”的术语是指参与向处理器提供指令以供执行的任何介质。
因此,机器可读介质(诸如计算机可执行代码)可以采取许多形式,包括但不限于有形存储介质、载波介质或物理传输介质。非易失性存储介质包括例如,光盘或磁盘,如任何计算机等中的任何存储装置,诸如可以用于实现附图中所示的数据库等。易失性存储介质包括动态存储器,诸如这种计算机平台的主存储器。有形传输介质包括同轴电缆;铜线和光纤,包括构成计算机***内总线的电线。载波传输介质可以采取电信号或电磁信号的形式,或者声波或光波的形式,如在射频(RF)和红外(IR)数据通信期间产生的那些声波或光波。因此,计算机可读介质的常见形式包括例如,软盘、软磁盘、硬盘、磁带、任何其他磁介质、CD-ROM、DVD或DVD-ROM、任何其他光学介质、穿孔卡片纸带、具有孔图案的任何其他物理存储介质、RAM、ROM、PROM和EPROM、FLASH-EPROM、任何其他存储芯片或盒式磁带、传输数据或指令的载波、传输这种载波的电缆或链路,或者计算机可以从中读取编程代码、数据的任何其他介质或其任何组合。这些形式的计算机可读介质中的许多可以涉及将一个或多个指令的一个或多个序列传送到处理器以供执行。
计算机***1301可以包括电子显示器1335或者与电子显示器1335通信,所述电子显示器包括用户界面(UI)1340,用于提供例如与液滴操控、样品操控或其组合相关的信息。UI的实例包括但不限于图形用户界面(GUI)和基于网络的用户界面。
本公开的方法和***可以通过一种或多种算法来实现。算法可以在由中央处理单元1105执行时通过软件来实现。算法可以例如为液滴提供另外的液体、替换液滴的蒸发溶剂、为液滴规划路径或其任何组合。
***的视频、输入和控制可以通过基于网络的软件应用程序访问。通过软件的用户输入可以包括例如液滴运动、液滴大小和阵列图像,并且用户输入可以记录并存储在基于云的计算***中。存储的用户输入可以被访问并以子集或全部检索以提供基于机器学习的算法的信息。液滴移动模式可以被记录并分析以用于训练导航算法。训练算法可以用于液滴移动的自动化。空间流体特性可以被记录并分析以用于训练协议优化和生成算法。训练算法可以用于优化生物和液滴移动协议或用于生成新的生物和液滴移动协议。生物质量控制技术(例如,基于扩增的定量方法,基于荧光、基于吸光度的定量,表面等离子体共振方法,和毛细管-电泳方法,用于分析核酸片段大小)可以用于分析在阵列上进行的流程的有效性。来自这些技术的数据然后可以用作到机器学习算法中的输入以改善输出。所述方法可以自动化,使得***可以迭代地改善输出。
分配流体和液滴产生
本文所述的各种方法可以通过分配液体和产生液滴来实现。液体可以单个地或组合地分配以将液体引入到阵列中。引入的液体可以在阵列上形成液滴或其多个液滴。液体处理***、机器人臂、声学分配器、喷墨或其任何组合可以用于将液体直接分配在阵列上或分配到阵列的储器中。这些分配器可以使用通道,例如管、喷嘴、移液管或其任何组合以及阵列中的孔。
阵列(100)可以具有进行电介质上电润湿(EWOD,1410)、介电润湿(DEW,1420)、介电泳(DEP,1430)或其组合的区域(图14)。液体可以储存在阵列上的储器中。液滴可以使用DEP、DEW、EWOD或其任何组合从储器分配在阵列上并且随后通过EWOD致动。液滴的EWOD致动可以用于将试剂的液滴移动到期望反应中。可选地,EWOD可以用于补偿阵列的液滴中存在的蒸发性损失。另外,液滴可以使用EWOD、DEW、DEP或其任何组合***成两个、三个、四个、五个、六个或更多个液滴。
可选的液滴致动机制
使用疏水性“切片器”***液滴
对于阵列装置上的液滴,可以使用薄(尖锐)疏水性结构(“切片器”)将大液滴切片成一个或多个较小液滴。为此,阵列装置可以以此处所述的任何配置(开放或封闭,具有任何随意的电极配置)。薄疏水性结构可以定位在目标液滴的上方、下方或侧面上。
以这种方式切片液滴是将液滴***成两个相等液滴或由较大液滴精确地等分成已知量的液体的一种机制。为了此切片/***机制起作用,使用本文所述的电动力(例如,使用电润湿)运送阵列装置上的液滴,并且然后跨薄疏水性结构拖拉。进行拖拉动作,使得此薄结构垂直地、水平地或以一定角度切割通过液滴。此切割动作产生相等或不相等体积的两个液滴。此切片/切割/***液滴的方法类似于奶酪格栅进行的方式。
通过小心地微调液滴相对于“切片器”移动的方式,可以调节生成的液滴的体积。还可以通过改变薄疏水性“切片器”的大小和形状来调节生成的液滴的体积。代表性的疏水性液滴“切片器”在图95中示出(顶视图)。如图95所示,在将液滴9510沿疏水性切片器/刀9520拖拉时,该液滴9510被切割分成两部分9511、9512。此技术可以用于在具有开放配置(液滴不与顶板接触)或呈封闭配置(液滴夹在两个板之间)的阵列装置9500中切割/***液滴。疏水刀可以附接至阵列装置的任何表面或不是阵列装置的部分的单独结构(例如,阵列装置上的盖子)。在图95中,切片器可以附接至透明顶板或附接至阵列装置本身的顶表面。在图96中,切片器9620可以附接至阵列装置9600的侧壁,以将液滴9610***成两个部分9611、9612。在一些实施方案中,疏水性切片器可以将液滴***成两个约相等的两半,如图95中描绘。在一些实施方案中,切片器可以将液滴***成两个不相等的部分,如图96中描绘。在一些实施方案中,液滴9610的较大部分9611继续在阵列9600上进行处理,而较小部分9612被处置。
通过将液滴的一部分结合至亲水性拾取器(picker)来***
对于阵列装置上的液滴,可以使用在大部分疏水的表面上图案化的一个或多个微小亲水性点(被称为“拾取器”)来从大液滴等分少量液体。为此,阵列装置可以以此处所述的任何配置(开放或封闭,具有任何随意的电极配置)。具有图案化亲水性位点的“拾取器”可以定位相对于目标液滴定位在上方、下方或侧面上。
根据一些实施方案,图97描绘了拾取器9720位于液滴9710上方。在一些实施方案中,液滴9710沿具有两板配置的阵列9700移动,其中底板包括阵列9700。顶板9730可以包括疏水性表面9735,其中亲水性位点或拾取器9733在疏水性表面上提供。在运送时,液滴表面的一侧或多侧与拾取器9733接触。提供拾取器9733的表面9735可以是大部分疏水的,使得当液滴9710与亲水性位点9733接触时,已知的小部分液滴粘贴(被“拾取”)至亲水性位点。此拾取动作是从大液滴9711***/等分已知量的液体9712的方式,该液体9712然后可以用于许多下游应用。
可选地,可移除膜或膜框架或阵列装置本身的任何部件可以经图案化以具有进行拾取操作的亲水性位点。对此的实例在图98中示出。在一些实施方案中,如图98中描绘,液滴9810沿阵列9800移动。阵列可以包括单侧配置,其中仅一个板包括用于液滴操控的EWOD或DEW阵列。在一些实施方案中,阵列9800包括疏水性表面9835。疏水性表面9835可以包括亲水性位点9833,使得当液滴9810与亲水性位点9833接触时,已知的小部分液滴粘贴(被“拾取”)至亲水性位点。此拾取动作是从大液滴9811***/等分已知量的液体9812的方式,该液体9812然后可以用于许多下游应用。
可选地,可以通过对“拾取器”略作修改来实现相同的功能。例如,亲水性位点可以被已知直径的孔或毛细管替代。在液滴与“拾取器”表面接触时,少量的液体从较大液滴被转移到孔或毛细管中。
使用本文所述的机制***的液滴然后可以各种方式处理。例如,等分液滴然后可以与荧光染料混合。此混合物然后可以被激发并使用如本公开的其他部分中所述的荧光计(或光学传感器)读取。
还可以将等分液滴和明显更大的液滴与相同的溶剂混合以对其稀释。将液滴***成微小液滴并且然后稀释的过程可以一次又一次地重复以连续实现如本文所述的各种水平的稀释度。
计算机-视觉
本文所述的用于监测阵列(100)上的液滴(110)的计算机-视觉***的配置可以包括例如置于阵列上方、阵列下方、在阵列的平面中或其任何组合的多个光源(1510)(图15)。液滴可以夹在两个板之间,其中顶板和底板呈本文所述的各种配置。可以由从计算机-视觉***评定的与光照相关的光学测量估计液滴半径、高度、体积、形状、吸光度、荧光、表面等离子体共振和其他运动学特性。
基于计算机-视觉的检测可以通过将着色或荧光染料引入到液滴中来辅助。染料的实例包括例如可见光中的甲酚红(例如,颜色标志物和pH指示剂)和红外光中的ROX荧光(例如,被动参考染料)。可以在不同的光学波长下取液滴的图像,包括但不限于红外光谱、可见光谱、紫外光谱或其任何组合。可以使用被设计来在一定波长范围内对阵列成像的相机来取图像。滤光器(1620)可以用于改变通过相机(1610)成像的液滴(110)或阵列(100)的光学特性(例如,去除波长)(图16)。
阵列(100)的液滴(110)的体积可以通过例如采用基于计算机-视觉的***来估计,该***将通过光源(1510)透射到液滴的光(1710)的干涉图成像到图像传感器(1720)上(图17A),或通过对由投影到阵列(100)上的液滴(110)导致的投影光图案(1730)的变形成像来估计(图17B)。
来源于计算机-视觉***的信息可以进行实时处理。此处理信息可以用于命令将流体引入到阵列中以例如补偿蒸发性损失。位置信息可以用于使用基于电动力的致动(例如,EWOD或DEW)来导航阵列上的液滴。
还可以记录信息(例如,用于后续处理)。记录信息可以用于确定经由基于电动力的致动(例如,EWOD或DEW)进行的液滴运动的路径。这包括例如可以不交叉路径的多个液滴或可以具有协调位置的液滴。记录信息还可以用于确定具有不同物理和化学特性的液滴的蒸发性特性。收集的关于蒸发性特性的信息可以用于产生定时流体引入例程。定时流体引入例程可以包括例如在设定或可变间隔下可以命令将一定体积的流体分配到阵列上存在的流体附近或直接分配到所述存在的流体中。传感器可以测量体积的实时变化,并且可以将补充液体引入到阵列上存在的流体中(例如,使用本文所述的技术)。记录信息可以用于产生训练数据集,其可以用于产生机器学习模型。机器学习模型可以例如用于检测阵列内的液滴的物理特征。
图18示出了正在开放阵列(100)上同时处理(例如,移动、混合、加热、冷却等)的一个或多个液滴(1810)。阵列可以置于具有均匀温度和湿度(例如,使用加热器1830)的封闭腔室(1820)中。封闭腔室中的均匀温度和湿度可以提供跨一个阵列或多个阵列的所有液滴的类似处理条件。一个或多个液滴可以使用观察区中的一个或多个传感器(1840,例如,相机)来选定。例如,传感器可以检测感测液滴的体积变化(例如,图18)。响应于检测到的第一液滴体积变化,***可以将第二液滴(1850,例如,补充液滴)添加到未监测的液滴中以校正第一液滴的体积变化。
EWOD致动的混合
EWOD致动的混合可以在本文所述的开放板、两板或多板***中进行。EWOD致动可以用于混合阵列的液滴。在进行混合状态的同时,液滴的一些液体可以通过液体处理器、储器、管/喷嘴或其任何组合被引入到阵列中。液体的组成可以均质的或异质的。液滴可以含有至少一个微珠。微珠或其多个微珠可以是磁性的。这些珠对于生物或化学材料可以具有亲和力。一定范围的混合方式可以用于将微珠重悬于溶液中。一定范围的混合方式可以用于重悬微珠以增强均质反应的反应动力学。混合可以用于使试剂溶解。混合可以用于增强反应动力学。除了混合之外,可以施加加热、磁场或其组合以加速反应。在一些实施方案中,DNA衔接子连接(其可以进行数小时)可以通过结合基于电动力(例如,基于EWOD)的混合来加速。除了EWOD致动的混合之外,以下示例性混合模式中的一种或多种可以组合以混合不同体积(1pL至1mL)和粘度的液滴:声学诱导混合、液体处理机器人或机器人臂增强混合和机械振动诱导混合。
电极与EWOD阵列之间的电位开关的频率可以影响混合效率。一定范围的混合频率(例如,至多10kHz)和混合模式可以用于混合。致动可以产生高雷诺数(>4000)流,从而导致涡流以便实现提高的混合效率。混合效率可以使用基于计算机-视觉的算法来评定和监测,所述算法可以采用例如染料强度的量度。该***可以用于向液体处理器、附接至阵列的控制器或其组合提供反馈,以用于通过改变参数来补偿任何混合低效,所述参数包括但不限于混合频率、反应时间和混合模式。
控制蒸发
可以在开放或封闭阵列中控制(例如,减少)所述阵列的液体的蒸发。本文所述的方法可以单个地或组合地使用以补偿蒸发性损失。鉴于本文所述的***和方法,可以在-100℃至250℃之间的温度下防止蒸发性损失。来自阵列(100)的所有视角的一个或多个可视化单元(例如,相机,1910)的***(图19)可以将阵列的图像馈送到处理单元(1301)中。处理单元可以采集并处理图像以生成可以实时使用或用于后处理的数据。处理单元的输出数据可以包括但不限于:定位追踪、液滴体积、单细胞的存在、多细胞的存在、细胞活性、速度和运动学信息、半径、形状、高度、颜色、表面积、接触角、反应状态、发射度、吸光度或其任何组合。输出数据可以被保存以用于后处理,或者处理单元可以给出命令以通过致动器(1920)邻近阵列或在阵列上实时驱动一输入、一输出或其任何组合。处理单元可以向阵列提供误差校正指令。处理单元可以生成用于由人或与阵列相关的自动化机构执行的关于状态的指令。用于可视化单元的处理单元可以与其他软件和硬件***整合。
基于计算机-视觉的***可以用于液滴检测、液滴体积估计或其组合。液滴体积可以由来源于处理图像的液滴的几何参数估计。此类参数包括但不限于特征性长度,例如液滴的半径、高度、接触角和投影表面积。补偿蒸发性损失所需的液体可以通过例如以下由储器引入到液滴中:液滴的手动移液、管、喷嘴、喷墨、液体处理机器人、基于电动力的致动(例如,EWOD)或其任何组合。
顶板(2020)可以被添加到阵列(100)上以产生包封液滴(110)来防止蒸发性损失的湿度腔室。此板可以与液滴接触(图20)。腔室可以具有入口(2010)以用于引入湿空气。此腔室可以被加压、加热或其组合,以便防止内部表面上的水汽凝结。腔室的顶板或部分可以在需要直接和开放获取液滴时移除。
阵列(100)或其多个阵列可以容纳在腔室(2110)中,其中可以控制湿度。此腔室可以容纳例如液体处理机器人臂(2120)、试剂储器和/或阵列的其他部件(图21)。腔室可以容纳压力传感器。通过测量腔室内的蒸气压变化,可以计算机计算水的体积变化。可以检测液滴的任何体积变化并且可以通过向液滴提供另外的液体来保持恒定体积。
顶板可以由具有一层铟锡氧化物(ITO)或电阻材料(例如镍铬合金/铂加热器)的玻璃制成。顶板可以具有电极或有源电子部件的阵列。顶板可以具有一层疏水性涂层以能够进行液滴的平滑致动。液滴可以通过不混溶油或蜡覆盖在其侧面上以进一步减少蒸发性损失。
阵列(100)的液滴(110)可以用薄层(例如,单层)不混溶低表面能液体(2215)覆盖或“遮盖”。不混溶低表面能液体可以使液滴直接暴露于空气最小化,从而减少蒸发(图22)。不混溶低表面能液体可以用于阵列的单板(图22A)以及两板(2020,图22B)配置中。
阵列(100)的液滴(110)可以浸没在不混溶高蒸气压流体(2315)中,其可以使得不与空气接触,从而减弱蒸发(图23)。此不混溶流体可以包括但不限于矿物油、硅油、氟化脂肪族化合物(例如,FC-40)或其任何组合。
阵列(100)的液滴(110)可以包封在可以防止液滴暴露于空气的薄三维(3D)聚合物膜(2415)或膜中,从而降低蒸发速率(图24)。该膜或膜(film/membrane)可以直接在液滴上形成或在引入到液滴中之前预形成。聚合物膜可以移除(例如,物理方式或通过热)。液滴可以通过基于电动力的致动输送并与其他液滴混合。
阵列(100)的液滴(110)可以通过密封件(2515)包封。密封件可以单次或重复密封和打开。密封和打开可以例如通过使用加热顶板(2020)熔融石蜡来实现,或者橡胶或硅胶垫圈可以用于密封件(图25A(侧面),图25B(顶部))。
一定体积的液体的蒸发速率可以如图26A-F中描绘来控制。开放表面阵列(100)的液滴(110)可以在高温下快速蒸发(图26A)。例如,当热力学反应在阵列的液滴内或邻近液滴发生时。加热液滴可以使用阵列表面下方的加热器(2610)实现。加热液滴周围的空气可以降低蒸发速率。加热可以通过例如使用阵列下方的加热器(2610)或透明顶板(2630)的加热顶板(2620)实现(图26B)。封闭阵列周围的腔室(2640)可以进一步降低蒸发速率(例如,捕获湿度,图26C)。使用牺牲液滴(2650)可以增加局部环境中的湿度并减慢蒸发(图26D)。小盖帽(2660,其例如可以大于蒸发液滴)可以用于容纳湿度并控制蒸发(图26E)。另外,整个阵列可以包括水储器(2670)以控制湿度和液滴的蒸发速率(图26F)。阵列的腔室的均匀加热可以防止冷凝,从而达到近乎100%的相对湿度水平。图26A-F中描绘的配置也可以组合来控制蒸发速率。
在一些实施方案中,所实现的相对湿度水平是约50%至约100%、约60%至约100%、约70%至约100%、约80%至约100%或约90%至约100%。在一些实施方案中,所实现的相对湿度水平是约89%至约100%。在一些实施方案中,所实现的相对湿度水平是约89%至约90%、约89%至约91%、约89%至约92%、约89%至约93%、约89%至约94%、约89%至约95%、约89%至约96%、约89%至约97%、约89%至约98%、约89%至约99%、约89%至约100%、约90%至约91%、约90%至约92%、约90%至约93%、约90%至约94%、约90%至约95%、约90%至约96%、约90%至约97%、约90%至约98%、约90%至约99%、约90%至约100%、约91%至约92%、约91%至约93%、约91%至约94%、约91%至约95%、约91%至约96%,约91%至约97%、约91%至约98%、约91%至约99%、约91%至约100%、约92%至约93%、约92%至约94%、约92%至约95%、约92%至约96%、约92%至约97%、约92%至约98%、约92%至约99%、约92%至约100%、约93%至约94%、约93%至约95%、约93%至约96%、约93%至约97%、约93%至约98%、约93%至约99%、约93%至约100%、约94%至约95%、约94%至约96%、约94%至约97%、约94%至约98%、约94%至约99%、约94%至约100%、约95%至约96%、约95%至约97%、约95%至约98%、约95%至约99%、约95%至约100%、约96%至约97%、约96%至约98%、约96%至约99%、约96%至约100%、约97%至约98%、约97%至约99%、约97%至约100%、约98%至约99%、约98%至约100%或约99%至约100%。在一些实施方案中,所实现的相对湿度水平是约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或约100%。在一些实施方案中,所实现的相对湿度水平是至少约89%、约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%或约99%。在一些实施方案中,所实现的相对湿度水平是至多约90%、约91%、约92%、约93%、约94%、约95%、约96%、约97%、约98%、约99%或约100%。
阵列可以通过周围环境被动加热,或者可以包括有源温度控制电路来维持阵列内的特定环境条件。有源温度控制可以使用例如图27中描绘的阵列来实现,所述阵列可以由密封顶板(2710)、加热顶板(2720)、垫圈(2730)、侧壁(2740)、阵列瓦片(2750)、电阻迹线加热器(2760)或其任何组合构成。顶板可以是透明的,并且加热方法可以包括例如使用透明电极,例如铟锡氧化物(ITO)或铝锌氧化物(AZO)。外壳的侧壁(2740)可以例如通过嵌入式导体,例如镍铬合金、细铜线,或通过具有蛇形迹线的嵌入式柔性电路板来加热。此外,侧壁可以由顶板(2720)、底基板(2760)或其组合来被动地加热。
阵列(100)可以包括电阻膜加热器(2810)、热绝缘体(2820)、温度传感器(2830)或其任何组合(图28A)。阵列基板内的蛇形迹线(2840)可以用于例如通过填充间隙的导热密封件来加热外壳的侧壁。加热阵列基板可以例如使用电阻膜加热器(2810)或通过直接将蛇形铜迹线(2840)嵌入在基板内来实现(图28A和图28B)。表面安装温度传感器(2830)可以附接至阵列基板的后侧以感测并控制温度(图28B)。本文所述的阵列可以包括焊盘中导通孔(via-in-pad)(2850)。
除了控制蒸发,加热阵列还可以用于精确控制液滴温度。液滴可以用嵌入在阵列基板上或下方的加热器在开放表面上加热。在没有某种形式的环境控制的情况下,这些基板加热器可能经历内部液滴温度与加热器表面上的温度之间的大温差。这些大温差可能导致液滴温度控制不精确,并且可能经受基于例如周围空气流的大温度波动。此外,在没有环境温度控制的情况下,加热器温度与液滴温度之间的差值可以是包括以下的参数的函数:例如液滴表面积与体积的比、液滴大小和温度设定点。这些外壳可以完全密封以防止加热湿空气泄漏,但是它们也可以保持部分开放。例如,此设计可以允许控制冷却温度环境内的冷凝。
虽然封闭腔室、加热腔室或其组合可以有助于控制蒸发速率,但是蒸发速率也可以通过主动补充阵列(100)的液滴(2910)的体积来控制。此补充可以使用多种不同的分配方法来实现,该分配方法包括例如注射器泵、压电和电磁阀分配器、基于电润湿的液滴发生器、微流体通道、移液器、隔膜泵或其任何组合(2920,图29A)。这些方法中的每一种可以能够在足以将蒸发液滴的体积维持在至少30%、20%、10%、5%、1%、0.1%、0.01%或更小的误差容限内的规模和分辨率下产生液滴(2930)。例如,为了维持40μL液滴反应体积,液滴发生器(#)可以产生具有至少100nL、50nL、10nL、1nL、0.1nL、0.01nL或更小的分辨率的4μL液滴。
生成的补充液滴(2930)可以直接(图29B)或通过电润湿运动(图29A和图29C)来引入到蒸发液滴中。例如,通过电润湿引入补充液滴可以例如提供来自例如储器(2940)的预加热补充液滴,从而提供在所补充液滴的反应体积内维持精确且良好控制的温度的一种方式。
补偿速率(例如,液滴补充)可以通过实验数据采集确定,或者它可以使用各种传感器进行测量和主动控制。例如,计算机-视觉技术(例如,使用相机(2950))可以用于估计液滴体积,并且在本文中进一步讨论(图29D)。另一种感测方法可以包括例如封闭(2970)或半封闭环境(图29E)内的湿度传感器(2960)。在一定温度范围内的封闭体积的情况下,可以使用饱和蒸气压表和测量的相对湿度来估计***大气中的蒸发水质量。电容感测还可以用于检测液滴体积的变化(例如,因为相邻电极之间的电容耦合程度(2980,例如,电场)将通过改变液滴体积而显著变化(图29F))。液滴(2910)的体积变化还可以通过测量包含液滴的阵列(100)的重量变化来估计。
补充液滴可以补充所补充液滴总体积的至多约1%、5%、10%、15%、20%、30%、40%、50%或更多。补充液滴可以补充所补充液滴总体积的至少约50%、40%、30%、20%、15%、10%、5%、1%或更少。补充液滴可以补充所补充液滴总体积的约1%至约50%、约1%至约20%、约1%至约10%。在阵列上混合样品(例如,同时加热)可以产生例如液滴内更有效的反应动力学和更短的反应时间(例如,连接反应)。液滴内的混合可以诱导、增强、加速核酸(例如,DNA)片段化或其任何组合。
阵列上的磁场生成
生物流程可以利用“打开”和“关闭”阵列磁源的能力来运行。这可以使用线性台和致动器(3020),以升高或降低平台(3040)上的一组磁体(3030)来实现(图30A)。阵列基板可以配备有铁磁屏障(3050)。磁体可以是例如电磁体(例如,电磁阀)。铁磁屏障(3050)也可以用于增加磁体阵列的“向上”与“向下”位置之间的磁场强度差。例如,当磁体“向上”时,它们可以刺穿磁屏障,使得屏障充当通量引导,以助于集中回流通量。另外,当磁***于铁磁屏障下方时,屏障可以作用来减弱穿过阵列的磁场。还可以制作缺口(3060),以允许磁体更邻近有源阵列表面(100)定位。缺口的尺寸可以是至多约0.001nm、0.01nm、0.1nm、1nm、10nm、100nm、1,000nm、10,000nm、100,000nm、1,000,000nm或更大。缺口的尺寸可以是至少约1,000,000nm、100,000nm、10,000nm、1,000nm、100nm、10nm、1nm、0.1nm、0.01nm、0.001nm或更小。缺口的尺寸可以是约0.001nm至约1,000,000nm、约1nm至约10,000nm、约10nm至约1,000nm。
磁体阵列(3010)可以互换,使得不同流程可以通过将磁体阵列的位置改变为其他布置或配置(例如,Halbach阵列,图30B)来实现。例如,Halbach阵列可以与磁体(3030)一起布置,使得指向阵列的磁场可以显著强于磁体底部的磁场。可以使用铁磁通聚焦器(3070)、铁磁性背铁(3080)或其组合或其组合来改进磁场的控制。
例如,也可以使用电永磁体和旋转可切换磁体来实现切换磁场开关(图31)。电永磁体可以由缠绕在硬磁(3120,例如,钕)和软磁(3130,例如,铝镍钴)磁体周围的线圈(3110)构成(图31A)。电流脉冲可以切换软磁磁体的极性。例如,当磁极对齐时,电永磁体可以生成穿过阵列表面(3150)的磁场(3140)。此外,当磁极反向平行时,磁场可以被限制在电永磁体的通量引导(3160)内,从而在阵列基板表面产生相对较小的磁场。旋转可切换磁体通过将永磁体(3170)在旋转轴(3180)上物理旋转90度以类似的方式工作(图31B)。在打开状态下,磁体可以在阵列表面(3150)上生成磁场(3140)。当旋转90度时,铁磁通量引导(3160)可以限制所述场,并且在阵列基板的表面处可以产生相对很少至没有所述场。
参考电极设计和放置
电极阵列可以用于产生如本文所述的参考电极(RE)。RE相对于致动电极的设计和放置对于本文所述的方法和***可以是重要的。单个RE或一组RE可以置于一个致动电极或其多个致动电极周围(在XY平面中)或此类致动电极之间(在XY平面中),如图32所示。RE可以位于沿Z轴的不同平面中。在非共面布置中,一层介电材料可以将RE和致动电极分开。RE可以具有任意形状,并且不需要是如图32所示的直线。可以存在组织为规则间隔的网格或不规则阵列的一个或多个RE。该配置可以包括但不限于具有疏水涂层的顶板,并且可以手动或通过机器人致动来调整与具有EWOD能力的阵列的距离。
RE可以是置于致动电极平面上方的线网或单线(3310,图33),其具有可以容纳液滴的空间(3333)(图34)。RE可以具有能够进行液滴的平滑致动的疏水性涂层。可以手动或通过机器人致动固定或调整丝网/网络的高度。RE可以暂时定位以引入电润湿力,并且随后移除以继续液滴致动。与液滴的暂时接触可以足以在有限的时间内致动液滴。如果液滴响应于电润湿阵列上的电场而停止,则可以再次引入参考电极。
最顶部的介电层(3520)的区域可以被改性以变得导电(图35A)。改性的区域可与接地电极建立接触(3510),并且为电润湿操作提供参考。接地电极可以是专用接地电极,或者它可以是暂时接地在电极阵列(3530)上的致动电极。该***可以使用可以包围液滴(110)的疏水性涂层(3515)来操作。可以通过包括但不限于以下的方法来改性最顶部的介电层的区域:通过UV处理在所述层中引入缺陷、等离子体处理、诱导介电击穿、施加物理力或压力、使用已知具有多孔结构的材料或其任何组合。
油层(3525),例如硅油层可以充当疏水性涂层并且在接地时充当参考电极(图35B)。该油层可以具有轻微的导电性或极性。介电表面可以含有由包括但不限于本文所述方法的方法引入的微结构。这些微结构可以吸油,并且可以通过例如暂时接地的致动电极、专用接地电极、阵列上其他地方的专用连接或其任何组合连接到地电位。
电离空气(3550)可以包围阵列中的液滴(图35C)。电离空气可以用于阵列作为电润湿致动的参考电极。电离空气可以通过电离鼓风机引入并且被引导至液滴。由于表面或液滴带电,液滴可能永久粘在某个位置(即,钉扎)。可以通过使用通过鼓风机引入的离子中和液滴来缓解液滴钉扎。
芯片上的干燥/冻干试剂
化学试剂、生物试剂或其组合可以在阵列表面上冻干/干燥/点样。试剂可以点样在与阵列相容的一次性筒的表面上。试剂可以包括但不限于缓冲液、盐、表面活性剂、核酸、蛋白质、稳定剂、微珠、酶、抗生素或其任何组合。试剂可以通过液体处理***、EWOD致动、手动移液或其任何组合溶解或重悬浮在适当溶液中。可以使用干燥试剂生产用于各种分子生物学流程/过程的部分或全部试剂盒。试剂盒可以包括用于储存的冷藏条件。分子生物学过程可以包括但不限于用于二代测序和微生物分析流程(例如,抗生素耐药菌株检测)的核酸文库制备。
EWOD驱动的磁珠洗涤
磁性颗粒(3615)可以通过可控的局部磁场在芯片表面上操控(图36)。磁性颗粒可以由例如微球制成。控制局部磁场可以通过例如将电磁阀、磁体、一对磁体或其任何组合置于颗粒附近,或通过在EWOD芯片内生成磁场来实现。可以在EWOD驱动的阵列(100)上进行基于磁珠的分离和洗涤。可以使用致动电极操控液滴(110),该致动电极也可以允许液滴的定位。使用磁场,可以将磁性颗粒集中在一个小区域中。液体可以通过基于EWOD、基于介电泳或基于其他电动力的致动与磁性颗粒分离。分离在开放板和双板***中是可能的。因为可以使用EWOD致动来定位液滴,所以也可以使用液体处理机器人(3610)从芯片中吸取流体(110a),从而将磁性颗粒留在芯片表面上。液体(110b)的去除可以通过采用毛细管力、气动力、电动力(诸如,EWOD或介电润湿)或其任何组合,通过阵列中的孔(3620)或其多个孔来实现。此废液体可以收集在位于阵列(3630)下方的储器中。基于计算机-视觉的算法可以用于通知液体处理器和/或阵列,并且向其提供反馈以用于涉及磁珠的过程。该过程可以包括例如上清液的吸取、磁珠的重悬、在去除上清液期间防止磁珠与上清液一起被吸取或其任何组合。
一次性筒
本文描述了可以将EWOD平台与可替换筒一起使用的各种方法。可替换的、柔性的或其组合的结构体,例如膜或膜,允许重复使用致动电极和/或参考电极。可替换筒还可以消除单独实验或相同实验中样品之间的交叉污染。一次性筒结构体可以含有介电层、疏水层、参考电极、入口、出口或其任何组合,用于引入和去除液体。可替换结构体可以永久地粘结到阵列。可以使用粘合剂、加热、施加真空、强静电场或其任何组合将结构体粘结到致动电极。
一次性/可替换筒可以具有用于操控生物样品、化学样品或其组合的开放表面(图37A)。该筒可以包括多层,从介电层(3520)开始。导电材料层(3710)可以位于电介质上方。导电层可以接地并用作参考电极,用于电润湿或感测生物样品、化学样品或其组合的一个或多个参数。导电层和没有导电层的电介质区域可以一起具有一层疏水性涂层(3515)。可选地,导电层和介电层可以涂覆有光滑的液体涂层,例如SLIPS涂层。第二板可以置于类似于图37A的配置(电介质、导电层、疏水性涂层)上方,中间有小间隙(图37B)。此小间隙可以是空气或可以填充有填充液。第二板的底侧可以涂覆有疏水性涂层(3515)。第二板的底侧可以使用涂层,例如SLIPS涂覆有液体层。
本文所述的筒可以暂时定位在电润湿阵列上,使得致动电极位于介电层下方。本文所述的筒可以包括永久地附接在介电层下方的致动电极阵列。整个堆叠体(电极阵列、电介质、导电层、疏水性涂层、气隙(第二板,若有))可以作为单个单元是一次性的。该筒可以仅含有一层直接位于致动电极上的电介质。电介质可以永久地粘结到致动电极上。电介质可以具有一层光滑的涂层(疏水性涂层或SLIPS)。可选地,含有介电层和疏水层的筒可以粘结到致动电极板,而参考电极容纳在顶板上。可以替换或冲洗参考电极板,以避免液滴的交叉污染。可以通过自动化机器人处理器将一次性筒置于电润湿阵列上并从中移除。一次性筒在由机器人处理器处理时可以含有液滴样品。一次性筒可以在传送带上,并且置于电润湿阵列上。可以使用真空或其他基于压力的***将筒结合到电极阵列。在单个实验运行之后,传送带可以移除筒的已使用部分,并且将新层引入到筒上。该筒可以包括导线的网格/网络(用作参考电极),其直接保持在表面上方且不与表面接触。可以替换或冲洗线网,以避免液滴的交叉污染。线网也可以永久地固定到筒上,并且与筒的其余部分一起处理。一次性筒可以具有嵌入在电介质下方或致动电极下方的有源电子器件,以进行例如电润湿操作、使用其他电动力操控样品、测量生物样品中的分析物或其任何组合。
包装和驱动电子器件
阵列瓦片(3810)可以被构造成使得它与控制和驱动电极的电子器件(3820)分开(图38)。例如,这可以有益于实现针对特定流程或过程定制的特定于应用的电极几何形状。瓦片可以通过接口(3840)连接到驱动电子器件(3820)和控制电子器件(3830),该接口(3840)包括例如精细间距的弹性连接器、板对板连接器、弹簧销或其任何组合。
将瓦片和驱动电子器件包装在一起,并在控制电子器件与驱动电子器件之间具有通用的模块化连接结构,也可以是有益的。这可以提供特定于应用的电极阵列,每个阵列具有不同数量的电极和对应的驱动电路。这种方法的益处可以是减少例如多重复用驱动电路所需的连接器数量(例如,~10个控制信号连接可以驱动~100个电极)。
阵列加载模块
本文所述的***和装置可以包括被配置用于接收本文所述的阵列瓦片(或多个阵列瓦片)的模块。被配置用于接收阵列瓦片的模块可以包括与本文所述的***和装置通信的电连接器。在一些实施方案中,被配置用于接收阵列瓦片的模块与本文所述的***和装置的电连接器对齐。被配置用于接收阵列瓦片的模块可以包括盖体(例如,盖子)。盖体可以是透明的或不透明的。盖体可以是铰链式的。在一些实施方案中,铰链盖体用于使阵列瓦片与电连接器接触。在一些实施方案中,铰链盖体使阵列瓦片与电连接器对齐。在一些实施方案中,被配置用于接收阵列瓦片的模块有利于和/或维持阵列瓦片与本文所述的***和装置之间的电通信。铰链盖体可以通过加载弹簧的插销、翼形螺钉、磁体或各种其他机械连接器耦合至模块。阵列瓦片可以采用本文所述的电极层、介电层、光滑涂层和板配置的任何组合。
在一些实施方案中,本文描述的方法还包括将本文描述的阵列瓦片(或多个阵列瓦片)设置到被配置用于接收阵列瓦片的模块中。
在一些实施方案中,该模块的盖体包括至少一个光源。在一些实施方案中,光源发射光。在一些实施方案中,光源发射漫射光。在一些实施方案中,盖体被配置用于通过将光发射到阵列瓦片上来有利于对阵列瓦片的观察。在一些实施方案中,盖体被配置用于有利于如本文所述的阵列瓦片的成像。在一些实施方案中,盖体被配置用于通过将光发射到阵列瓦片上,通过机器学习来有利于本文所述的***和方法的改善。照明设置到阵列瓦片上的液滴可以增加目标生物样品与背景之间的对比。在一些实施方案中。在一些实施方案中,照明阵列瓦片有利于机器观察设置到阵列瓦片上的生物样品。在一些实施方案中,照明阵列瓦片有利于机器观察在阵列瓦片上经历的反应。
盖体还可以包括各种环境传感器和致动器,以监测和控制电极阵列上的环境(例如,本文所述的温度和湿度控制)。在一些实施方案中,盖体中包括的各种传感器和致动器包括用于被动湿度控制的光学透明加热器、海绵或储器以及温度和湿度传感器。
盖体可以被配置用于与阵列瓦片通信。在一些实施方案中,盖体可以与阵列瓦片电通信。在一些实施方案中,盖体可以与阵列瓦片中包括的一个或多个参考电极电接触。在一些实施方案中,盖体被配置用于通过弹簧连接器与阵列瓦片电接触。在一些实施方案中,盖体被配置用于通过导电浆料与阵列瓦片电接触。在一些实施方案中,盖体被配置用于通过另一种导电装置与阵列瓦片电接触。
在本文所述的***和装置的一些实施方案中,模块可从本文所述的***和装置中移除。在本文所述的***和装置的一些实施方案中,盖体可从模块中移除。图75例示了本文所述的模块和盖体的实施方案。通过手动或使用自动化板处理机器人移动模块(7503)中的阵列瓦片,可以将阵列瓦片(7501)加载到本文所述的***和装置的实施方案(7502)中。
投影设备
在一些实施方案中,该***配备有投影仪,以操控并将光发射到阵列上。在一些实施方案中,投影仪被安装在电极阵列上方,以将视觉信息投影到阵列上。在一些实例中,投影发射入射在用户应手动添加用于指定反应的新试剂液滴的位置处的光。投影仪还可以用作通用指示器和显示信息,诸如已完成的反应的百分比、剩余时间、加热当前是否活跃、是否正在进行磁操控或关于***状态的其他信息。投影仪可以通过物理显示连接(诸如HDMI、USB等)或通过无线显示连接(诸如蓝牙或wifi)从车载或非车载计算机接收显示信息以确定显示内容。
在一些实施方案中,投影仪为安装在电极阵列上方、下方或侧面的相机(或其他光学传感器)驱动的各种片上测量过程提供照明源。这可以包括例如摄影光的图案(诸如条纹、球谐函数或伪随机点图案),以便对液滴的形貌成像并确定其三维形状和体积(通过结构光扫描)。光学传感器和投影仪***可以进行本文所述的任何光学测量(用于吸收光谱的UV-可见分光光度法、表面等离子体共振、NIR光谱、透射光谱、荧光读数、比色读数)。
在一些实施方案中,投影仪包括漫射光源,诸如一个或多个发光二极管。在一些实施方案中,投影仪包括一个或多个数字微镜装置或液晶显示器,以产生光的图案。在一些实施方案中,投影仪包括一个或多个光学元件,以将光源准直到数字微镜装置或液晶显示器上。在一些实施方案中,投影仪包括一个或多个光学元件,以将来自数字微镜装置或液晶显示器的光图案聚焦到电极阵列上。
在一些实施方案中,投影仪包括准直光源。准直光源可以是激光。投影仪还可以包括一个或多个扫描镜或检流计,以将激光束导向到电极阵列上。
该仪器还可以包括各种形式的光照指示器,以助于指示机器状态。将彩色光透射到机器下方的LED指示器可以用于显示***状态。在一些实施方案中,光照指示器可以显示机器是空闲的、当前运行或等待用户输入。
在一些实施方案中,阵列瓦片含有光敏元件,诸如本文描述的光电润湿和光电润湿部分中描述的光导体。从投影仪***发射的光可以诱导芯片表面上的表面能变化。表面能变化可以用于使用电润湿效应操控液滴,或使用吸引力或排斥力操控微观物体(珠、单细胞、液滴等)。
图76例示了本文所述的模块和投影仪的实施方案。在一些实施方案中,***(7603)包括投影仪(7605),其被配置用于发射入射在阵列瓦片(7601)上的图案。
在一些实施方案中,本文所述的方法还包括发射光图案以将视觉信息投影到阵列上。在一些实施方案中,本文所述的方法还包括操控来自光源的光,并且将光图案投影到阵列上。在一些实施方案中,本文所述的方法还包括使用光学传感器照明阵列,并且使用光学传感器进行一个或多个光学测量。在一些实施方案中,本文所述的方法还包括投影一系列光图案以在阵列上操控液滴。
大体积样品处理
处理大体积样品(例如,微升、厘升或毫升级)可以通过使用分配器(3930)将起始材料(3910,例如,生物样品)分割或分级成等分式样(3920)并且然后将等分式样引入阵列(3940)的处理区域中(图39)。输入材料可以在阵列上作为液滴并行或顺序处理。例如,输入材料可以是生物样品(例如,血液、组织或血浆)或环境样品(例如,水或土壤)。阵列上的样品处理可以涉及例如核酸(例如,DNA、RNA)的提取、特定细胞类型(例如,免疫细胞亚型、循环肿瘤细胞或从组织活检中分离的细胞)的分离或细胞外小泡(例如,外泌体)的分离。
阵列扩展
多重复用
可以减少驱动信号的数量,以用于从单个阵列瓦片扩展至大量阵列瓦片(例如,10、20、30、40、50、100、500或更多个阵列瓦片),以便并行处理样品(例如,在96个单独瓦片上同时处理96个样品)。例如,公共驱动信号(4010)可以用于同时致动多个瓦片上的电极。此外,每个瓦片上的一个或多个参考电极可以由单独的信号驱动(图40)。在任何给定时间,激活特定瓦片上的参考电极(4020)可以实现此瓦片上的液滴移动,而其他(例如,非激活)瓦片上的液滴可能不经历电动力。
图41示出了在可重新配置隔间(4120)中彼此相邻堆叠的多个可重新配置阵列瓦片(4110)的顶视图。这种架构可以为运行提供待激活的瓦片数量的定制。该组件可以允许在可重新配置托盘中加载单个瓦片(4130)或一列瓦片。可重新配置隔间、托盘和瓦片可以具有任意形状。可以将多个托盘加载到可重新配置托盘上,以并行处理例如8、96、384、1,536、6,144、24,576或更多个样品。隔间、托盘和瓦片可以垂直、水平或组合堆叠。
蒸发的单个控制相对于整体控制
调节阵列上一个或多个液滴(样品)的蒸发可以通过在一个或多个阵列上处理多个样品来实现。使用本文所述的方法将单个液滴封闭在阵列瓦片上可以实现大规模处理。可以覆盖整个阵列瓦片或多个阵列瓦片以同时封闭一个或多个液滴。在液滴处理之前、期间和/或之后,可以将外壳降低到阵列上。
共同试剂分配器
在处理样品时,可以将相同组试剂(例如,生物样品、化学试剂、溶液、核酸(例如,DNA、RNA、PNA等)、光学试剂等)引入到阵列的一个或多个瓦片中(例如,如图41所示)。跨瓦片分配试剂的共享分配器可以实现此类试剂的引入。这些分配器可以包括本文所述的分配机构。分配器可以包括一个或多个不同的通道。不同通道中的每个通道可以用于在整个给定过程中分配单一试剂。分配器可可以仅包括一个通道。单个通道可以用于在单个过程中分配各种试剂。洗涤溶液可以用于在分配不同试剂之间洗涤单个通道,以防止任何可能的交叉污染。本文所述的分配器也可以用于从阵列表面吸取样品/试剂。洗涤步骤可以在连续吸取步骤之间进行。
如本文所述,一个或多个阵列可以定位液体处理自动化仪器内。样品和试剂可以通过液体处理器分配到阵列上。阵列或其多个阵列可以从液体处理器上移除(例如,手动或自主地),并且邻近液体处理器定位。
单个样品至多个样品
可以使用本文所述的方法和***来进行在阵列上开发和部署生物和化学自动化流程的两步方法。可以在单个阵列元件上开发流程,并且可以迭代反应(例如,手动或自主地)。可以跨多个阵列部署优化的流程。例如,可以开发在单个样品处理单元上的二代测序(NGS)样品制备流程。然后可以将开发的单一NGS样品制备流部署署在能够并行处理96个样品的阵列上,这96个样品中的每一个均根据开发的单一NGS样品制备流程进行处理。
粘结膜/筒
可以是一次性筒的膜(4210)可以使用粘合剂耦合至阵列(100)的表面。此类粘合剂包括但不限于硅树脂、丙烯酸树脂、环氧树脂、压敏粘合剂和/或导热胶(4250)。在一些情况下,可以通过使用真空抽吸(4250)将膜牢牢地固定在芯片上,以消除膜与芯片表面之间的任何气隙(图4)。可以是一次性的膜可以是刚性的或柔性的。膜可以是用作电介质的玻璃薄片,涂覆有疏水性涂层的层、参考电极或其任何组合。可以使用本文所述的方法将刚性膜粘结到具有EWOD能力的阵列上。本文所述的方法可以用于在单板以及两板***中将膜粘结到芯片表面。
表面涂层
使用聚合物膜堆叠介电涂层和光滑涂层
在EWOD阵列的致动电极(4330)上堆叠介电涂层(4310)和光滑涂层(4320)。图43可以包括至少两层或更多层:例如,第1层可以是电介质或聚合物膜(4310),并且第2层可以是光滑表面(4320,例如,填充有油或其他疏水性材料的多孔聚合物)。第1层可以是基础层。第1层可以包括厚度为至多0.001μm、0.01μm、0.1μm、1μm、10μm、50μm、100μm、500μm或更大的聚合物膜(例如,FEP、PFA、聚酰亚胺)。第1层可以包括厚度为至少500μm、100μm、50μm、10μm、1μm、0.1μm、0.01μm、0.001μm或更小的聚合物膜(例如,FEP、PFA、聚酰亚胺)。第1层可以包括厚度为约0.001μm至约500μm、约1μm至约100μm或约1μm至约50μm的聚合物膜(例如,聚酰亚胺)。第1层的顶部分可以包括一层导电电极阵列(4340)。导电电极阵列的厚度可以是至多0.001μm、0.01μm、0.1μm、1μm、10μm、50μm、100μm、500μm或更大。导电电极阵列的厚度可以是至少500μm、100μm、50μm、10μm、1μm、0.1μm、0.01μm、0.001μm或更小。导电电极阵列的厚度可以是约0.001μm至约500μm、约1μm至约100μm或约1μm至约10μm。导电电极阵列可以例如丝网印刷、数字印刷或电镀(例如,使用光刻图案化前体)到基于膜的电介质上。第2层可以为液滴输送提供光滑表面。第2层可以包括纹理化聚合物材料。纹理化聚合物可以是填充有润滑油(例如,硅油)的多孔聚合物膜(例如,ePTFE)。第2层也可以由其他疏水性材料制成,例如Teflon AF、CYTOP、氟聚合物、硅烷或其组合。第2层也可以由本文所述的任何其他光滑材料制成。第2层可以含有到第1层中包含的电极的部分或完全导电路径。另外,第1层的顶表面可以不包括电极阵列。例如,电极阵列可以嵌入在第2层的顶表面内或耦合至所述顶表面。
介电材料和光滑材料的整个结构体(例如,聚合物膜的组合)可以是部分或完全可移除的/一次性的/可替代的(4410)。单个层(4420,例如,第1层、第2层或其组合)可以附接至框架(4430),所述框架适配到致动电极上以形成电润湿阵列(4440,图44)。此框架可以含有顶板(4450),以减轻液滴(4460)蒸发。顶板可以被加热。顶板可以具有一层电极阵列。顶板可以具有孔(4470),以用于引入液滴或连接到外部装置以控制例如压力、湿度和温度。此框架和层结构体、第1层、第2层或其任何组合可以是可移除的/一次性的/可替代的,以避免在阵列表面上操控的样品的交叉污染。
第2层(例如,填充有油的纹理化固体)可以直接施加到电极阵列上。电极阵列可以涂覆有保护性保形涂层,并且例如然后可以施加可移除第2层(例如,填充有油的纹理化固体)。压敏、热敏或其组合的粘合剂(4510,图45)可以用于将第1层粘结到阵列、将第1层粘结到第2层或其组合。膜筒(4520)可以用于保持框架配置。真空可以用于改善堆叠层与阵列之间的接触。单个层或其组合可以附接至框架。
通过疏水性/光滑涂层的导电层
可以将孔引入到图43描绘的堆叠层的第2层中。可以将导电材料(例如,碳浆料或银纳米颗粒)引入这些孔中。可选地,填充有导电材料的多孔膜可以用于第2层。另外,可以将油施加到电介质上,这可产生部分或完全导电的疏水性光滑层。介电膜的孔隙率可以足够大,并且可以消除物理缺陷(例如,孔)的引入。仅物理缺陷可以足以建立导电通路,从而消除添加剂材料,例如导电材料(例如,碳浆料或纳米颗粒)的引入。
膜张力
可以通过单独使用张紧器(例如,加载弹簧的张紧器)将第1层、第2层或其组合保持在张力下。张紧器可以允许层堆叠体在热循环期间膨胀和收缩,以避免在EWOD阵列表面上形成褶皱或其他缺陷。可以将处于张力下的膜提供到图44中描绘的配置中。在组装阵列时,通过将顶部框架(4530)施加到底部框架(4540)上,膜可以经历另外的张力(A:A部分,图45)。可以使用各种使膜张紧的方法,包括例如“框架中框架”张紧器(例如,将膜夹在两个框架之间,并且在框架聚集在一起时在各个方向上施加张力,图45)。
膜施加方法和***
刮板工具可以紧靠阵列穿过堆叠膜的表面以施加膜。刮板横移过程也可以去除堆叠膜中的褶皱。
可以使用卷对卷膜传送***将膜(例如,第1层、第2层或其组合)施加到阵列(4610)上,例如,如图46A所示。膜供给辊(4620)和用过的膜供给辊(4630)可以用于维持膜中的张力,以避免在热循环操作、样品操控或其组合期间膜起皱/变形。例如,该层可以i)预组装并置于相同个辊(图46A)上,或者ii)通过分配器(4640)(图46B)置于单独的辊上,并且在施加在阵列上之前组装。另外,多孔膜供给辊(4650)可以与膜供给辊(4620)耦合以提供多孔膜。
在EWOD阵列上进行样品操控之前、之间或期间,第2层可能需要上油。这可以使用油分配器(4640)来实现(例如,图46B)。油分配器可以通过例如喷涂、喷射、刷涂或其任何组合将油(4650)施加到第2层上。油分配器可以集成到前辊中,以便在将第2层施加到阵列表面上之前将油施加到第2层。
耗材
预加载框架+膜框架
在电润湿装置(或本文所述的阵列装置)的一个实施方案中,参考电极10025(与接地的其他电位连接的电极阵列)可以与致动电极置于液滴的相同侧,如图100A和图100B所示。在一些实施方案中,参考电极10025嵌入介电层10040内。包括参考电极10025的介电层10040可以设置在包括电极10020的层的顶部,该电极10020有利于液滴10010的移动或致动。最顶表面可以或可以不具有光滑/疏水性涂层10035。与参考电极形成良好的DC电接触,以便有利于释放液滴中积累的任何电荷是有利的。
参考电极可以通过框架10150连接到已知电位(例如接地电位)。此框架10150可以是电介质和光滑层所附接至的相同膜,如图102描绘。在一些实施方案中,膜框架10150置于对准框架10155内和基板10140的顶部上。框架10150可以由一个或多个弹簧夹10160固定在适当位置。在此膜-框架结构内,参考电极阵列可以通过各种不同方式与膜-框架进行电接触。如果参考电极的顶表面上的疏水性(或光滑)涂层较薄(<5um),则可以通过简单地用薄粘合剂(例如,氰基丙烯酸酯)将膜-框架粘合到参考电极上来建立足够的导电性。然而,如果疏水性涂层较厚,则可以通过选择性移除区域中的疏水性涂层,接着使用冷焊料(诸如金属填充粘合剂)来建立膜-框架与参考电极之间的电接触。
可以使用加载弹簧的导电连接器(10160,如图101描绘)、焊接线螺栓连接或本领域技术人员已知的其他方式来建立膜-框架与仪器之间的电连接。
在一些实施方案中,本文所述的配置可以应用于以上若干部分描述的筒。
膜复合材料
为了防止液滴中的电荷积聚,可以在电介质基板的面向液滴的表面上使用图案化电极。此图案化电极可以使用多种不同的制造方法来制备,包括丝网印刷、柔版印刷、凹版印刷、喷墨印刷、溅射和气相沉积技术。印刷过程中使用的金属墨在决定印刷电极的特性方面起着重要作用。银颗粒墨可以定期产生大小低至约100um的特征件,并且具有约1um的典型最小沉积厚度。
如果使用薄的(通常<1um)保形疏水性涂层来产生涂层堆叠体的疏水层,则印刷电极的厚度在确定液滴是否能够在表面上自由移动或固定在适当位置中是重要的。通常期望印刷特征件的迹线高度明显小于液滴本身。对于100uL或更小的液滴,具有薄疏水性涂层的1um厚迹线可能极大地阻碍运动。
因此,当使用薄的保形疏水性涂层时,期望对厚度基本上小于1um的电极进行图案化,如图102A和图102B描绘。利用化学反应沉淀金属颗粒的无颗粒墨配制品能够达到小得多的特征件大小(~5um)并且产生薄得多的迹线(<100nm)。这些墨可以使用常规印刷工艺进行图案化,并且与包括PET和PI电介质的多种基板相容。图102A描绘了待跨阵列输送的液滴10210。在一些实施方案中,阵列包括邻近基板10205的第一层电极10220。可以在第一层电极10220上方提供介电层10240。可以在介电层10240上方提供第二层电极10225。可以在第二层电极10225上方提供保形涂层10235。在一些实施方案中,保形涂层是疏水的。如果电极过厚(例如,通过一些丝网印刷方法产生),它们可能会产生阻碍液滴移动的钉扎特征件10230。因此,可以通过本文公开的方法来印刷电极,以产生一层无颗粒电极10227,其不阻碍液滴的移动,如图102B描绘。
在一些实施方案中,本文所述的配置可以应用于以上若干部分描述的筒。
膜框架到瓦片的施加
在电润湿装置的一个实施方案中,可以使用薄的(<5um)多孔膜来产生液滴可以在其上自由移动的注入液体的表面。此多孔膜可以通过使用将三层(电介质、多孔、框架)粘合在框架***的膜-框架来附接至介电膜上。此粘合可以使用湿粘合剂、干粘合剂或通过热层压来实现。这些粘合剂策略可以选择性地在区域(例如,沿框架***)中或跨膜的整个表面实施。
当使用某些材料组合时,热层压是可能的。介电膜可以由PET、FEP或PFA构成,以允许热层压到纹理化多孔膜(例如:PTFE多孔膜)。此热层压工艺产生了维持多孔顶表面的稳健膜,该顶表面可以注入液体以产生注入液体的表面,这实现高性能的液滴移动。
为了在整个电极阵列上实现一致的液滴移动,需要膜或涂层堆叠体与电极阵列和基板保持一致和紧密接触。可以使用各种方法来实现此紧密接触。张紧装置可以用于拉伸基于膜的涂层,以确保与基板紧密接触。可选地,可以使用真空压力通过基板中的小孔或多孔特征件将膜拉紧到基板上。
如图103A和图103B描绘,可以提供具有电极10320的基板10305。在一些实施方案中,可以在电极10320上方提供膜10335,并且通过膜框架10330固定在适当位置。当膜被附接时,空气泡10355可能被捕获在膜10335与电极阵列10320之间。使用刮板或刷子可以容易地将这些空气泡推到膜边缘。在一些实施方案中,如图103Bb描绘,填充液10350用于确保膜层与基板之间的良好粘合。可以在电极阵列10320与底膜层10335之间放置薄层填充液10350,以使膜的任何褶皱平滑并通过表面张力去除任何气隙。填充液可以包括多种绝缘材料,包括硅油或氟化油。
在一些实施方案中,本文所述的配置可以应用于以上若干部分描述的筒。
用于废弃物处置的储器
如图99所示,可以将吸收材料或海绵附着至阵列装置上。可以使用阵列装置9900上的电动力输送液滴9910并与海绵9950接触。建立接触后,液滴可以被海绵9950吸收。这可以是在运行生物流程期间、之前或之后处置或存储不可用液体的一种方法。也可以使用本文所述的任何分配器(毛细管、自动化移液器、压电致动器)去除或处置不必要的缓冲液或洗涤缓冲液。也可以通过阵列装置上的孔吸入废液来处置废液(如本公开的其他部分所述)。
提高液体回收率
由液体处理机器人导致的体积误差可能是一个问题,这可能是由于例如孔板中的液体回收不良。在EWOD驱动的吸取的情况下,通过EWOD致动对液滴进行准确定位可以显著减少体积误差。这方面可以与基于计算机-视觉的算法相结合,所述算法可以反馈给液体处理器。本文所述的***可确保由于转移导致的体积误差<5%。在一些实施方案中,在吸取期间激活EWOD驱动的混合可以提高液体回收率。可以通过在阵列上包括机械振动、声学振动或其组合来进一步提高转移效率。可以向移液管施加电势,导致液滴电润湿到移液管中,从而进一步产生高转移效率。
单细胞分离、细胞条形编码、追踪
可以在阵列(100,图47A)上使用电动力或本文所述的其他力来操控离散液滴中所含的单细胞。可以使用耦合至阵列(4730)的单细胞分选器来生成单细胞。细胞可以是例如癌细胞或正常细胞。细胞可以是例如哺乳动物细胞、植物细胞、昆虫细胞、细菌细胞或酵母细胞。阵列可以在时间和空间上监测细胞功能的动力学,例如细胞生长、细胞表达、细胞***或其任何组合。检测器(4710,例如光学显微镜或相机)可以与阵列耦合以进行监测。控制模块(4720)可以与阵列耦合以控制本文所述的过程。细胞表达可以包括例如核酸、蛋白质、代谢物、离子、在细胞表面表达的分子或其任何组合。所述***可以将一种或多种试剂(或标志物,例如抗体)引入含有单细胞的液滴中(图47B)。所述***可以引入用于细胞表达的试剂。所述***可以将液滴输送至各种反应条件(例如,温度、氧气、营养物等)。所述***可以在时间上监测添加一种试剂(或多种试剂)或引入到新反应条件中可以如何影响细胞功能的动力学(例如,生长、表达、复制等)。
本文讨论的细胞功能可以针对液滴中所含的一组细胞(例如,细菌细胞)进行控制。相关培养基中细胞的中央储器可以包含在阵列上、邻近阵列或其组合。细胞储器中的液滴可以通过电动力致动来生成。抗生素或其他细胞毒素可以任何浓度被引入含有细胞的离散液滴中。可以监测每个液滴中的细胞生长。可以检测每种抗生素/毒素(例如,IC50、LD50、EC50、ED50、GI50、MIC等)的细胞毒性。例如,阵列可以助于在微生物分析中鉴定抗生素耐药菌株。抗生素/毒素可以在阵列或一次性筒的表面冻干。在引入含有细胞的液滴之前或期间,抗生素/毒素可以溶解在缓冲液或培养基中。
当细胞包含在液滴中时,来源于此细胞的表达材料可以在单独液滴中分离(图47C)。含有表达材料的液滴可以用唯一标识符(例如,核酸、肽、抗体等)加标记。表达材料可以用唯一标识符加标记。***可以连续监测和测量加标记的液滴,以用于进一步分析。具有加标记的材料的液滴可以与含有单细胞的另一个液滴组合。基因组材料,例如DNA或RNA,可以在裂解细胞或其多个细胞之后以液滴形式从细胞或其多个细胞中提取。来自细胞或其多个细胞的核酸可以用唯一分子标识符加标记。加标记或未加标记的基因组材料可以被分离并用于文库制备以用于测序。
一个细胞可以在液滴中复制成2个、3个、4个、5个、6个、10个、50个、100个、1,000个或更多个细胞。***可以实时查看液滴,并且它可以通过将液滴分割成至少两个液滴,将至少两个细胞分隔到至少两个液滴中来响应所述过程。***可以在如本文所述的液滴中处理单细胞或其多个细胞。阵列可以含有1、2、5、10、20、50、100、1,000或更多个液滴,作为封闭单细胞的隔室。可以同时监测阵列上的所有液滴或其多个液滴。可以组合至少两个液滴,每个液滴含有至少一个细胞。例如,可以对组合的细胞进行监测,以观察它们如何相互作用。可以在外部装置(4730,例如微流体、FACS、光镊、手动拾取、微操控器等)上将细胞分隔到液滴中。可以将液滴的分隔细胞引入阵列(例如,电润湿阵列)中,以用于在外部装置上分隔之后进行液滴操控。阵列可以含有用于分离和储存细胞的结构。例如,可以使用以下来在阵列(例如,电润湿阵列)上集成将细胞分隔到单个液滴中:例如,电润湿装置或介电润湿装置、与阵列集成的介电泳装置、与阵列集成的光镊、与阵列集成的微流体装置。
多级芯片
本文所述的***和方法可以呈三维(3D)空间形式。装置(101)可以包括多个板(100,图48A-48C)。装置可以在阵列的任何板之间包含间隙,在其中可以操控液体(4810)。任何两个板之间的间隙可以含有填充液。阵列可以类似于多层建筑(例如,图48A-48C)。任何板可以含有电极阵列,例如用于电润湿、电泳、介电润湿或本文所述的其他基于电动力的致动。可选地,阵列可以含有一个或多个压电致动器。可选地,阵列可以包括具有间隙、孔、通道或其任何组合的板,其中液体可以通过施加本文所述的力(例如,压力、真空、电动力)而流动。
多层装置可以使用本文所述的方法和***来构造。装置可以包括用于监测如本文所述的样品的传感器。与本文所述的阵列耦合的液体输入和液体输出装置可以与多层阵列耦合。多层芯片可以垂直放置(图48C)、水平放置(图48B)、对角放置或其任意组合。液体可以在空间中垂直、水平、对角或任意组合操纵(例如,与重力相反)。
多层阵列可以致动(例如,移动、混合、***、加热、冷却、振荡、基于珠的洗涤)位于多层阵列的任意两层之间或之上的液体(例如,液滴)。两个板之间的液体可以接触两个板,或者它仅接触一个板。板可以含有用于鉴定液体(例如,液滴)的位置、大小、组成或其任何组合的传感器。液体(例如,液滴)可以通过一个板或其多个板的孔(4830)、通道(4840)或其组合从一个板(100)转移到另一个板(图48B)。可以使用例如管道、管、微流体通道、电润湿阵列或其组合来连接一个板或其多个板的任何两侧。孔可以用半透膜、可渗透膜、多孔膜或其任何组合将板的侧面分开。多个板上的液体可以同时或单独操纵并定位成使得它们通过孔、管道、膜、管或其组合相互作用。多层阵列可以与其他阵列集成,以使液体通过入口/出口(4820)流入和流出多层阵列。使液体流入和流出的外部装置可以是但不限于:管、微流体装置、液体处理机器人、本文所述的液体分配器或其任何组合。
多层阵列可以用于并行处理至少1、5、10、50、100、500、1,000、10,000、50,000、100,000、500,000、1百万或更多个本文所述的部件。多层装置可以采用在XY平面内的SBS板的形状。装置的任何两层可以通过孔连接。这些孔可以用于将一个或多个样品从一个板转移到另一个板。在阵列的每一层上,样品都可以经历生物流程的一个或多个处理步骤。多层阵列的基本上所有阵列都可以在***内协同工作。
DNA数据存储
聚合物材料(4920,例如本文所述的核酸、肽或聚合物)可以从外部装置(4910)沉积在本文所述的阵列(100)的表面上(图49A)。外部装置可以是例如移液机器人、喷墨喷嘴、电流体泵、微流体分配器、本文所述的液体分配器或其任何组合。阵列可以是本文所述的阵列的组合。聚合物材料可以沉积到本文所述的阵列的一个位置上,并且可以可寻址的方式检索。寻址方案可以是1:1(即,具有唯一聚合物的每个点具有唯一的地址)。每个聚合物位置可以编码信息。阵列可以含有编码信息作为数据存储装置。数据存储装置可以用于存档(例如,冷存储)目的(图49B)。可以访问阵列上的材料(例如,通过运送具有试剂的液滴)并将材料溶解到液滴中(图49C)。可以对液滴的内容物进行测序(例如,在DNA测序仪上),以检索关于材料的信息。PCR扩增可以在阵列的一个位置上进行,并且随后转移至测序仪(4920)。控制器(4940,例如CPU、微控制器、现场可编程门阵列(FPGA))可以通过测序仪(4920,例如纳米孔)从存储阵列访问数据,并且使用本文所述的分配方法和***来进行数据写入操作(4910)。本文所述的部件的寻址可以通过地址编码器或地址解码器(4930)进行。聚合物材料可以沉积在如本文所述的一次性筒上或聚合物膜上。一次性筒或膜可以置于电润湿阵列上。可以使用如本文所述的适当试剂检索信息。通过运送具有试剂的液滴,可以在任何位置处以编程方式从阵列中“擦除”信息。
电润湿装置上通过膜分离的液滴
膜(5010,例如多孔的、可渗透的、半透的)可以永久地或暂时地附接至阵列上(图50A和图50B)。可以在阵列上致动液滴,并且将其定位以在期望的时间内同时与膜建立接触。液滴可以将材料(生物和/或化学)从一个液滴交换到另一个液滴。***可以是开放***(图50A)或封闭***(图50B)。
可定制EWOD芯片
可定制EWOD芯片可以包括微型致动电极的基础层(小于约1mm),其可以与含有本文所述的部件(例如,另外的电极、介电材料、作为参考电极的导电材料、疏水性涂层等)的筒耦合。微电极(可以是连续的)可以组合在一起以形成可以致动液滴的电极。电极的形状和大小可以是任意的。电极大小以及电极阵列的图案的可定制性可以用于处理各种生物和化学流程。微型电极阵列可以用于生成致动电势。微型电极阵列可以不用于液滴操控。在一些实施方案中,另一层电极可与用于液滴致动的阵列耦合。
用于液滴检测的电容传感器
检测液滴的位置可以通过计算机-视觉以外的***来实现。电容感测可以能够检测阵列表面上的液滴。这可以通过致动电极并检测相邻电极上的电压变化来实现(图51)。为了检测阵列液滴的位置及其大致大小,可以依次激活阵列中的电极,同时可以检测跨越整个阵列的参考电极的电路监测器。例如,当在存在液滴的情况下激活电极时,可以在参考电极上感测电压的变化。检测电路可以包括反馈放大器,其缓冲和缩放电压变化,使得例如它们可以由微处理器上的数字电路或其他控制电路读取。
参考电极可以与致动电极共面,可以通过介电膜层与致动电极分开,或者可以与液滴顶部的致动电极相对。参考电极可以与液滴导电接触,但是也可以与电极阵列绝缘。该电极可以是多孔的或网格状的,以避免电屏蔽来自电极阵列的液滴。位置检测技术也可以在没有跨越阵列的参考电极的情况下使用,例如,检测阵列电极之间的互电容的变化。此技术可以激活阵列内的电极,并且通过信号调节电路监测相邻电极。
具有第二电极层的电穿孔
图52示出了在开放阵列上的液滴(5210),其包含细胞和生物分子(例如,核酸)。液滴位于两层电极上方,并且可以通过介电层与这些电极分开。例如,与第一层(5240)电极(图52A和图52B)相比,液滴更靠近第二层(5230)电极。第二层电极中的交替电极可以用高电压(5220)脉冲,以在悬浮在液滴中的细胞中进行电穿孔。电极的电压可以是至多约1伏(V)、100V、500V、1,000V、5,000V、10,000V、50,000V、100,000V或更高。电极的电压可以是至少约100,000伏(V)、50,000V、10,000V、5,000V、1,000V、500V、100V、1V或更低。电极的电压可以是约1V至约100,000V、100V至约5,000V或500V至约1,000V。电压的脉冲宽度可以是至多约0.00001毫秒(ms)、0.0001ms、0.001ms、0.01ms、0.1ms、1ms、10ms、100ms、1,000ms、10,000ms、100,000ms或更多。电压的脉冲宽度可以是至少约100,000ms、10,000ms、1,000ms、100ms、10ms、1ms、0.1ms、0.01ms、0.001ms、0.0001ms、0.00001ms或更小。电压的脉冲宽度可以是约0.00001ms至约100,000ms、约0.001ms至约1,000ms或约0.1ms至约100ms。电极可以是任意形状。例如,利用第一层电极作为致动电极,第二层电极可以用作参考电极以生成电润湿力。因此,在阵列的相同表面上,可以使用EWOD和细胞电穿孔来实现液滴操控。
在另一种配置中,阵列可以由具有另一个电极阵列的顶板组成。可以在顶板的电极与底板的电极阵列之间施加电压,所述底板的电极阵列最靠近液滴。图53中的阵列可以在替代配置中使用,以使用介电润湿输送、混合和***液滴。为此,第二层电极阵列可以用于影响液滴移动。电极可以配置成蛇形,或者它们可以交错。通过在任何两个邻近电极之间施加耦合至接地电极的交变电场(5310,例如AC),可以生成介电力。图52B示出了图52A和图53中描绘的阵列的侧视图。另外,第一层电极和第二层电极可以配合使用电润湿(EWOD)进行液滴输送。
类似地,在两板***(例如,图53B和图53C)中,顶板(有或没有光滑表面)(5230)上的电极(5350)可以用作参考电极或用于电穿孔(图53B)。底板上的电极(有或没有光滑表面)(5240)可以包括用于EWOD/DEW操作的致动电极(5360)。可选地,两板***可以包括顶板(5230)、底板(5240)或其组合(有或没有光滑表面),可以包括电极(5350),其可以用作参考电极或用于电穿孔(图53C)。
在两板电润湿阵列中,标准电容感测装置(102,例如触摸屏装置)可以用作第二板(图54)。电容装置(102)可以用于测量本文所述的液滴特征。来自电容装置的反馈可以用于操控本文所述的液滴特征。下面的阵列(103)可以操控两个板之间的空间(5410)中的液滴。可选地,可以使用顶表面上的透明或导电电极网格来执行相同的功能。第二层可以具有一层另外的疏水性涂层或光滑涂层(5410,例如SLIPS)。
聚合酶链反应(PCR)、清除和定量PCR(qPCR)
核酸分子可以在本文所述的阵列上通过基于热循环的聚合酶链反应(PCR)来扩增。可以加热或冷却阵列的固定区域。可选地,可以将阵列上的不同区域加热或冷却至不同的温度或温度范围(参见图55中的区域1、2、3、4、5)。例如,含有PCR试剂和样品的一个或多个液滴可以在阵列的不同区域(5510)之间来回运送以进行PCR。传感器(5520,例如荧光相机)可以用于照明和记录阵列上液滴的信号(例如,荧光)(图55)。可以实时进行检测,从而提供qPCR功能。例如,在qPCR操作期间,可以通过监测dsDNA结合染料(例如,SYBR)或荧光探针(例如,TaqMan)来读取信号。在每个PCR循环期间,信号可以随着新生成的PCR产物的积累而增加。为了进行qPCR,可以使用来自液滴的等分式样(例如,液滴体积可以在pL-mL规模上)。通过实时监测此等分式样中的qPCR,可以推断主要样品的性能,并且可以相应地调整所需的放大量。一个或多个阵列上的PCR和qPCR操作可以被复用以并行追踪各种扩增子(例如,基因、目标标志物、NGS文库等)。PCR和qPCR可以用于定量例如NGS文库、基因表达或靶检测(例如,诊断)。
二代测序(NGS)文库制备和蒸发补偿
本文所述的***和方法可以实现完全数字化,以用于NGS样品制备的高通量自动化。可以使用本文所述的***和方法由纯化的DNA开始制备全基因组测序(WSG)文库。例如,DNA可以在本文所述的阵列上酶切片段化、末端修复和添加A-突出端。双索引条形码可以连接到DNA片段上,并且最终的连接产物可以通过基于磁珠的纯化进行纯化和大小选择。该方法可以在本文所述的单个装置上进行。
本文所述的蒸发补偿技术可以不影响NGS文库制备的反应动力学,从而适用于本文所述的广泛的生物和化学流程。此外,可以针对这种化学/生物反应中的每一种的蒸发性损失由相同个阵列运行大量实验并建立数据集。例如,数据集可以用于计算将反应体积保持在例如20%、10%、5%、1%或更小的误差范围内所需的补偿体积。在存在体积损失的反应中,可以定时引入补偿体积(例如,在没有感测和反馈的开环中)。可选地,数据集可以通过机器学习模型馈送,以开发算法来学习如何基于反应的特征估计补偿体积。馈送到机器学习模型中的数据集可以由邻近阵列的传感器生成,或者可以由阵列外部的传感器生成。类似地,用于改进同时混合和加热的连接或响应阵列上的有源混合改进片段化的数据集可以用于使用机器学习算法优化NGS样品制备流程的性能。
纳升NGS
在本文所述的阵列上,可以将输入材料和试剂量缩小至纳升大小或皮升大小的反应体积(例如,液滴)。试剂浓度可以保持恒定(例如,为了准确的反应化学计量)。试剂起始浓度和最终浓度可以不保持恒定(例如,增加或减少),例如,在纳升或皮升大小的反应体积中优化反应效率。
与夹在两个板之间的液滴相比,阵列(例如,EWOD阵列或DEP阵列)或固体支撑物(例如,玻璃)的开放表面上的纳升或皮升大小的液滴可以接触面积小得多的阵列。较小的面积占用可以允许大量液滴(例如,数千纳升液滴和数百万皮升液滴)包装在阵列的小覆盖区内(例如,标准SBS孔板的大小)。在例如具有平滑光滑表面且没有来自第二表面(例如,来自第二个板)的界面力的开放阵列上,纳升大小的液滴可以通过力(例如,来自EWOD的电动力)输送并混合。此外,液滴可以例如加热、冷却、经受磁场或其任何组合。可以在尺寸与液滴接触面积相当(例如,0.00001毫米(mm)、0.0001mm、0.001mm、0.01mm、0.1mm、1mm、10mm、100mm、1,000mm或更大)的电极上实现纳升或皮升大小的液滴的致动。可选地,可以同时激活包围纳升或皮升大小液滴的一组连续电极,以生成足够的电动力用于输送一个或多个液滴(图56A)。此规模的反应体积和电极大小可以提供至少约1、10、100、1,000、10,000、100,000、1,000,000或更多并行进行的反应(例如,在纳升或皮升水平下使高通量应用成为可能(图56B)。缩小反应、电极、输入材料、试剂或其任何组合的工艺可以使用软件模拟来自动化。
高分子量(HMW)核酸分离和转移
完整基因组DNA的长度可以大于约100兆碱基(Mb),但是分离方案可能使基因组DNA片段化为10-200千碱基(Kb)长度的片段。然而,由于测序技术能够处理更长的读长(例如,大于约1Mb),所以完整基因组DNA分子的低产量(例如,>100kb)是DNA分离技术尚未解决的限制。
本文描述的是使核酸(例如,DNA)的机械片段化(例如,由于空气置换移液的剪切力)最小化的***和方法。本文描述的是减少由于例如传统处理装置的死体积而导致的样品损失的***和方法。本文所述的***和方法可以能够自动化高通量和高分子量(HMW)DNA分离,其中中值DNA片段大小为至少约1Kb、10Kb、100Kb、1,000Kb、10,000Kb、100,000Kb、1,000,000Kb或更大。本文所述的***和方法可以能够自动化高通量和高分子量DNA分离,其中中值DNA片段大小为至多约1,000,000Kb、100,000Kb、10,000Kb、1,000Kb、100Kb、10Kb、1Kb或更小。本文所述的***和方法可以能够自动化高通量和高分子量DNA分离,其中中值DNA片段大小为约1Kb至约1,000,000Kb、100Kb至约500,000Kb、或约1,000Kb至约100,000Kb。
本文描述的是可以操控适于HMW DNA分离的反应体积的通用开放电介质上电润湿(EWOD)***和方法。通过在相同***中集成例如磁珠分离和加热器/冷却器的功能,本文所述的***和方法可以不包括定制仪器。本文所述的***和方法可以提供直接重新编程,以扩展可执行流程的数量,从而实现具有例如在单个装置上以可编程方式控制的可变输入、试剂、培养、洗涤步骤和数千个液滴的新配方。
本文所述的***可以至少两种配置操控2D或3D电极网格上的液滴(例如,夹在由小间隙分开的两个板之间或在开放表面上的液滴)。例如,在两板PDM***(例如,电极尺寸为25μm)上,5pL的液滴可以等分、输送并与另一个液滴混合。在开放表面上,可以操控EWOD装置(例如,电极尺寸为2mm)液滴(例如,约200μL)。本文所述的***可以处理适于例如批量DNA提取的体积(例如,100μl至1ml)以及足够小以封装单细胞和单个细胞核的液滴(例如,50nL)。
另外,为了增加来自细胞样品的HMW DNA的产量,可以在阵列上进行增强搅动技术。搅动技术可以包括以下方法,例如机械蜂鸣器、振荡器、涡流器、超声波或其任何组合。可以将磁性微搅拌器引入样品中以增强混合。这些搅拌器可以与本文所述的不同磁体配置耦合。不同形状的磁体可以用于改变阵列上磁珠的形状和分布。具有可调强度的磁体可以用于容纳在阵列上操控的磁珠。
在稳定缓冲液中从细胞提取的DNA可以产生完整的HMW DNA。例如,海藻酸水凝胶可以用作稳定HMW DNA的支架材料。海藻酸可以在阳离子的存在下形成稳定的凝胶,胶凝条件可以是温和,并且可以通过例如提取钙离子(例如,通过添加柠檬酸盐或EDTA)来逆转胶凝过程。提取的DNA可以在芯片上形成的高粘度/低剪切溶液(例如,海藻酸液滴)中稳定。这种稳定化方法可以允许HMW基因组DNA的转移(例如,在实验室内或通过站点之间的运输),而不会发生明显降解。HMW DNA可以储存在试剂中以防止剪切(例如,海藻酸水凝胶)。提取的HMW DNA可以例如在提取之后转移到试管中或储存在EWOD阵列上。为了防止测序前的DNA剪切,测序文库可以组装在用于HMW DNA提取的相同装置上。类似地,纳米孔可以集成到阵列中,用于直接测序而无需样品转移。
酶促生物聚合物合成
生物聚合物(例如,多核苷酸和多肽)可以通过顺序、并行或其组合分配和移动试剂来在阵列上合成。所述试剂可以包括例如核苷三磷酸、核苷酸、酶、缓冲液、珠、解封剂、水、盐或其任何组合。例如,通过功能化阵列上的特定位置,多核苷酸(例如DNA)合成可以直接在阵列表面上发生。例如,功能化位置可以充当反应位点。DNA合成也可以在通过阵列操控(例如,EWOD)的液滴中包含的珠上进行。DNA合成可以在阵列上以毫升、微升、纳升、皮升或飞升的规模的体积进行。DNA片段可以通过例如Gibson组装等过程直接在阵列上组装成更长的片段。液滴的组合合并可以用于例如产生多种DNA片段。组装的DNA片段的质量可以通过在用于下游测序,例如基于Illumina或Oxford Nanopore Technologies的测序的阵列上的测序文库制备来评估。
用于储存试剂(例如,核苷三磷酸、磁珠、酶、盐、水、裂解剂或解封试剂)的储器可以集成在阵列表面上,集成在阵列上方,或使用本文所述的分配方法从外部储器分配。
1、10、100、1,000、10,000、100,000、1,000,000或更多个反应可在单个阵列上或多个阵列上并行进行。具有多核苷酸(例如,DNA)序列的液滴可以使用磁珠进行纯化和大小选择。纯化的DNA序列可以使用DNA组装技术(例如Gibson组装)以组合方式合并和组装。组装的多核苷酸(例如,DNA)可能含有错误。为了校正错误,组装的多核苷酸(例如,DNA)可以用错配结合或错配切割蛋白(例如,MutS、T4核酸内切酶VII或T7核酸内切酶I)进行处理。
如本文所述,用于使用酶促法合成DNA的阵列可以垂直或水平堆叠。堆叠体可以连接到云服务器基础设施。例如,当用户获取例如DNA、基因池、RNA、导向RNA或其他生物聚合物的序列时,用户可以与直接连接到云基础设施的计算机上的仪表盘交互。在提交用于合成的输入序列时,可以根据需要实例化有限阵列集。例如,阵列的数量可以是一个至数十亿个。一旦阵列被实例化,整个合成过程就可以自主运行。
样品纯化
阵列上核酸(例如,DNA)的基于光学(例如,荧光)的检测可以通过使用例如插层荧光染料(例如,SYBR绿色)来实现(例如,图57中描绘了荧光检测机构)。为了进行基于荧光的测量,样品可以从阵列(5720)的另一部分定位在样品检测区(5710)中。样品检测区可以是光学透明路径(例如,透明或表面中的孔)。激发源(5730)、激发滤光器(5740)、镜(5750)、发射滤光器(5760)、检测传感器(5770)或其任何组合可以定位在样品下方,以允许光激发并通过光学透明路径返回。
例如,大小选择单元(5520)可以位于基于荧光的检测区之前。基于大小的分离单元可以采用电泳或毛细管电泳来基于核酸片段的大小分离核酸片段。大小分离的样品可以穿过检测区,其中样品的荧光信号分布可以指示样品的大小分布。样品的总荧光可以用于定量样品中总核酸的浓度。
用于液滴操控的方法和***
在一方面,本公开提供了一种用于处理多个生物样品的方法。所述方法可以包括邻近阵列接收可以包含所述多个生物样品的多个液滴,和以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述多个生物样品。这可以用于处理多个生物样品。所述阵列可以是电润湿装置,如本文其他地方所述。
在另一方面,本公开提供了一种用于处理多个生物样品的***。所述***可以包括邻近阵列接收可以包含所述多个生物样品的多个液滴,和以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述多个生物样品。所述***可以用于处理多个生物样品。
在另一方面,本公开提供了一种用于生物样品处理的***,其包括:被配置用于容纳多个阵列的壳体,其中所述多个阵列的一个阵列被配置用于(i)邻近所述阵列接收包含所述多个生物样品的多个液滴,并且(ii)以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述多个生物样品。所述多个阵列可以从壳体移除。所述壳体可以被配置用于耦合至核酸测序平台。所述壳体可以是核酸测序平台。
在另一方面,本公开提供了一种用于定制用于处理多个生物样品的阵列***的方法。所述方法可以包括从用户接收针对配置阵列***的请求,所述请求可以包括一个或多个规范,和使用所述一个或多个规范来配置所述阵列***以产生所述配置阵列***,所述配置阵列***可以被配置用于接收可以包含所述多个生物样品的多个液滴,并且可以所述多个液滴之间可以小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV)处理所述多个液滴或其衍生物。
在另一方面,本公开提供了一种用于处理生物样品的方法。所述方法可以包括邻近开放阵列提供可以包含生物样品的液滴,并且可以使用开放阵列处理液滴或其衍生物中的生物样品。在处理期间,静态(或固定)液滴的位置可以在至少10秒的时间段内变化至多5%。
在另一方面,本公开提供了一种用于处理生物样品的方法。所述方法可以包括邻近阵列接收包含所述生物样品的液滴,并且可以所述液滴之间小于5%的串扰,以所述液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述生物样品。
所述至少一个参数可以包括选自以下各项的一个或多个成员:液滴大小、液滴体积、液滴位置、液滴速度、液滴润湿、液滴温度、液滴pH、液滴中的珠、液滴中细胞的数量、液滴颜色、化学材料的浓度、生物物质的浓度或其任何组合。所述至少一个参数可以是至少1、2、3、4、5、6、7、8、9、10或更多个参数。所述至少一个参数可以是液滴的可测量特性。
在一些实施方案中,监测液滴内化学材料或生物物质的浓度,使得其不超过或低于预定阈值。在一些实施方案中,化学材料或生物物质的浓度的预定阈值是5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%。
所述阵列的配置可以选自:具有电极阵列的开放配置、没有电极阵列的开放配置、具有非共面电极组的开放配置、一个板上有电极阵列且另一个板上没有电极的两个板、一个板上有非共面电极组且另一个板上没有电极的两个板、一个板上有电极阵列且另一个板上有单个电极的两个板、一个板上有非共面电极组且另一个板上有单个电极的两个板、两个板上均有电极阵列的两个板、两个板上均有非共面电极组的两个板或其任何组合。开放配置可以包括具有一组电极并且没有相对电极的阵列。电极阵列可以是一个或多个电极。电极阵列可以嵌入在另一种材料内。阵列可以是电润湿装置。阵列可以在任何时间处访问。生物样品或液滴可以在任何时间处访问。阵列、生物样品、液滴或其任何组合可以由用户或阵列的部件访问。阵列、生物样品、液滴或其任何组合可以在任何时间处由用户或阵列的部件访问。开放电极阵列可以允许从任何角度访问样品而无需移除顶板。开放电极阵列可以具有比封闭阵列更少的摩擦。由于样品混合的三维性质,开放阵列可以允许更快且更完全的混合。
在开放配置中,阵列可以包括基板中的多个电极。多个电极可以是共面的。可选地,多个电极的子集可以不是共面的。阵列可以不包括任何相对电极(即,阵列的表面可以是开放的,并且不包括相对板)。可选地,阵列的至少一部分可以包括相对板。相对板可以包括一个或多个电极。
多个生物样品可以使用电力进行处理。多个生物样品可以使用电场进行处理。多个生物样品可以使用力场进行处理。多个生物样品可以通过将力场与电场组合进行处理。力场可以由阵列上的流体流动或阵列的振动生成,其中力场或力可以选自:声波、振动、气压、光场(或电磁场)、磁场、重力场、离心力、水动力、电泳力、介电润湿力和毛细管力。力场可以是所述组的成员中的两种或更多种的组合。
多个生物样品可以通过不超过4、3、2或1次移液操作进行处理。例如,对于两次移液操作,可以使用移液管将多个液滴邻近阵列沉积,在阵列上处理,并且可以使用另一次移液操作将经处理的液滴从阵列中去除。
阵列可以包括多个传感器。多个传感器可以用于在处理多个生物样品之前、期间或之后测量来自所述多个液滴或其衍生物的信号。所述多个传感器可以包括阻抗传感器、电容传感器(例如,触摸屏)、pH传感器、温度传感器、光学传感器、相机(例如,电荷耦合装置(CCD)相机)、电流测量传感器、用于生物分子检测的电子传感器、x射线传感器、电化学传感器、电化学发光传感器、压电传感器或其任何组合。多个传感器可以用于检测污染。多个传感器可以用于检测生物材料(例如,细胞、组织、核酸、蛋白质、肽)、化学材料(例如,纳米颗粒、珠、小分子)或其组合。
在处理多个生物样品时,所述阵列可以使用反馈回路中的多个传感器来调节阵列的一个或多个参数。多个传感器和反馈回路可以用于自主发现和优化反应条件(例如,无需任何用户输入)。多个传感器可以直接耦合至至少一个液滴,诸如直接与液滴接触或通过一个或多个中间层(例如,介电层)与液滴接触。
阵列可以具有指向至少一个液滴的至少一个传感器的入口。例如,对于光学传感器,光纤可以指向至少一个液滴。然后可以将光纤耦合至具有附接的CCD相机的单色仪。此实例可以用于确定处理期间至少一个液滴的吸收光谱或荧光光谱。
温度传感器可以是热电偶。作为可选方案,温度传感器可以是红外(IR)温度传感器。
光学传感器可以是CCD相机或光电倍增管。光学传感器可以具有附接的光学元件,诸如单色仪、一个或多个滤光片或一系列透镜。相机可以是具有快速刷新率的相机,其可以用于捕捉一个或多个液滴的接触角。相机可以是单色相机或彩色相机。电流测量传感器可以具有可以用于与至少一个液滴对接的电极。电流传感器可以是非接触式的。用于生物分子检测的电子传感器可以基于酶或石墨烯。x射线传感器可以是x射线衍射仪。x射线传感器可以是x射线荧光检测器。
使用多个传感器中的一个传感器检测的生物材料可以是例如荧光蛋白、抗体、酶、核酸对或两种或更多种生物材料的组合。使用多个传感器中的一个传感器检测的细胞可以是例如原核细胞、真核细胞或用于检测毒素的细胞。使用多个传感器中的一个传感器检测的组织可以是例如从对象或患者分离的任何组织(例如,大脑、皮肤、肌肉、心脏、肺等)。使用多个传感器中的一个传感器检测的化学材料可以是例如荧光化学物、与金属有强结合的化学物或在目标物体存在下经历转化的化学物(例如,在酸存在下转化为CO2气体的碳酸氢盐)。
作为传感器的生物材料可以是荧光蛋白、抗体、酶、核酸对或两种或更多种生物材料的组合。作为传感器的细胞可以是原核细胞、真核细胞或用于检测毒素的细胞。作为传感器的组织可以是肌肉纤维。作为传感器的化学材料可以是荧光化学物、与金属有强结合的化学物或在目标物体存在下经历转化的化学物(例如,在酸存在下转化为CO2气体的碳酸氢盐)。在一些实施方案中,生物分子(例如,蛋白质/核酸)用作传感器中的感测元件,以便检测例如靶生物分子或相关分析物。
电化学传感器可以是电化学气体传感器。电化学发光传感器可以是三(联吡啶)氯化钌(II)、量子点或纳米颗粒。压电传感器可以用于检测压力、加速度、温度、应变、力或其任何组合。压电传感器可以由压电陶瓷或单晶制成。作为传感器的核酸可以利用与目标核酸互补的一组碱基对。作为传感器的核酸可以是DNA或RNA。作为传感器的核酸在溶液中可以是游离的或与底物缔合。作为传感器的蛋白质可以是酶。作为传感器的蛋白质可以是荧光蛋白。作为传感器的蛋白质在溶液中可以是游离的或与底物缔合。纳米颗粒传感器可以是荧光传感器、磁性传感器或两者的任意组合。小分子传感器可以检测金属。小分子传感器可以是荧光传感器。金属可以是锌、铜、铁、钴、汞、银、金、锰、铬、镍或其组合。
所述多个传感器的至少一个传感器可以测量位置、液滴体积、生物材料的存在、生物材料的活性、液滴速度、运动学、液滴半径、液滴形状、液滴高度、颜色、表面积、接触角、反应状态、发射度、吸光度或其任何组合。所述多个传感器的至少一个传感器的测量可以用于进一步处理所述多个液滴、所述多个生物样品或其组合的至少一个液滴、生物样品或其组合。所述进一步处理可以包括邻近所述阵列或在所述阵列上或其组合实时给予驱动输入、输出或其组合的命令。所述命令可以提供校正所述阵列的误差的指令。所述误差可以是位置、液滴体积、生物材料的存在、生物材料的活性、液滴速度、液滴动力学、液滴半径、液滴形状、液滴高度、颜色、表面积、接触角、反应状态、发射度、吸光度或其任何组合的误差。
所述位置可以是液滴、试剂、生物样品、阵列的部件、阵列位置、阵列区域、邻近阵列的区域、阵列点或其任何组合的位置。位置可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多。位置可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少。位置可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%。
液滴体积可以包括至少1皮升(pL)、10pL、100pL、1纳升(nL)、10nL、100nL、1μL、10μL、100μL、1毫升(mL)、10mL或更多的体积。液滴体积可以包括至多10mL、1mL、100μL、10μL、1μL、100nL、10nL、1nL、100pL、10pL、1pL或更小的体积。液滴体积可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多。液滴体积可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少。液滴体积可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%。在一些实施方案中,如果液滴的体积低于预定阈值,则补充液滴。在一些实施方案中,预定阈值可以是至少1皮升(pL)、10pL、100pL、1纳升(nL)、10nL、100nL、1μL、10μL、100μL、1毫升(mL)、10mL或更多的体积。在一些实施方案中,预定阈值可以是至多10mL、1mL、100μL、10μL、1μL、100nL、10nL、1nL、100pL、10pL、1pL或更小的体积。在一些实施方案中,如果液滴的体积超过预定阈值,则减少液滴。在一些实施方案中,预定阈值可以是至少1皮升(pL)、10pL、100pL、1纳升(nL)、10nL、100nL、1μL、10μL、100μL、1毫升(mL)、10mL或更多的体积。在一些实施方案中,预定阈值可以是至多10mL、1mL、100μL、10μL、1μL、100nL、10nL、1nL、100pL、10pL、1pL或更小的体积。
生物样品可以包含核酸、蛋白质、细胞、盐、缓冲液或酶,其中所述液滴包含用于核酸分离、细胞分离、蛋白质分离、肽纯化、生物聚合物的分离或纯化、免疫沉淀、体外诊断、外泌体分离、细胞活化、细胞扩增或特定生物分子的分离的一种或多种试剂,并且其中所述液体通过所述试剂操控以进行所述核酸分离、细胞分离、蛋白质分离、肽纯化、生物聚合物的分离或纯化、免疫沉淀、体外诊断、外泌体分离、细胞活化、细胞扩增或特定生物分子的分离。生物样品的存在可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多的量。生物样品的存在可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少的量。生物样品的存在可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%的量。
生物材料的活性可以包括酶活性、细胞活性、小分子活性、试剂活性,其中活性可以是亲和力、特异性、反应性、速率、抑制、毒性(例如IC50、LD50、EC50、ED50、GI50等)或其任何组合的量度。生物样品的活性可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多的量。生物样品的活性可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少的量。生物样品的活性可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%的量。
在一些实施方案中,液滴在室温(~25℃)下具有约0%甘油至约60%甘油的粘度。在一些实施方案中,液滴在室温(~25℃)下具有约0%甘油至约10%甘油、约0%甘油至约15%甘油、约0%甘油至约20%甘油、约0%甘油至约25%甘油、约0%甘油至约30%甘油、约0%甘油至约35%甘油、约0%甘油至约40%甘油、约0%甘油至约45%甘油、约0%甘油至约50%甘油、约0%甘油至约55%甘油、约0%甘油至约60%甘油、约10%甘油至约15%甘油、约10%甘油至约20%甘油、约10%甘油至约25%甘油、约10%甘油至约30%甘油、约10%甘油至约35%甘油、约10%甘油至约40%甘油、约10%甘油至约45%甘油、约10%甘油至约50%甘油、约10%甘油至约55%甘油、约10%甘油至约60%甘油、约15%甘油至约20%甘油、约15%甘油至约25%甘油、约15%甘油至约30%甘油、约15%甘油至约35%甘油、约15%甘油至约40%甘油、约15%甘油至约45%甘油、约15%甘油至约50%甘油、约15%甘油至约55%甘油、约15%甘油至约60%甘油、约20%甘油至约25%甘油、约20%甘油至约30%甘油、约20%甘油至约35%甘油、约20%甘油至约40%甘油、约20%甘油至约45%甘油、约20%甘油至约50%甘油、约20%甘油至约55%甘油、约20%甘油至约60%甘油、约25%甘油至约30%甘油、约25%甘油至约35%甘油、约25%甘油至约40%甘油、约25%甘油至约45%甘油、约25%甘油至约50%甘油、约25%甘油至约55%甘油、约25%甘油至约60%甘油、约30%甘油至约35%甘油、约30%甘油至约40%甘油、约30%甘油至约45%甘油、约30%甘油至约50%甘油、约30%甘油至约55%甘油、约30%甘油至约60%甘油、约35%甘油至约40%甘油、约35%甘油至约45%甘油,约35%甘油至约50%甘油、约35%甘油至约55%甘油、约35%甘油至约60%甘油、约40%甘油至约45%甘油、约40%甘油至约50%甘油、约40%甘油至约55%甘油、约40%甘油至约60%甘油、约45%甘油至约50%甘油、约45%甘油至约55%甘油、约45%甘油至约60%甘油、约50%甘油至约55%甘油、约50%甘油至约60%甘油或约55%甘油至约60%甘油的粘度。在一些实施方案中,液滴具有约0%甘油、约10%甘油、约15%甘油、约20%甘油、约25%甘油、约30%甘油、约35%甘油、约40%甘油、约45%甘油、约50%甘油、约55%甘油或约60%甘油的粘度。在一些实施方案中,液滴在室温(~25℃)下具有至少约0%甘油、约10%甘油、约15%甘油、约20%甘油、约25%甘油、约30%甘油、约35%甘油、约40%甘油、约45%甘油、约50%甘油或约55%甘油的粘度。在一些实施方案中,液滴具有至多约10%甘油、约15%甘油、约20%甘油、约25%甘油、约30%甘油、约35%甘油、约40%甘油、约45%甘油、约50%甘油、约55%甘油或约60%甘油的粘度。在一些实施方案中,液滴在室温(~25℃)下具有约40%甘油的粘度。
在一些实施方案中,液滴在室温(~25℃)下具有约0.1厘泊(cP)至约200cP的粘度。在一些实施方案中,液滴在室温(~25℃)下具有约0.1cP至约1cP、约0.1cP至约2cP、约0.1cP至约5cP、约0.1cP至约10cP、约0.1cP至约30cP、约0.1cP至约50cP、约0.1cP至约70cP、约0.1cP至约100cP、约0.1cP至约150cP、约0.1cP至约200cP、约1cP至约2cP、约1cP至约5cP、约1cP至约10cP、约1cP至约30cP、约1cP至约50cP、约1cP至约70cP、约1cP至约100cP、约1cP至约150cP、约1cP至约200cP、约2cP至约5cP、约2cP至约10cP、约2cP至约30cP、约2cP至约50cP、约2cP至约70cP、约2cP至约100cP、约2cP至约150cP、约2cP至约200cP、约5cP至约10cP、约5cP至约30cP、约5cP至约50cP、约5cP至约70cP、约5cP至约100cP、约5cP至约150cP、约5cP至约200cP、约10cP至约30cP、约10cP至约50cP、约10cP至约70cP、约10cP至约100cP、约10cP至约150cP、约10cP至约200cP、约30cP至约50cP、约30cP至约70cP、约30cP至约100cP、约30cP至约150cP、约30cP至约200cP、约50cP至约70cP、约50cP至约100cP、约50cP至约150cP、约50cP至约200cP、约70cP至约100cP、约70cP至约150cP、约70cP至约200cP、约100cP至约150cP、约100cP至约200cP或约150cP至约200cP的粘度。在一些实施方案中,液滴在室温(~25℃)下具有约0.1cP、约1cP、约2cP、约5cP、约10cP、约30cP、约50cP、约70cP、约100cP、约150cP或约200cP的粘度。在一些实施方案中,液滴在室温(~25℃)下具有至少约0.1cP、约1cP、约2cP、约5cP、约10cP、约30cP、约50cP、约70cP、约100cP或约150cP的粘度。在一些实施方案中,液滴在室温(~25℃)下具有至多约1cP、约2cP、约5cP、约10cP、约30cP、约50cP、约70cP、约100cP、约150cP或约200cP的粘度。
在一些实施方案中,液滴在室温(~25℃)下具有约0%甘油至约30%甘油的粘度。在一些实施方案中,液滴在室温(~25℃)下具有约0%甘油至约5%甘油、约0%甘油至约7.5%甘油、约0%甘油至约10%甘油、约0%甘油至约12.5%甘油、约0%甘油至约15%甘油、约0%甘油至约17.5%甘油、约0%甘油至约20%甘油、约0%甘油至约22.5%甘油、约0%甘油至约25%甘油、约0%甘油至约27.5%甘油、约0%甘油至约30%甘油、约5%甘油至约7.5%甘油、约5%甘油至约10%甘油、约5%甘油至约12.5%甘油、约5%甘油至约15%甘油、约5%甘油至约17.5%甘油、约5%甘油至约20%甘油、约5%甘油至约22.5%甘油、约5%甘油至约25%甘油、约5%甘油至约27.5%甘油、约5%甘油至约30%甘油、约7.5%甘油至约10%甘油、约7.5%甘油至约12.5%甘油、约7.5%甘油至约15%甘油、约7.5%甘油至约17.5%甘油、约7.5%甘油至约20%甘油、约7.5%甘油至约22.5%甘油、约7.5%甘油至约25%甘油、约7.5%甘油至约27.5%甘油、约7.5%甘油至约30%甘油、约10%甘油至约12.5%甘油、约10%甘油至约15%甘油、约10%甘油至约17.5%甘油、约10%甘油至约20%甘油、约10%甘油至约22.5%甘油、约10%甘油至约25%甘油、约10%甘油至约27.5%甘油、约10%甘油至约30%甘油、约12.5%甘油至约15%甘油、约12.5%甘油至约17.5%甘油、约12.5%甘油至约20%甘油、约12.5%甘油至约22.5%甘油、约12.5%甘油至约25%甘油、约12.5%甘油至约27.5%甘油、约12.5%甘油至约30%甘油、约15%甘油至约17.5%甘油、约15%甘油至约20%甘油、约15%甘油至约22.5%甘油、约15%甘油至约25%甘油、约15%甘油至约27.5%甘油、约15%甘油至约30%甘油、约17.5%甘油至约20%甘油、约17.5%甘油至约22.5%甘油,约17.5%甘油至约25%甘油、约17.5%甘油至约27.5%甘油、约17.5%甘油至约30%甘油、约20%甘油至约22.5%甘油、约20%甘油至约25%甘油、约20%甘油至约27.5%甘油、约20%甘油至约30%甘油、约22.5%甘油至约25%甘油、约22.5%甘油至约27.5%甘油、约22.5%甘油至约30%甘油、约25%甘油至约27.5%甘油、约25%甘油至约30%甘油或约27.5%甘油至约30%甘油的粘度。在一些实施方案中,液滴在室温(~25℃)下具有约0%甘油、约5%甘油、约7.5%甘油、约10%甘油、约12.5%甘油、约15%甘油、约17.5%甘油、约20%甘油、约22.5%甘油、约25%甘油、约27.5%甘油或约30%甘油的粘度。在一些实施方案中,液滴在室温(~25℃)下具有至少约0%甘油、约5%甘油、约7.5%甘油、约10%甘油、约12.5%甘油、约15%甘油、约17.5%甘油、约20%甘油、约22.5%甘油、约25%甘油或约27.5%甘油的粘度。在一些实施方案中,液滴在室温(~25℃)下具有至多约5%甘油、约7.5%甘油、约10%甘油、约12.5%甘油、约15%甘油、约17.5%甘油、约20%甘油、约22.5%甘油、约25%甘油、约27.5%甘油或约30%甘油的粘度。
在一些实施方案中,液滴在室温(~25℃)下具有约0.5cP至约15cP的粘度。在一些实施方案中,液滴在室温(~25℃)下具有约0.5cP至约1cP、约0.5cP至约2cP、约0.5cP至约3cP、约0.5cP至约4cP、约0.5cP至约5cP、约0.5cP至约7cP、约0.5cP至约9cP、约0.5cP至约11cP、约0.5cP至约13cP、约0.5cP至约15cP、约1cP至约2cP、约1cP至约3cP、约1cP至约4cP、约1cP至约5cP、约1cP至约7cP、约1cP至约9cP、约1cP至约11cP、约1cP至约13cP、约1cP至约15cP、约2cP至约3cP、约2cP至约4cP、约2cP至约5cP、约2cP至约7cP、约2cP至约9cP、约2cP至约11cP、约2cP至约13cP、约2cP至约15cP、约3cP至约4cP、约3cP至约5cP、约3cP至约7cP、约3cP至约9cP、约3cP至约11cP、约3cP至约13cP、约3cP至约15cP、约4cP至约5cP、约4cP至约7cP、约4cP至约9cP、约4cP至约11cP、约4cP至约13cP、约4cP至约15cP、约5cP至约7cP、约5cP至约9cP、约5cP至约11cP、约5cP至约13cP、约5cP至约15cP、约7cP至约9cP、约7cP至约11cP、约7cP至约13cP、约7cP至约15cP、约9cP至约11cP、约9cP至约13cP、约9cP至约15cP、约11cP至约13cP、约11cP至约15cP或约13cP至约15cP的粘度。在一些实施方案中,液滴在室温(~25℃)下具有约0.5cP、约1cP、约2cP、约3cP、约4cP、约5cP、约7cP、约9cP、约11cP、约13cP或约15cP的粘度。在一些实施方案中,液滴在室温(~25℃)下具有至少约0.5cP、约1cP、约2cP、约3cP、约4cP、约5cP、约7cP、约9cP、约11cP或约13cP的粘度。在一些实施方案中,液滴在室温(~25℃)下具有至多约1cP、约2cP、约3cP、约4cP、约5cP、约7cP、约9cP、约11cP、约13cP或约15cP的粘度。
液滴速度可以是至少0.0001厘米/秒(cm/s)、0.001cm/s、0.01cm/s、0.1cm/s、1cm/s、10cm/s、20cm/s、30cm/s、40cm/s、50cm/s、60cm/s、70cm/s、80cm/s、90cm/s、100cm/s或更大。液滴速度可以是至多100cm/s、90cm/s、80cm/s、70cm/s、60cm/s、50cm/s、40cm/s、30cm/s、20cm/s、10cm/s、1cm/s、0.1cm/s、0.01cm/s、0.001cm/s、0.0001cm/s或更小。液滴速度可以是0.0001cm/s至100cm/s、0.001cm/s至70cm/s、0.01cm/s至50cm/s、0.1cm/s至40cm/s、1cm/s至25cm/s或1cm/s至10cm/s。液滴速度可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多的量。液滴速度可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少的量。液滴速度可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%的量。
运动学可以包括阵列点的运动、阵列对象的运动以及阵列***的运动。运动学可以是液滴、试剂、液体、固体、气体或其任何组合。运动学可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多的量。运动学可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少的量。运动学可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%的量。
液滴半径可以是至少0.0001μm、0.001μm、0.01μm、0.1μm、1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、500μm、1000μm、5000μm、10,000μm、50,000μm、100,000μm或更大。液滴半径可以是至多100,000μm、50,000μm、10,000μm、5000μm、1000μm、500μm、100μm、90μm、80μm、70μm、60μm、50μm、40μm、30μm、20μm、10μm、5μm、1μm、0.1μm、0.01μm、0.001μm、0.0001μm或更小。液滴半径可以是1000μm至0.0001μm、500μm至0.01μm或100μm至1μm。液滴半径可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多的量。液滴半径可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少的量。液滴半径可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%的量。
在一些实施方案中,如果液滴的大小低于预定阈值,则补充液滴。在一些实施方案中,如果液滴的大小超过预定阈值,则减少液滴。在一些实施方案中,预定阈值可以是至少0.0001μm、0.001μm、0.01μm、0.1μm、1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、500μm、1000μm、5000μm、10,000μm、50,000μm、100,000μm或更大的半径。在一些实施方案中,预定阈值可以是至多100,000μm、50,000μm、10,000μm、5000μm、1000μm、500μm、100μm、90μm、80μm、70μm、60μm、50μm、40μm、30μm、20μm、10μm、5μm、1μm、0.1μm、0.01μm、0.001μm、0.0001μm或更小的体积。
液滴形状可以是平的、圆的、球形的、长方形的、椭圆形的、环形的或其任何组合。液滴形状可以被校正至任何形状。液滴形状可以被校正至平的、圆的、球形的、长方形的、椭圆形的、环形的或其任何组合。
液滴高度可以是至少0.0001μm、0.001μm、0.01μm、0.1μm、1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、500μm、1000μm、5000μm、10,000μm、50,000μm、100,000μm或更大。液滴高度可以是至多100,000μm、50,000μm、10,000μm、5,000μm、1000μm、500μm、100μm、90μm、80μm、70μm、60μm、50μm、40μm、30μm、20μm、10μm、5μm、1μm、0.1μm、0.01μm、0.001μm、0.0001μm或更小。液滴高度可以是1000μm至0.0001μm、500μm至0.01μm或100μm至1μm。液滴高度可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多的量。液滴高度可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少的量。液滴高度可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%的量。
表面积可以是阵列的部件的表面积。阵列的部件可以是例如液滴、试剂、生物材料、膜、介电流体、疏水液体或其任何组合。表面积可以是至少0.0001μm2、0.001μm2、0.01μm2、0.1μm2、1μm2、5μm2、10μm2、20μm2、30μm2、40μm2、50μm2、60μm2、70μm2、80μm2、90μm2、100μm2、500μm2、1000μm2、10,000μm2、50,000μm2、100,000μm2、1,000,000μm2、10,000,000μm2、100,000,000μm2或更大。表面积可以是至多100,000,000μm2、10,000,000μm2、1,000,000μm2、100,000μm2、50,000μm2、10,000μm2、1000μm2、500μm2、100μm2、90μm2、80μm2、70μm2、60μm2、50μm2、40μm2、30μm2、20μm2、10μm2、5μm2、1μm2、0.1μm2、0.01μm2、0.001μm2、0.0001μm2或更小。表面积可以是100,000,000μm2、10,000μm2至0.0001μm2、500μm2至0.01μm2或100μm2至1μm2。表面积可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多的量。表面积可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少的量。表面积可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%的量。
接触角可以是液滴与表面或包围液滴的任何液体与表面之间的接触角。接触角可以是至少1°、5°、10°、15°、20°、30°、40°、50°、60°、70°、80°、90°、100°、110°、120°、130°、140°、150°、160°、170°或更大。接触角可以是至多170°、160°、150°、140°、130°、120°、110°、100°、90°、80°、70°、60°、50°、40°、30°、20°、15°、10°、5°、1°或更小。接触角可以是170°至1°、150°至5°、120°至5°、120°至90°、90°至5°、90°至60°、60°至5°或30°至5°。接触角可以被校正至少0.001%、0.01%、0.1%、1%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或更多的量。接触角可以被校正至多99%、95%、90%、80%、70%、60%、50%、40%、30%、20%、15%、10%、5%、1%、0.1%、0.01%、0.001%或更少的量。接触角可以被校正0.001%至20%、0.01%至10%、0.01%至5%或0.1%至1%的量。
在一些实施方案中,通过本文公开的一种或多种方法监测液滴的pH。在一些实施方案中,将液滴的pH维持在预定阈值内。在一些实施方案中,将液滴的pH维持至不超过2、3、4、5、6、7、8、9、10、11、12或13。在一些实施方案中,将液滴的pH维持至不低于2、3、4、5、6、7、8、9、10、11、12或13。
反应状态可以是化学反应、生化反应、生物反应或其任何组合的反应状态。反应状态可以是固体、液体、气体或其任何组合的反应状态。可以通过分别向反应中添加或从反应中去除组分来改变反应状态。组分或其多种组分可以是固体、液体、气体或其任何组合。组分的增减可以是液滴运动的结果。组分的增减可以是校正性的。组分的增减可以是计划的。组分的增减可以是根据预编程的方法计划的。
阵列可以包括多个元件,其可以包括:多个加热器、多个冷却器、多个磁场发生器、多个电穿孔单元、多个光源、多个辐射源、多个核酸测序仪、多个生物蛋白通道、多个固态纳米孔、多个蛋白测序仪、多个声学换能器、多个微电子机械***(MEMS)换能器、多个作为液体分配器的毛细管、多个用于使用重力分配或转移液体的孔、多个在孔中使用电场分配或转移液体的电极、多个用于光学检查的孔、多个液体通过膜相互作用的孔或其任何组合。多个元件可以包括小于或等于约100、90、80、70、60、50、40、30、20、10、5、4、3、2或更少的每个元件。多个元件可以包括大于或等于约2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90、100或更多的每个元件。
加热器可以具有小于或等于约150℃、125℃、100℃、75℃、50℃、25℃或更小的最大温度。加热器可以是热电的、电阻的或通过传热介质(例如,循环热水回路)加热。冷却器可以具有大于或等于约-50℃、-25℃、-10℃、-5℃、0℃、10℃或更大的最小温度。冷却器可以是热电的、蒸发的或通过传热介质(例如,冷水机)冷却。
磁场发生器可以用于基于磁珠的操作或需要磁场的其他操作。磁场发生器可以是电磁体。
电穿孔单元可以是液滴任一侧上的两个或更多个电极。
光源可以是宽带、单色或其组合。光源可以是白炽光源、发光二极管(LED)、激光器或其组合。光源可以发射偏振光、准直光或其组合。多个辐射源可以发射紫外线(波长为10nm至400nm的光)、x射线、γ射线、α粒子、β粒子或其组合。辐射源可以被准直。
核酸测序仪可以是Maxam-Gilbert测序仪或Sanger测序仪。生物蛋白通道可以是生物纳米孔。生物蛋白通道可以是溶血素或MspA孔蛋白。固态纳米孔可以是氮化硅或石墨烯。蛋白质测序仪可以是质谱仪、单分子测序仪或埃德曼降解测序仪。核酸测序可以包括合成测序、焦磷酸测序、杂交测序、连接测序、通过检测DNA聚合期间释放的离子进行的测序、单分子测序或其任何组合。单分子测序可以是纳米孔测序。单分子测序可以是单分子实时(SMRT)测序。
声学换能器可以是亚音速、超声波或其组合。声学换能器可以通过声耦合介质耦合至阵列。声耦合介质可以是固体或液体。MEMS换能器可以测量力、压力或温度。作为液体分配器的毛细管可以是约2毫米(mm)直径、1.5mm直径、1mm直径、0.5mm直径、0.25mm直径或更小。阵列中可以存在1、2、3、4、5、10、50、100或更多个毛细管。用于使用重力分配或转移液体的孔可以用不同的材料处理,以增加或降低孔的疏水性。阵列中可以存在1、2、3、4、5、10、50、100或更多个孔。孔的直径可以是至少约100μm、200μm、300μm、400μm、500μm、600μm、700μm、800μm、900μm、1,000μm、1,100μm、1,200μm、1,300μm、1,400μm、1,500μm、1,600μm、1,700μm、1,800μm、1,900μm、2,000μm或更大。孔的直径可以是至多约2,000μm、1,900μm、1,800μm、1,700μm、1,600μm、1,500μm、1,400μm、1,300μm、1,200μm、1,000μm、900μm、800μm、700μm、600μm、500μm、400μm、300μm、200μm、100μm或更小。孔的直径可以是100μm至500μm。孔中用于分配或转移液体的电极可以使用电润湿效应。孔可以用于光学检查。孔可以具有本文所述的大小。液体通过膜相互作用的孔可以具有本文所述的材料的膜。孔可以用于使用电场、气动力、光学检查分配或转移液体的任何组合,从而允许液体通过膜相互作用。
阵列可以与液体处理单元对接,所述液体处理单元可以将多个液滴导向至邻近阵列。液体处理单元可以选自:机器人液体处理***、声学液体分配器、注射器泵、喷墨喷嘴、微流体装置、针、基于隔膜的泵分配器、压电泵和其他液体分配器。机器人液体处理***可以是固定的液体分配平台或是机动化的以用于绘制的液体分配。机器人液体处理***可以具有一个或多个用于分配液体的尖端。声学液体分配器可以分配小于1纳升(nL)的液体体积。声学液体分配器可以具有约1至1600个用于液体储存的孔。注射器泵可以被配置用于并行处理1至10个或更多个注射器。注射器泵可以使用体积小于1mL至50mL或更大的注射器。喷墨喷嘴可以是固定头或一次性头喷嘴。喷墨喷嘴可以包括约1个喷嘴至10个或更多个喷嘴的喷嘴阵列。喷墨喷嘴可以通过压电致动器或通过热液滴产生来驱动。微流体装置可以包括范围是1个通道至1000个或更多个的微流体通道阵列。微流体装置可以用于在液体被分配到液滴中之前使反应开始。针的大小范围是小于7号至24号或更大。针可以包括阵列,阵列中针的数量是1个针至100个针或更多。隔膜泵可以具有由橡胶、热塑性塑料、氟化聚合物、另一种塑料或其任何组合制成的隔膜。
阵列可以耦合至试剂储存单元、样品储存单元、多个试剂储存单元、多个样品储存单元或其任何组合。试剂储存单元、样品储存单元、多个试剂储存单元、多个样品储存单元或其任何组合可以包括至少一个多孔板、管、瓶、储器、喷墨筒、板、皮氏培养皿或其任何组合。多孔板可以包括至少约2、6、12、24、48、96、384、1536、3456、9600或更多个孔。管可以选自Eppendorf管或falcon管。瓶可以由玻璃、聚碳酸酯、聚乙烯或与瓶中可以储存的物质相容的另一种材料制成。瓶可以具有大于约10mL、20mL、30mL、40mL、50mL、60mL、70mL、80mL、90mL、100mL、200mL、300mL、400mL、500mL、600mL、700mL、800mL、900mL、1L、2L、3L、4L、5L或更大的容量。瓶可以是可替换的。储器可以是高效液相色谱(HPLC)溶剂储器。储器可以由玻璃、聚碳酸酯、聚乙烯或与储器中可以储存的物质相容的另一种材料制成。储器可以具有大于约10mL、20mL、30mL、40mL、50mL、60mL、70mL、80mL、90mL、100mL、200mL、300mL、400mL、500mL、600mL、700mL、800mL、900mL、1L、2L、3L、4L、5L、6L、7L、8L、9L、10L、15L、20L、25L、30L、35L、40L、45L、50L或更大的容量。喷墨筒可以是可商购获得的、专门针对阵列制造的或其组合。喷墨筒可以通过热方法、压电方法或其组合来分配液体。喷墨筒可以是可再填充的、一次性的或具有可再填充和一次性部件两者。喷墨筒可以容纳至少1、2、3、4、5、6、7、8、9、10或更多种不同的液体。板可以是用于细胞生长的培养基。用于细胞生长的培养基可以是琼脂。琼脂可以具有用于促进细胞生长的营养物。用于促进细胞生长的营养物可以是血液、来源于血液、糖、其他必需营养物或其任何组合。皮氏培养皿可以并入板。皮氏培养皿可以是裸露的。皮氏培养皿可以由玻璃、塑料或其组合制成。皮氏培养皿可以是复制生物体检测和计数(RODAC)板。多孔板的多个孔可以是导热的、导电的或其组合。试剂或样品可以通过电场、磁场、声波、热、压力、振动、液体处理单元或其组合在孔中或在孔外操控。
阵列可以包括涂层。涂层可以是疏水性涂层。涂层可以是亲水性涂层。涂层可以包括疏水性涂层和亲水性涂层两者。涂层可以通过洗涤清洁。涂层可以减少蒸发。涂层可以使蒸发减少10%至100%。涂层可以使蒸发减少50%至100%。涂层可以减少生物污垢。涂层可以使生物污垢减少10%至100%。涂层可以抵抗生物污垢。涂层是抗生物污垢的。疏水性涂层可以是氟聚合物、聚乙烯或聚苯乙烯。疏水性涂层也可以是用分子(诸如脂肪酸、多环芳烃化合物等)对表面进行改性。例如,油酸可以与表面结合,从而形成增加表面的疏水性的碳链。亲水性涂层可以是亲水性聚合物,诸如聚乙烯醇、聚乙二醇等。包括疏水性涂层和亲水性涂层两者的涂层可以是上述亲水性聚合物和疏水性聚合物的组合,或者它可以是具有亲水性和疏水性特性两者的聚合物,例如共聚物。
涂层可以易于通过洗涤清洁。这种涂层对于置于其上的样品可以是光滑的,以便有利于去除这些样品。液滴可以包括涂层,以防止或减少材料从液滴内蒸发到液滴外部的环境、从环境蒸发到液滴内或其任何组合。这种涂层可以使液滴内的内容物的蒸发减少至少10%、20%、30%、40%、50%、60%、70%、80%、90%或更多。涂层可以是聚合物涂层(例如,聚乙二醇)。涂层可以形成为液滴周围的表皮。例如,可以通过使液滴与包含聚合物材料(例如,聚合物或聚合物前体)的流体接触来生成涂层。当聚合物材料与水滴接触时,流体扩散到水中诱导聚合或交联。
通过是杀生物的或非毒性的,涂层可以减少生物污垢或非期望的生物种类的积累。杀生物涂层的实例可以是含有对生物***有毒的部分的涂层,诸如三丁基锡或其他杀生物剂。非毒性涂层的实例可以包括生物种类附着减少的涂层,诸如氟聚合物或聚二甲基硅氧烷。这种涂层可以是抗生物污垢的。
变异系数可以小于15%、10%、5%或1%。例如,液滴大小的变异系数为1%意指对于在多个液滴上进行的相同系列过程,液滴大小的变化的标准偏差除以液滴大小的平均降低为1%。
处理多个生物样品可以包括核酸测序。核酸测序可以包括聚合酶链反应(PCR)。PCR可以包括高度多重PCR、定量PCR、液滴数字PCR、逆转录酶PCR或其任何组合。高度多重PCR可以是单模板或多模板PCR反应。定量PCR可以使用各种标志物实时显示PCR产物,诸如Sybr绿色或TaqMan探针。液滴数字PCR可以使用小于1微升至大于50微升的初始液滴,并且可以通过油水乳化技术将这些液滴分离成多于10,000个液滴。逆转录酶PCR可以是一步或两步(即,它可以仅需要一个液滴或多个液滴来完成)。逆转录酶PCR可以利用产物的终点或实时定量,这可通过荧光测量来进行。
处理多个生物样品可以包括用于基因组测序的样品制备。用于基因组测序的制备可以涉及从宿主细胞、无细胞DNA或其任何组合中取出DNA。用于基因组测序的制备可以涉及扩增,以提供足够的DNA进行测序。用于基因组测序的制备可以利用DNA的酶促片段化、DNA的机械片段化或其任何组合。
处理多个生物样品可以包括基因的组合组装。基因的组合组装可以包括Gibson组装、限制性内切酶克隆、gBlocks片段组装(IDT)、BioBricks组装、NEBuilder HiFi DNA组装、Golden Gate组装、定点诱变、序列和连接酶非依赖性克隆(SLIC)、环状聚合酶延伸克隆(CPEC)和无缝连接克隆提取物(SLiCE)、拓扑异构酶介导的连接、同源重组、Gateway克隆、GeneArt基因合成或其任何组合。
处理多个生物样品可以包括无细胞蛋白质表达。无细胞蛋白表达可以用于表达毒性蛋白。无细胞蛋白表达可以用于并入非天然氨基酸。无细胞蛋白质表达可以利用磷酸烯醇丙酮酸、乙酰磷酸、磷酸肌酸或其任何组合作为能量源。无细胞蛋白质表达可以在环境温度、低于环境温度的温度(例如,0℃)、高于环境温度的温度(例如,60℃)或其任何组合下进行。
处理多个生物样品可以包括用于质粒DNA提取的制备。用于质粒DNA提取的制备可以包括从裂解的细胞溶液中沉淀DNA。用于质粒DNA提取的制备可以包括使用基于旋转柱的分离技术。用于质粒DNA提取的制备可以包括苯酚-氯仿提取。
处理多个生物样品可以包括提取核糖体、线粒体、内质网、高尔基体、溶酶体、过氧化物酶体、中心粒或其任何组合。核糖体、线粒体、内质网、高尔基体、溶酶体、过氧化物酶体、中心粒或其任何组合可以保持完整。
处理多个生物样品可以包括从细胞提取核酸。从细胞提取核酸还可以包括提取长核酸链,其中所述长核酸链保持完全完整。长链核酸的长度也可以是至少10、100、1,000、10,000、100,000、1,000,000或更多个碱基对。提取核酸可以涉及通过添加表面活性剂和洗涤剂(诸如辛基葡糖苷、十二烷基硫酸钠或辛基苯酚乙氧基化物)来使细胞裂解。提取核酸可以涉及离心,包括超速离心。
处理多个生物样品可以包括用于质谱的样品制备。用于质谱的样品制备可以涉及细胞裂解、消化、蛋白质扩增、DNA扩增或其他标准样品制备。用于质谱的样品制备可以包括将样品施加到电喷雾电离(ESI)基板、并入到基质辅助的激光解吸电离(MALDI)基质中或用于电离的其他制备。质谱可以包括离子阱、四极场和其他检测方法。质谱仪的入口可以直接耦合至至少一个液滴。质谱仪的入口可以邻近一个或多个液滴。可以通过移液管将用于质谱的样品转移至质谱仪的入口。
处理多个生物样品可以包括用于核酸测序的样品提取和文库制备。核酸测序可以包括合成测序、焦磷酸测序、杂交测序、连接测序、通过检测DNA聚合期间释放的离子进行的测序、单分子测序或其任何组合。单分子测序可以是纳米孔测序。单分子测序可以是单分子实时(SMRT)测序。
处理多个生物样品可以包括使用寡核苷酸合成、酶合成或其任何组合的DNA合成。寡核苷酸合成可以是固态、液相、在溶液中进行或其任何组合。寡核苷酸合成可以产生至少为2、5、10、20、30、40、50、100、200、300、400、500或更多个核苷酸的寡核苷酸。酶合成可以使用聚合酶、转移酶、其他酶或其任何组合。
处理多个生物样品可以包括DNA数据存储、随机存取存储的DNA和通过DNA测序进行的DNA数据检索。DNA数据存储可以利用具有大于约10、50、100、150、200、250、500、1,000、5,000、10,000、100,000、1,000,000或更多个碱基对的DNA链。DNA测序可以包括至少一个PCR反应、Maxam-Gilbert测序仪、Sanger测序仪或其任何组合。核酸测序可以包括合成测序、焦磷酸测序、杂交测序、连接测序、通过检测DNA聚合期间释放的离子进行的测序、单分子测序或其任何组合。单分子测序可以是纳米孔测序。单分子测序可以是单分子实时(SMRT)测序。
处理多个生物样品可以包括直接整合到测序仪中的核酸提取和样品制备。核酸提取和样品制备可以直接在阵列上进行。核酸提取和样品制备可以邻近阵列进行。测序仪可以邻近阵列。测序仪可以耦合至序列。测序仪可以直接在阵列上。
处理多个生物样品可以包括CRISPR基因组编辑。编辑可以包括Cas9蛋白、Cpf1核酸内切酶、crRNA、tracrRNA或其任何组合。在编辑过程中可以使用修复DNA模板。修复DNA模板可以是单链寡核苷酸、双链寡核苷酸或双链DNA质粒。
处理多个生物样品可以包括转录激活因子样效应子核酸酶(TALEN)基因组编辑。处理多个生物样品可以包括锌指核酸酶基因编辑。
处理多个生物样品可以包括至少一个高通量过程。高通量过程可以是自动化的而不需要输入。高通量过程可以包括应用于本文所述的至少一种样品类型的测定或表征方法中的至少一种。
处理多个生物样品可以包括针对多种细胞筛选多种化学化合物。化学化合物可以是一种或多种化学化合物。化学化合物可以显示生物作用。生物作用可以是促进或抑制细胞生长、发出细胞过程开始或结束的信号、诱导细胞***等。
化学化合物可以是抗菌的。抗菌化学物可以使细菌的生长抑制至少5%至大于99%。抗菌化学物可以杀伤细菌。
可以针对生物活性筛选化学化合物。化学化合物可以使用阵列的传感器来确定生物活性。例如,荧光检测器的阵列可以用于确定暴露于目标化学化合物的生物样品中荧光蛋白的相对量。类似地,例如,显微镜可以用于测定暴露于化学化合物之后的细胞物种的总数。可以分离化学化合物。分离可以涉及离心、通过移液管或另一种液体转移技术转移、沉淀、色谱技术(例如,柱色谱、薄层色谱等)、蒸馏、冻干或重结晶。生物活性的筛选可以涉及将至少一个液滴中的至少一个生物样品与至少一种化学物混合。
细胞可以是细菌细胞。细菌细胞可以是致病的。细菌细胞可以耐受抗生素。细菌细胞可以进行遗传修饰。
细胞可以是真核细胞。真核细胞可以是单细胞生物体(例如,原生动物、藻类)、硅藻、真菌细胞、昆虫细胞、动物细胞、哺乳动物细胞或人细胞。真核细胞可以来源于单细胞生物体(例如,原生动物、藻类)、硅藻、真菌、昆虫、动物、哺乳动物或人。真核细胞可以来源于更大的组织或器官。真核细胞可以经遗传修饰。真核细胞可以疑似患有或携带疾病。
细胞可以是原核细胞。原核细胞可以经遗传修饰。
处理多个生物样品可以包括培养细胞,从而产生培养的细胞。培养细胞可以在离散液滴中发生。培养细胞可以在离散物理隔室中发生。培养细胞可以自主进行(无需输入)。培养细胞可以在固体、液体或半固体培养基上进行。培养细胞可以2维或3维中发生。培养细胞可以在环境或非环境条件(例如,高温、低压等)下进行。离散物理隔室可以是离散电润湿芯片。
可以确定培养的细胞之间或培养的细胞与至少一个生物样品之间的相互作用。培养的细胞的两个或更多个样品的相互作用可以通过混合来确定。至少一个生物样品和培养的细胞的相互作用可以通过混合、将培养的细胞直接施加到生物样品上或将生物样品直接施加到培养的细胞上来确定。施加培养的细胞可以涉及转移液体细胞培养物或将固体细胞培养物置于目标样品上。
培养的细胞可以在如本文所述的阵列或多个阵列上测定。
培养的细胞可以从培养物中分离。分离可以涉及离心、通过移液管或另一种液体转移技术转移、沉淀、从培养物中刮取细胞或色谱技术(例如,细胞色谱)。分离的细胞可以转移到外部容器中。外部容器可以是生物分子筛选协会(SBS)形式板、皮氏培养皿、瓶、盒、另一种培养基等。
分离的细胞可以用于核酸测序。
可以制备分离的细胞用于蛋白质分析。蛋白质分析可以是氨基酸分析、大小分析、吸收分析、Kjeldahl法、Dumas法、蛋白质印迹分析、高效液相色谱(HPLC)分析、液相色谱-质谱(LC/MS)分析或酶联免疫吸附测定(ELISA)分析。
可以制备分离的细胞用于代谢组学分析。代谢组学分析可以是水代谢物图谱、脂质代谢物图谱、核磁共振波谱(NMR)分析或质谱分析。
阵列可以包括多种冻干试剂、干燥试剂、储存珠或其任何组合。可以复溶所述多种冻干试剂、干燥试剂、储存珠或其任何组合。冻干试剂可以包括蛋白质、细菌、微生物、疫苗、药物、分子条形码、寡核苷酸、引物、用于杂交的DNA序列、酶(例如,葡萄糖苷酶、乙醇脱氢酶、DNA聚合酶等)和脱水化学物。干燥试剂可以包括化学粉末(例如盐、金属氧化物等)、生物来源的化学物、干燥缓冲化学物、其他生物活性化学物等。储存珠可以是磁珠、用于储存细菌的珠、酶、寡核苷酸或分子筛。分子条形码可以是具有至少5、10、20、30、40、50、60或更多个碱基对的DNA片段。寡核苷酸可以是至少2、5、10、20、30、40、50、100、200、300、400、500或更多个核苷酸。引物可以是DNA或RNA。用于杂交的DNA序列可以用于检测核苷酸顺序的微小差异。DNA序列可以与错配检测蛋白质结合使用。
液滴、多个液滴、其衍生物或其任何组合可以用于复溶冻干试剂、干燥试剂、储存珠或其任何组合。复溶可以溶解、悬浮或形成冻干试剂、干燥试剂、储存珠或其任何组合的胶体。试剂可以预制到阵列的部件中。
阵列可以储存作为固体、液体、气体或其任何组合的多种试剂。阵列可以使储存的试剂凝结、升华、解冻、蒸发或其任何组合。试剂可以是压缩气体(例如,空气、氩气、氮气、氧气、二氧化碳等)、溶剂(例如,水、二甲基亚砜、丙酮、乙醇等)、清洁剂(例如,乙醇、SDS、液体肥皂等)或溶液(例如,缓冲液、溶解在液体中的化学物等)。对于进行储存的试剂的物理状态转换的阵列的实例,固体二氧化碳(干冰)可以升华以向液滴提供冷二氧化碳气体。另一个实例可以是阵列将水煮沸以将蒸气引入液滴中或清洁阵列。
阵列可以分配多个液体。阵列可以使用各种方法来分配多个液体,例如通过移液、冷凝、倾析或其任何组合,采用诸如以下的装置:微流体装置、隔膜泵、喷嘴、压电泵、针、管、声学分配器、毛细管或其任何组合。多个液体可以是至少2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90、100、500、1,000或更多个液体。
阵列可以混合多个液体。混合可以通过搅拌、超声、振动、气流、鼓泡、振荡、旋转和电润湿力进行。多个液体可以是至少2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90、100、500、1,000或更多个液体。液体可以呈至少一个液滴的形式。至少一个液滴可以在电润湿阵列上。
处理多个生物样品可以自动化(例如,使其能够在没有用户输入的情况下运行)。自动化可以使用程序来运行。程序可以是机器学***板电脑、智能手机或能够执行代码的任何其他装置。自动化可以与阵列的一个或多个部件(例如,传感器、液体处理装置等)对接以进行处理。在一些实施方案中,自动化可以使用追踪阵列上的液滴大小的相机。当液滴由于蒸发而损失足够的体积时(如由计算机视觉程序确定),自动化将指示液体处理单元向液滴分配精确量的液体,以维持预先编程的体积。在此实施方案中,开放配置可以允许更容易地观察液滴。
阵列可以是可重复使用的。阵列可以具有可替换表面。阵列可以具有可替换膜。阵列可以具有可替换筒。可替换筒可以包括膜。膜可以附接至序列。膜可以使用真空固定至序列。膜可以使用粘合剂耦合至阵列。粘合剂可以是非反应性的、压敏性的、接触反应性的、热反应性的(例如,厌氧、多组分(例如,聚酯、多元醇、丙烯酸等)、预混合、冷冻、单组分)、天然的、合成的或其任何组合。粘合剂可以通过喷涂、刷涂、滚动或通过膜或施加器来施加。粘合剂可以是但不限于硅树脂、丙烯酸树脂、环氧树脂、聚氨酯、淀粉、氰基丙烯酸酯、聚酰亚胺或其任何组合。阵列可以重复使用至少2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90、100、500、1,000或更多次。可替换表面可以容易地移除并重新附接至阵列。可替换表面可以是液体层。液体可以是油。可替换表面可以是聚合物(例如,聚乙烯、聚四氟乙烯、聚二甲基硅氧烷等)。可替换表面可以是1纳米至1毫米厚。可替换筒可以包括新电润湿芯片。可替换筒可以包括置于电润湿芯片的电极上的新表面。
阵列可以进行洗涤。阵列可以完全洗涤。阵列可以部分洗涤。阵列可以使用试剂分配阵列中储存的材料进行洗涤。阵列可以使用固体清洁剂(例如,粉末肥皂、固体抗菌剂等)、液体清洁剂(例如,液体肥皂、乙醇等)或气体清洁剂(例如,蒸气)进行洗涤。约1%至100%的阵列可以是可洗涤的。
阵列可以是一次性的。一次性阵列可以包括整个样品组件。一次性阵列可以包括电润湿芯片的表面。一次性阵列可以容易地移除。
阵列的一定体积的生物分子可以作为混合物操控。所述体积的生物分子可以包含多个核酸、蛋白质序列或其组合。可以通过在混合物上不与阵列的另一个部件物理接触的情况下调控局部表面电荷来操控多个核酸、蛋白质序列或其组合。例如,电润湿芯片可以用于通过改变液滴的表面润湿特性来移动含有大量核酸的液滴。这将允许液滴在不接触阵列的另一个部件的情况下移动。混合物可以在液滴内。液滴可以具有至少1皮升(pL)、10pL、100pL、1纳升(nL)、10nL、100nL、1μL、10μL、100μL、1毫升(mL)、10mL或更多的体积。混合物可以包含具有DNA连接酶活性的蛋白质。混合物可以包含具有DNA转座酶活性的蛋白质。具有DNA连接酶活性的蛋白质可以来源于病毒(例如,T4)、细菌(例如,大肠杆菌)或哺乳动物(例如,人DNA连接酶1)。具有DNA转座酶活性的蛋白质可以来源于细菌(例如,Tn5)或哺乳动物(例如,睡美人(SB)转座酶)。可以在混合物横向地理空间移动至少1mm的情况下操控阵列的所述体积的生物分子。测定的所述体积的生物分子可以通过一组预定或预编程的命令来操控。命令可以与阵列的特定位置相关联。
阵列可以包括用于进行以下的试剂:链置换扩增反应、自动维持序列复制和扩增反应或Q3复制酶扩增反应。用于进行链置换扩增反应的试剂可以是Bst DNA聚合酶、cas9或另一种半硫代磷酸形式的缺口蛋白。自动维持序列复制和扩增反应试剂可以是禽成髓细胞瘤病毒(AMV)逆转录酶(RT)、大肠杆菌核糖核酸酶H、T7 RNA聚合酶或其任何组合。用于Q3复制酶扩增反应的试剂可以来源于Q3噬菌体、大肠杆菌或其任何组合。
阵列可以包括包含DNA连接酶、核酸酶或限制性内切酶的试剂。DNA连接酶可以来源于病毒(例如,T4)、细菌(例如,大肠杆菌)或哺乳动物(例如,人DNA连接酶1)。核酸酶可以是核酸外切酶(从分子末端开始消化)或核酸内切酶(从分子末端以外之处消化)。核酸酶可以是脱氧核糖核酸酶(作用于DNA)或核糖核酸酶(作用于RNA)。限制性内切酶可以是I型、II型、III型、IV型或V型限制性内切酶。限制性内切酶的实例可以是cas9或锌指核酸酶。
阵列可以包括用于制备扩增核酸产物的试剂。用于制备扩增核酸产物的试剂可以是Bst DNA聚合酶、三磷酸脱氧核糖核苷酸、大肠杆菌DNA聚合酶1的片段、禽成髓细胞瘤病毒逆转录酶、核糖核酸酶H、T7 DNA依赖性RNA聚合酶、Taq聚合酶、其他DNA聚合酶/转录酶或其任何组合。
阵列可以是在用于疾病诊断或预后的试剂盒或***的制造中的部件。试剂盒可以处理生物样品。生物样品可以是来源于患者的样品。在一些实施方案中,阵列可以用于处理来源于疑似患有疾病的患者的样品。所述疾病可以是由疾病控制和预防中心(CDC)分类的疾病。阵列可以使样品与试剂混合。阵列可以使样品与用于从血清中分离细胞的试剂混合。阵列可以处理细胞或其衍生物。阵列可以将细胞或其衍生物转移到耦合至阵列的光学装置。细胞或其衍生物可以根据本文所述的方法进行处理。
阵列可以包括具有核酸切割活性的蛋白质。阵列可以包括具有RNA切割活性的生物分子。具有核酸切割活性的蛋白质可以是核糖核酸酶、脱氧核糖核酸酶或其任何组合。具有RNA切割活性的生物分子可以是小核糖核酸水解核酶(small ribonucleolyticribozyme)、大核糖核酸水解核酶或其任何组合。
可互换组的试剂可以通过至少一个固相支撑物引入。固相支撑物可以是纸条带。固相支撑物可以是微珠。固相支撑物可以是支柱。支柱可以附接至支撑物的基部或与支撑物是一体的。固相支撑物可以是具有微孔的条带。固相支撑物可以是玻璃载玻片、勺或塑料膜。固相支撑物可以是珠。珠可以是磁性的。可互换组的试剂可以是化学试剂(例如,小分子、金属等)、生物种类(例如,蛋白质、DNA、RNA等)、加工试剂(例如,PCR试剂等)。
可互换组的试剂可以通过至少一个第二支撑物引入。第二支撑物可以是具有微孔的条带。第二支撑物可以是SBS板、皮氏培养皿、瓶、载玻片或另一种容器。可互换组的试剂可以是化学试剂(例如,小分子、金属等)、生物种类(例如,蛋白质、DNA、RNA等)、加工试剂(例如,PCR试剂等)。
阵列可以含有模板非依赖性聚合酶。所述模板非依赖性聚合酶可以是末端脱氧核苷酸转移酶(TdT)。阵列可以包括限制核酸聚合的酶。所述限制核酸聚合的酶是可以腺苷三磷酸双磷酸酶。阵列可以具有传感器以检测核酸分子中存在至少一个末端“C”尾。可以分离所述至少一个末端“C”尾。腺苷三磷酸双磷酸酶可以来源于大肠杆菌、马铃薯或节肢动物。
可以通过干燥储存阵列的多个生物样品。干燥可以通过加热、真空处理、流动气体、冻干或其任何组合进行。样品可以储存在阵列上或储存在另一个储器中。另一个容器可以是玻璃载玻片、皮氏培养皿、培养瓶、管或(微)孔阵列。
可以通过再水化恢复阵列的多个生物样品。可以通过向干燥的多个生物样品中添加液体或在其上吹入含液体的气体来进行再水化。可以使用上述任何液体处理机构来操控再水化的多个生物样品。
可以将多个生物样品沉积到SBS形式的多个阵列上或沉积在多个阵列的任何随机位置上,从而产生至少一个沉积的生物样品。SBS形式可以是96孔板的尺寸。沉积的生物样品可以是固体或液体。
在准备在芯片上操控样品时使用商业声学液体处理器来沉积多个生物样品。声学液体处理器可以是
Figure GDA0003716418020001311
或ATS
Figure GDA0003716418020001312
至少一个沉积的生物样品可以用于无细胞合成。至少一个沉积的生物样品可以用于组合组装大DNA构建体。组合组装大DNA构建体可以是Gibson组装、环状聚合酶延伸克隆和DNA组装器方法。
处理多个生物样品可以包括以下测定中的至少一个或其任何组合:数字PCR、核酸的等温扩增、抗体介导的检测、酶联免疫测定(ELISA)、电化学检测、比色测定、荧光测定和微核测定。
数字PCR测定可以处理至多约1,000微升、900微升、800微升、700微升、600微升、500微升、400微升、300微升、200微升、100微升、50微升、10微升、1微升、0.1微升、0.01微升、0.001微升、0.0001微升或更少的液滴。数字PCR可以使用至少约0.0001微升、0.001微升、0.01微升、0.1微升、1微升、10微升、50微升、100微升、200微升、300微升、400微升、500微升、600微升、700微升、800微升、900微升、1,000微升或更多的初始液滴。数字PCR可以使用约100微升至约1微升的初始液滴。数字PCR可以使用约50微升至约1微升的初始液滴。在一些实施方案中,数字PCR测定可以将一个液滴或其多个液滴分成至少约1、2、5、10、20、30、40、50、60、70、80、90、100、200、300、400、500、600、700、800、900、1,000、2,000、3,000、4,000、5,000、6,000、7,000、8,000、9,000、10,000或更多个液滴。液滴或其多个液滴可以通过油水乳化技术分离。
核酸的等温扩增可以是PCR、链置换扩增(SDA)、滚环扩增(RCA)、环介导的等温扩增(LAMP)、基于核酸序列的扩增(NASBA)、解旋酶依赖性扩增(HDA)、重组酶聚合酶扩增(RPA)、交叉引物扩增(CPA)或其任何组合。
抗体介导的检测可以用于检测细胞、蛋白质、核酸分子(例如,DNA、RNA、PNA等)、激素、抗体、小分子或其任何组合。抗体介导的检测可以包括抗体,其包含检测细胞、蛋白质、核酸或其任何组合的特异性抗原结合位点。抗体可以是天然来源的。抗体可以是合成抗体。合成抗体可以是重组抗体、核酸适体、非免疫球蛋白支架或其任何组合。
酶联免疫测定(ELISA)可以是直接型、夹心型、竞争型、反向型或其任何组合。ELISA可以检测物质、定量物质或其组合,例如肽、蛋白质、抗体、激素、小分子或其任何组合。
电化学检测可以是基于氧化或还原的电化学检测。基于氧化或还原的电化学检测可以是电导法、电位法、伏安法、安培法、库仑法、阻抗法或其任何组合。电化学检测可以用于检测细胞、蛋白质、核酸、激素、小分子、抗体或其任何组合。电化学检测可以检测由生物样品的氧化或还原反应生成的电流。电化学检测可以检测由生物样品的氧化或还原反应生成的电流。
比色测定可以用于检测细胞、核酸、蛋白质、小分子、抗体、激素或其任何组合。比色测定可以用于测定至少240nm、280nm、300nm、350nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm、950nm、1000nm、1250nm、1500nm、1750nm、2000nm、2400nm或更大的波长的吸收。比色测定可以用于测定至多2400nm、2000nm、1750nm、1500nm、1250nm、1000nm、950nm、900nm、850nm、800nm、750nm、700nm、650nm、600nm、550nm、500nm、450nm、400nm、350nm、300nm、280nm、240nm或更小的波长的吸收。比色测定可以用于测定约2400nm至约240nm的波长的吸收。比色测定可以用于测定约1000nm至约100nm的波长的吸收。比色测定可以用于测定约900nm至约400nm的波长的吸收。比色测定可以在固体、液体或气体样品上进行。比色测定可以使用宽带光源(例如,白炽光源、LED等)、激光光源或其组合。光源可以在其与样品相互作用之前和之后穿过各种光学元件(例如,透镜、滤光片、镜等)。可以通过电荷耦合装置(CCD)、光电倍增管、雪崩光电二极管或其任何组合来检测透射光或反射光(例如,通过镜、光纤等)。检测器可以耦合至波长选择装置,例如单色仪或一个滤波器或一组滤波器。
荧光测定可以用于检测细胞、核酸、蛋白质、小分子、抗体、激素或其任何组合。荧光测定可以用于测定至少240nm、280nm、300nm、350nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm、950nm、1000nm、1250nm、1500nm、1750nm、2000nm、2400nm或更大的波长的吸收。荧光测定可以用于测定至多2400nm、2000nm、1750nm、1500nm、1250nm、1000nm、950nm、900nm、850nm、800nm、750nm、700nm、650nm、600nm、550nm、500nm、450nm、400nm、350nm、300nm、280nm、240nm或更小的波长的吸收。荧光测定可以用于测定约2400nm至约240nm的波长的发射。荧光测定可以用于测定约1000nm至约100nm的波长的发射。荧光测定可以用于测定约900nm至约400nm的波长的发射。荧光测定可以使用宽带光源(例如,白炽光源、LED等)、激光光源或其组合。光源可以在其与样品相互作用之前和之后穿过各种光学元件(例如,透镜、滤光片、镜等)。荧光可以通过CCD、光电倍增管、雪崩光电二极管或其任何组合来检测。检测器可以耦合至波长选择装置,诸如单色仪或一个滤波器或一组滤波器。例如,荧光测定可以用于确定还原NADPH的浓度,因为它以还原形式而不是氧化形式发出荧光。在此实例中,随时间观察到的荧光强度将与样品中还原NADPH的量线性对应。
微核测定可以评估生物样品中微核的存在。微核可以含有由DNA断裂(断裂剂)产生的染色体片段或由有丝***器破坏(非整倍体诱发剂)产生的整个染色体。微核测定可以用于鉴定基因毒性化合物。基因毒性化合物可以是致癌物。微核测定可以在体内或体外进行。体内微核测定可以利用来自生物样品的骨髓或外周血。体外微核测定可以利用来自多个生物样品的细胞或组织。
处理多个生物样品可以包括等温扩增至少一个所选核酸,其可以包括:通过合并含有多种试剂的液滴来提供可以包含至少一个核酸的至少一个样品,所述多种试剂有效允许在没有机械操控的情况下进行样品的至少一个等温扩增反应;以及进行至少一个等温扩增反应以扩增核酸。
至少一个所选核酸的至少一个等温扩增可以是PCR、链置换扩增(SDA)、滚环扩增(RCA)、环介导的等温扩增(LAMP)、基于核酸序列的扩增(NASBA)、解旋酶依赖性扩增(HDA)、重组酶聚合酶扩增(RPA)、交叉引物扩增(CPA)或其任何组合。所述至少一个等温扩增可以是至少2、3、4、5、6、7、8、9、10或更多个等温扩增。
至少一个核酸的长度可以是至少10、100、1,000、10,000、100,000、1,000,000或更多个碱基对。合并液滴可以是至少2、3、4、5、6、7、8、9、10或更多个液滴。多种试剂可以是本文所述的等温扩增试剂中的任一种。
处理多个生物样品可以包括检测至少一个液滴上的聚合酶链反应(PCR)产物的装置。液滴可以是水性液滴。装置可以:在电润湿阵列上产生含有多个核酸和蛋白质分子的至少一个液滴;在水性液滴存在于阵列表面上时进行PCR反应;并且用检测器查询液滴。PCR引物可以是DNA或RNA。蛋白质分子可以是酶,用于PCR反应,或用于报告反应进程(例如,发光)。进行PCR反应可以包括搅动样品(例如,搅拌、振动、基于电润湿的移动等)、加热或冷却样品(使用前述加热器和冷却器阵列)和控制液滴大小。检测器可以是本文所述的任何检测器。
装置可以包括多个报告分子。报告分子可以是荧光报告分子。可以在PCR反应期间通过来自至少一个猝灭分子的至少一个酶分离多个荧光报告分子。至少一个酶可以包括聚合酶、氧化还原酶、转移酶、水解酶、裂解酶、异构酶或连接酶。多个荧光报告分子可以是蛋白质、发光小分子、发光核酸或纳米颗粒。
核酸可以通过传感器检测。传感器可以检测放射性标记。传感器可以检测荧光标记。传感器可以检测发色团。传感器可以检测氧化还原标记。传感器可以是p-n型扩散二极管。核酸可以通过智能手机检测。
处理多个生物样品可以包括结合阵列上的至少一个生物分子。可以将至少一个生物分子固定在表面上。可以将至少一个生物分子固定在可扩散基质上。可以将至少一个生物分子固定在可扩散珠上。至少一个生物分子可以是蛋白质、来源于生物***的化合物(例如,信号传导分子、辅因子等)、药物、表现出或疑似表现出生物活性的分子、碳水化合物、脂质、核酸、天然产物或营养物。固定可以通过吸附、离子相互作用、共价键合或插层进行。表面可以是电润湿芯片、聚合物、电介质、金属、基于纤维的薄片(例如,纸条带)或固定相(例如,硅胶)。可扩散基质可以是聚合物、组织(例如,collegian)或气凝胶。可扩散珠可以是聚合物珠、分子筛或由生物材料(例如,珠状蛋白或核酸)形成的珠。生物分子的位置可以通过编码方案来识别。编码方案可以是预编程方法以确定生物分子的位置。编码方案可以是基于它所固定于的部分。
在一些实施方案中,可检测标记可以是用于发射特定波长的荧光标记。在一些实施方案中,荧光标记在被光源激发时发光。在一些实施方案中,可检测标记发射380-450nm波长的光。在一些实施方案中,可检测标记发射450-495nm波长的光。在一些实施方案中,可检测标记发射495-570nm波长的光。在一些实施方案中,可检测标记发射570-590nm波长的光。在一些实施方案中,可检测标记发射590-620nm波长的光。在一些实施方案中,可检测标记发射620-750nm波长的光。在一些实施方案中,可互换滤光器由计算机-视觉***使用。在一些实施方案中,滤光器与计算机-视觉***的一个或多个光学传感器或图像传感器组合使用。在一些实施方案中,提供滤光器以过滤由可检测标记产生的波长,使得***仅检测或监测对应于特定类型的样品的一个或多个标记。在一些实施方案中,***可以包括一个或多个光学传感器,其中每个光学传感器配备有特定滤光器,以监测对应于特定类型的样品的指定标记,如本文所述。
在一些实施方案中,阵列可以在没有机械操控的情况下诱导来自两个或更多个非连续液体体积的多个生物分子的相互作用。相互作用可以是混合、化学反应、吸附或酶促反应。没有机械操控可以意指相互作用的移动部分可以是两个或更多个非连续液体体积。多个生物分子可以是蛋白质、来源于生物***的化合物(例如,信号传导分子、辅因子等)、药物、表现出或疑似表现出生物活性的分子、碳水化合物、脂质、核酸、天然产物或营养物中的至少一种。
阵列可以在没有机械操控的情况下制备扩增的核酸产物。阵列可以在没有机械操控的情况下对核酸样品进行诊断检测。阵列可以在没有机械操控的情况下对生物样品进行诊断或预后检测。多个生物样品可以疑似含有核酸生物标志物。
阵列可以包括接触至少一个液滴并且可以被其吸收的气体源。至少一个液滴可以在装置上操控。气体可以是空气、氮气、氩气、二氧化碳、氢气或水蒸气。至少一个液滴可以吸收至少0%、10%、20%、30%、40%、50%、60%、70%、80%、90%、99%或更多的气体。操控可以是由于气体对至少一个液滴施加的压力。
多个生物样品可以包括用于进行以下的试剂:链置换扩增反应、自动维持序列复制、扩增反应或Q3复制酶扩增反应。用于进行链置换扩增反应的试剂可以是Bst DNA聚合酶、cas9或另一种半硫代磷酸形式的缺口蛋白。自动维持序列复制和扩增反应试剂可以是禽成髓细胞瘤病毒(AMV)逆转录酶(RT)、大肠杆菌核糖核酸酶H、T7 RNA聚合酶或其任何组合。用于Q3复制酶扩增反应的试剂可以来源于Q3噬菌体、大肠杆菌或其任何组合。
阵列可以从远程计算器接收至少一个指令以处理生物样品的阵列。至少一个指令可以是至少1、2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90、100、200、300、400、500、600、700、800、900、1,000或更多个指令。远程计算机可以是能够发送指令的任何***(例如,台式计算机、膝上型计算机、平板电脑、智能手机、专用集成电路等)。远程计算机可以不需要用户输入来发送至少一个指令。
可以将阵列预编程以对生物样品的阵列进行所述过程。预编程可以是所述过程的至少1、2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90、100、200、300、400、500、600、700、800、900、1,000或更多个步骤。预编程可以存储在阵列中(例如,硬盘驱动器上、闪存单元上、可擦除可编程只读存储器(EPROM)上、盒式磁带上等),或存储在能够发送指令的附接***(例如,台式计算机、膝上型计算机、平板电脑、智能手机、专用集成电路等)上。
阵列可以接收与DNA序列相关的信息。与DNA序列相关的信息可以包括DNA序列的长度、DNA序列的组成(例如,给定碱基的总数、碱基序列等)或特定DNA序列的存在。DNA序列可以触发自动化过程。与DNA序列相关的信息可以触发自动化过程。自动化过程可以包括将DNA序列转化为至少一个组成寡核苷酸序列。至少一个组成寡核苷酸序列可以组装、错误纠正、重组装成DNA扩增子或其任何组合。DNA扩增子可以指导RNA、蛋白质、生物颗粒或其任何组合的产生。生物颗粒可以来源于病毒。
阵列可以由DNA模板产生至少一个肽或抗体。阵列可以使用体内方法(例如,使用细胞来产生)或无细胞产生(例如,不需要活生物体来产生)来产生。肽可以是至少1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50或更多个氨基酸。氨基酸可以是天然存在的或非天然存在的。抗体可以是表面结合的或游离的。抗体可以来源于多个生物样品中的任一个。
阵列可以通过以下方式将至少一个液滴分区成多个液滴:电动力、电润湿力、介电润湿力、介电泳作用、声学力、疏水刀或其任何组合。电润湿力可以由上述阵列的配置诱导。介电泳作用可以是光诱导的(电磁辐射可以用于诱导所述作用)。介电泳作用可以由通过光刻、激光烧蚀、电子束图案化或其任何组合产生的线材、薄片、电极或其任何组合诱导。线材、薄板和电极可以由金属(例如,金、铜、银、钛等)、金属合金、半导体(例如,硅、氮化镓)或导电氧化物(例如,铟锡氧化物)制成。声学力可以是超声波。声学力可以通过换能器生成。疏水刀可以是疏水切片机或疏水剃须刀片。
分区可以分配试剂。试剂可以是如本文所述的试剂中的任一种。
分区可以分配样品。样品可以是多个生物样品。样品可以是非生物样品(例如,化学物)。
分区的液滴可以混合以进行反应。反应可以是扩增反应、化学转化、结合反应、抗菌剂与微生物的反应或上述反应。
分区的液滴可以使用传感器来分析。传感器可以是来自上述传感器阵列的传感器中的任一个。
可以将分区的液滴与至少一个靶液滴混合以维持至少一个靶液滴的恒定体积。恒定体积可以通过计算机视觉(耦合相机和算法)、质量或光学光谱(例如,吸收光谱)来确定。
阵列可以处理多相流体。流体可以具有至少2、3、4、5、6或更多个相。例如,含有本身被油滴包围的胶体的水滴将具有3个相。
阵列可以使用介电泳力(DEP)用于细胞分选、细胞分离、操控至少一个珠或其任何组合。DEP可以是光诱导的(电磁辐射可以用于诱导所述作用)。DEP可以由通过光刻、激光烧蚀、电子束图案化或其任何组合产生的线材、薄片、电极或其任何组合诱导。线材、薄板和电极可以由金属(例如,金、铜、银、钛等)、金属合金、半导体(例如,硅、氮化镓)或导电氧化物(例如,铟锡氧化物)制成。珠可以包括磁珠、用于储存细菌的珠、酶、寡核苷酸、核酸、抗体、PCR引物、配体、分子筛或其任何组合。分选和分离可以用于预浓缩原始临床样品中的至少一个细胞。原始临床样品可以来源于多个生物样品。原始临床样品可以来自患有或疑似患有疾病的对象。
生物样品或其多个生物样品可以沉积在一个或多个阵列上。多个阵列可以包括至少两个阵列。多个阵列的一个阵列可以包括表面。表面可以包括玻璃、聚合物、陶瓷、金属或其任何组合。表面可以包括EWOD阵列、DEW阵列、DEP阵列、微流体阵列或其任何组合。多个阵列可以包括至少2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90、100、200、300、400、500、600、700、800、900、1,000或更多个阵列。多个阵列可以包括至多1,000、900、800、700、600、500、400、300、200、100、90、80、70、60、50、40、30、20、10、9、8、7、6、5、4、3或2个阵列。多个阵列可以包括1,000至2个阵列、500至2个阵列、500至100个阵列、100至2个阵列、100至50个阵列、50至2个阵列、50至10个阵列或10至2个阵列。多个阵列的一个阵列可以邻近多个阵列的另一个阵列。阵列可以水平、垂直或对角地邻近。
表面可以具有至多1,000μm、500μm、100μm、90μm、80μm、70μm、60μm、50μm、40μm、30μm、20μm、10μm、5μm、1μm、0.1μm、0.01μm或更小的厚度。表面可以具有至少0.01μm、0.1μm、1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、500μm、1,000μm或更大的厚度。表面可以具有1,000μm至0.01μm、500μm至1μm、100μm至1μm或50μm至1μm的厚度。
表面可以具有至多1,000μm、500μm、100μm、90μm、80μm、70μm、60μm、50μm、40μm、30μm、20μm、10μm、5μm、1μm、0.1μm、0.01μm、0.001μm或更小的粗糙度。表面可以具有至少0.001μm、0.01μm、0.1μm、1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、500μm、1,000μm或更大的粗糙度。表面可以具有1,000μm至0.001μm、500μm至0.01μm、100μm至0.1μm或50μm至0.1μm的粗糙度。
表面可以包括对表面具有润湿亲和力特征的液体层。液体可以与液滴或其多个液滴不混溶。液体可以分配在表面上。与直接接触表面的液滴相比,液体的上表面可以减少液滴或其多个液滴与表面之间的摩擦。
多个阵列可以含有通道、孔或其任何组合。多个阵列可以含有多个通道、多个孔或其任何组合。所述通道或其多个通道可以在至少一个表面之间穿过。气体、液体、固体或其任何组合可以通过通道或孔转移。气体、液体、固体或其任何组合可以通过多个通道或多个孔转移。气体、液体、固体或其任何组合可以从一个阵列转移到另一个阵列。阵列可以彼此邻近。气体、液体、固体或其任何组合可以从一个阵列转移到至少另一个阵列。气体、液体、固体或其任何组合可以从一个阵列转移到至少两个、三个、四个、五个、六个、七个、八个、九个、十个或更多个阵列。
多个液滴的至少两个液滴可以通过至少一个膜分离。膜可以包括金属、陶瓷(例如,氧化铝、碳化硅、氧化锆等)、均质膜(例如,聚合物(例如,乙酸纤维素、硝化纤维素、纤维素酯、聚砜、聚醚砜、聚丙烯腈、聚酰胺、聚酰亚胺、聚乙烯、聚丙烯、聚四氟乙烯、聚偏二氟乙烯、聚氯乙烯等))、非均质固体(例如,聚合物混合物、混合玻璃等)、液体(例如,乳化液膜、固定(支撑)、液体膜、熔融盐、含中空纤维的液体膜等)或其任何组合。膜可以允许分子、离子或其组合从膜的一侧穿到另一侧。膜可以是不可渗透的、半透的、可渗透的或其组合。渗透性可以根据大小、溶解度、电荷、亲和力或其组合区分。膜可以是多孔的或半多孔的。膜可以是生物的、合成的或其组合。膜可以促进一个液滴的组分交换到另一个液滴。膜可以促进被动扩散、主动扩散、被动输送、主动输送或其任何组合。膜可以是阳离子交换膜、电荷镶嵌膜、双极膜、阴离子交换膜、碱性阴离子交换膜、质子交换膜或其组合。膜可以永久地或暂时地附接至所述阵列或其多个阵列。
实施例
实施例1:二代测序文库制备平台:
图58表示本文所述的二代测序文库制备平台的实例。所述***能够处理生物样品,并且包括:试剂分配器、多个96孔板和一次性芯片。试剂分配器处理例如各种生物样品(例如,蛋白质、肽、核酸、聚合物、单体、细胞、组织等)、化学试剂、溶剂、液体、气体、固体或其任何组合。一次性板提供表面,其用于在开放环境中使用例如以下直接在表面上进行样品操控:声波、振动、气压、光场、磁场、重力场、离心力、水动力、电泳力、介电力、毛细管力或其任何组合。将样品在一次性芯片上移动到测定,例如96孔板,在此测量样品的属性。反应直接在表面上进行或在测定中进行。试剂在试剂分配器中、在***表面上、在测定中组合或其任何组合。生物样品或其多个生物样品的测量在试剂分配器中、在***表面上、在测定中进行或其任何组合。***被预编程、由用户实时控制或其任何组合。***提供了以最少的样品操控来操控生物样品以用于二代测序文库制备的方式。
实施例2:液滴蒸发:
液滴或其多个液滴的液体在开放***或封闭***中随时间蒸发。此蒸发由本文所述的***和方法控制。本文所述的***表面上的硅酮基油的存在显著降低了随时间的蒸发速率,如图59描绘。硅酮基油通过在液滴或其多个液滴周围形成薄膜来降低蒸发速率。由于液体液滴和硅酮基油之间的密度差异,液滴或其多个液滴与硅酮基油不混溶。薄膜具有其他有益效果,例如至少由于液滴和膜的不混溶性,减少由于液滴***造成的样品损失,至少由于液滴与表面之间的摩擦减少,增加液滴的运动速率,至少由于膜充当屏障而减少液滴的污染,以及至少由于上述因素而减少交叉污染。
实施例3:堆叠在液体分配器的底部上的孔板
图60示出了用于并行处理大量样品的基于阵列的***的实施方式。将阵列堆叠在液体处理仪器的水平基部平台(甲板)上。另外,平台可以含有用于储存试剂和样品的微孔板。三轴运动平台邻近阵列和试剂板或在其上方自由移动。运动平台在孔板与阵列之间转移样品和试剂。阵列可以包括完全封闭电润湿装置、完全开放电润湿装置、部分开放(部分封闭)装置或本文所述的技术的任何组合。阵列能够对酶促反应和PCR扩增进行加热和冷却操作。阵列还可以为基于磁珠的洗涤施加磁场。通过将混合液体、加热、冷却和施加磁场的能力组合,阵列制备了用于二代测序的文库。相同的阵列设置可以通过编程方式重新调整用途,以制备用于基于SMRT测序的PacBio仪器、纳米孔测序器、用于质粒提取的miniprep、酶促DNA合成、细胞筛选和许多其他应用的文库。单个阵列可以处理1至100个样品以用于测序。在进行实验时,可以将整个液体处理仪器和阵列装置封闭,以维持一定水平的湿度并防止外部污染。
实施例4:工厂规模盒
图61示出了用于基因组工厂和合成生物学工厂的自动化***的实施方式。***以垂直和水平方式堆叠液体处理单元(LPU)阵列。每个LPU能够使用本文所述的阵列来处理样品。LPU可以从前端***和移除。LPU是“可热插拔的”,即,它们可以在***的其余部分运行时***和拔出。LPU通过位于***内部的电子连接接收用于处理样品的功率和信号。LPU可在前端访问以用于引入试剂和样品。另外,还可以使用在***背面和/或内部运行的管道将试剂引入到***上。***可以含有光学***和相机,以用于监测LPU上的反应进程。***含有一个或多个机器人输送***和手(图61中标记的芯片转移***),以用于将LPU置于其相应位置中。机器人***将液体分配进和分配出处理单元。***可以含有用于储存试剂的冷库。在将样品/试剂转移到LPU上之前,***将其解冻。LPU然后处理样品和试剂,以用于基因组测序、诸如DNA的生物聚合物的合成、细胞筛选、基因组装或任何其他应用。此外,***能够洗涤LPU。整个***可以
实施例5:单一NGS文库制备芯片:潜在部分开放部分封闭;取出样品用于QC
图62示出了用于运行文库制备以用于二代测序制备的阵列。阵列可以是电润湿阵列、DEW阵列或DEP阵列。阵列由其中沉积样品和试剂的输入区组成。阵列由样品从其转移到微孔板中的输出区组成。在输入端口与输出端口之间,输送、混合、加热和冷却呈液滴形式的样品和试剂。阵列的典型输入是纯化的基因组以及用于文库制备的试剂。阵列可以含有用于加热/冷却的特定区域,或者整个阵列可以被加热/冷却。可以封闭阵列的加热部分以减少蒸发。也可以封闭整个阵列以减少蒸发。阵列的部分含有用于生成磁场的致动器。这些部分用于进行基于磁珠的洗涤。阵列上的一个区域可以提取等分式样的样品,并且通过荧光测量对样品运行质量控制。阵列可以通过温度循环获取样品,以通过qPCR进行文库定量。两个或更多个阵列可以彼此邻近,并且同时处理多个样品并最终将它们合并。
实施例6:具有蒸发补偿的NGS文库制备
使用可商购获得的试剂盒在EWOD阵列(阵列“瓦片”基板)上进行NGS文库制备。图63示出了试剂和样品在阵列上的放置。此流程的试剂包括:片段化酶和片段化缓冲液混合物、末端修复酶和A-尾接混合物、连接酶和缓冲液混合物、安瓿磁珠(例如,微米大小的珠)、乙醇、唯一DNA条形码(例如,具有用于Illumina测序仪的测序衔接子)、PCR主混合物和水。手动或通过使用本文所述的分配机构的自动化***将这些试剂引入在阵列瓦片上。将试剂与样品混合并按预定顺序在各种温度下温育。在加热反应(例如,片段化、末端修复/dA-尾接)和在室温下进行的反应(例如,将衔接子连接到片段化的DNA)期间,使用技术组合来补偿由于蒸发导致的体积损失。本文描述并在图29中描绘了所使用的蒸发补偿技术。另外,可以将图26中所述的技术和本文所述的其他其他技术与图29中的技术组合来调节液滴的体积。通过这些蒸发补偿技术,在整个反应过程中将例如片段化、末端修复/A-尾接和连接反应的反应体积维持在稳定体积下(例如,CV偏差小于10%)。通过这种方法,使用全自动或半自动方法在阵列上产生NGS文库,从而将最终反应体积维持在10%的误差范围内。然后将最终文库与PCR引物和PCR ready Mix在阵列上混合。然后使用外部热循环仪对此混合物(例如,文库、PCR引物和PCR混合物)进行PCR扩增。可选地,在阵列或阵列的另一个元件上进行PCR扩增。
在阵列瓦片上制备的文库(例如,使用本文所述的自动化或半自动化技术)的DNA的最终产量与从在管中以传统方式(例如,手动)制备的文库获得的产量相当,如图64A中所见。另外,来自在阵列上制备的文库的DNA的平均片段大小(例如,450bp)也与手动(例如,在管中)制备的文库的片段大小(467bp)相当,如图64B中所见。此数据支持本文所述的涉及通过基于实时控制计算机-视觉的体积估计定时补充液滴的蒸发控制技术或本文所述的其他技术对于NGS文库制备是有效的。
实施例7:高分子量(HMW)核酸的提取
通过将含有细胞的液滴与含有裂解剂(例如,洗涤剂或酶促剂)的另一个液滴合并,将来自各种来源(例如,哺乳动物、细菌、植物)的细胞直接在阵列上裂解。将此混合物在EWOD阵列上加热和混合(例如,单独或同时),以促进细胞裂解并且如果适用促进细胞核裂解。对蛋白质、RNA或其组合进行酶促消化以提高样品的纯度。当细胞裂解时,通过DNA特异性荧光染色监测裂解反应的进程和裂解效率。通过固相(例如,基于珠的捕获或通过沉淀(例如,盐和乙醇或苯酚-氯仿提取))直接在阵列上纯化DNA。通过EWOD以最小的剪切操控回收的DNA并转移到阵列的不同位置。对于高质量长读取测序至关重要的DNA纯度可以通过增加在阵列上进行的洗涤循环的次数来提高。使用二氧化硅纳米结构化磁盘来去除小DNA片段。通过在缓冲液中进行另外的连续洗脱来增加回收的DNA的产量。
DNA提取之后,通过脉冲场凝胶电泳(PFGE),定量每个样品相对于彼此的大小分布,并且分析可商购获得的梯状条带(BioRad)和ImageJ(NIH)谱分析工具来分析样品。对于较小的输入(例如,细胞输入),通过Femto Pulse(Agilent)和qPCR测量较低的输入量的回收/大小分布。通过另外的互补方法(例如,BioNano Genomics Saphyr***)评定基因组完整性,从而允许在宏观尺度下进行快速且具有成本有效的原型制造以及使用Saphyr***的数据的独立可比性。
通过在溶液和表面沉积的PEG200或BlockAid(Invitrogen)钝化装置的存在下检测DNA沉积和保留来确定EWOD表面的钝化。通过以下获得测量结果:i)在使用Hoechst33342之后对表面进行染色,ii)计算Lambda DNA(New England Biolabs,线性化48.5Kb)的商业制剂的表面保留率,和/或iii)通过qPCR测量操控前和操控后样品的损失%以及109至102个DNA拷贝的输入量。
在EWOD阵列上进行哺乳动物细胞裂解、RNA和蛋白质消化,然后进行HMW DNA分离。高分子量DNA片段的分布见图65,从样品分离大于165,000bp的DNA片段。更长的洗脱持续时间回收更多的DNA(例如,由更高的峰指示),并且是获得更高DNA产量的方式。
实施例8:用于核酸转移的稳定性缓冲液
由使用Bionano Genomics Saphyr和Femto Pulse平台的经过验证的方案,使用长Lambda DNA的商业制剂和HMW DNA制剂产生稳定化缓冲液。通过混合含有海藻酸溶液和钙离子溶液(例如,CaCl2)的2×2.5μl液滴产生小的(例如,5ul)水凝胶液滴。通过添加更大的体积(例如,~15μl)来移动液滴并使其可用于输送。通过柠檬酸盐或EDTA溶液释放凝胶颗粒,并且通过Femto Pulse和PFGE(内部)和Saphyr(作为外部服务)测量完整片段的回收百分比。用于EWOD装置的保留/洗脱介质的其他高粘度缓冲液包括例如蔗糖、PEG和聚乙烯吡咯烷酮(PVP)含量缓冲液和Nanobind纳米结构化二氧化硅盘(Circulomics)。
由Femto Pulse和PFGE,通过冻融循环和高温下的加速稳定性检测来测量稳定性,使用Arrhenius动力学参数在-20℃下模拟至少3个月。对于较低输入,通过Femto Pulse和qPCR滴定细胞输入和测量回收率/大小分布。在109至103个DNA拷贝的输入量下,通过qPCR确定样品损失。
实施例9:细胞核酸的全基因组测序
通过Oxford纳米孔装置,通过长读取测序证明基因组完整性。可以使用本文所述的方案以及Qiagen HMW试剂盒和Loman方案来提取DNA。根据优化的方案制备文库,用于将链保持在>1Mb长度下。通过对每个Qiagen和Loman文库测序至少3个并测序7个Flexomics文库来评估提取的可重复性,以确保大小评估性能的稳健性。评定常规输入和低输入(例如,1000个细胞)文库。在低输入下,对1000个细胞的~24个子集各自进行条形编码,以提供足够的材料用于下游测序(理论上~150ng)。
例如通过以下将细胞HMW DNA输入向下滴定:i)补充载体DNA,例如Lambda DNA,以确保平衡的文库制备或ii)稀释绝对数量的细胞并缩放文库制备和分析试剂以用于随后的反应。将Lambda DNA生物素化(例如,使用Pierce 3'生物素化试剂盒,Thermo Fisher)以允许在测序前耗尽以集中靶上文库。ONT转座酶文库制备的性能在装置上进行评定,例如无需将样品移动到单独的管中。
将有本文所述的实验生成的图谱与文献报告的GM12878基因组进行比较,以确定生成的测序文库的完整性。
实施例10:酶促DNA合成
进行在本文所述的阵列上在水性介质中使用酶催化过程合成多核苷酸(例如,DNA)的方法。末端脱氧核苷酸转移酶(TDT)是模板非依赖性聚合酶,其催化在DNA的3'末端与5'末端之间形成磷酸二酯键。图66A和图66B示出了提供DNA合成的示例性流程。图66C示出了进行核苷酸的逐步添加以合成长分子DNA的单反应位点的示意图。
将含有具有未受保护的3'-羟基基团的起始DNA材料的液滴与含有功能化磁珠的液滴混合。经过短暂的搅动之后,DNA分子与磁珠结合。可选地,将含有起始DNA材料的液滴分配到阵列的一个位置上,所述位置被功能化以将DNA固定到固体支撑物。将含有具有可切割/可去除部分的核苷5'-三磷酸的液滴与含有固定的起始DNA的液滴混合。然后将在液滴中催化起始DNA的未受保护的3'-羟基末端与核苷三磷酸的5'-磷酸末端之间的5'至3'磷酸二酯键的TDT酶合并并与含有固定的DNA的液滴混合。将反应在室温或更高温度下温育5-30分钟。
然后将含有解封剂的液滴与随后的反应混合物混合,从而产生具有游离3'-羟基的核苷酸。在使用磁珠进行固定的情况下,然后施加磁场以将珠下拉到阵列表面并且去除过量的液体。然后通过将洗涤缓冲液流过珠来将珠洗涤多次(例如,2-4次)。然后将洗涤过的液体丢弃到阵列的废弃物区域。通过重复以上所述的方法将另外的核苷酸添加到DNA中。在每次添加核苷三磷酸期间,控制器指示阵列从相应的储器分配核苷三磷酸中的一个。在多次迭代之后,产生已知序列的多核苷酸,保持固定到珠或阵列的功能表面上。通过引入含有切割剂的液滴,将最终DNA产物切割并从表面(例如,珠或阵列表面)释放。然后将最终产物悬浮在液滴中并从阵列中回收。
DNA合成中的错误可以通过错配结合和错配切割蛋白来纠正。错配结合蛋白(例如,MutS)与磁珠结合,并且与含有包含至少一个错误(例如,被鉴定为双螺旋中的扭曲)的组装DNA的液滴混合。例如,包含错误的DNA分子与磁珠结合,并且没有错误的DNA不附着至珠上。然后使用磁场将珠移动到阵列的另一个区域,从而去除包含至少一个错误的DNA。使用电动力(例如,EWOD)将含有没有错误的DNA的过量液体与珠分离。
可选地,使用错配切割酶,例如T4核酸内切酶VII或T7核酸内切酶I来纠正错误。将包含切割酶的液滴与含有组装DNA的液滴混合。错配切割酶靶向错误处或错误附近的区域。然后使用基于磁珠的分离来检索无错误的片段。可选地,使用核酸外切酶去除错配切割酶留下的片段上的另外的错误。在液滴中使用PCR组装来正确组装这些修剪的片段。
在液滴中使用PCR扩增组装和错误纠正的DNA。然后将来自PCR的最终产物制备成文库,以用于使用本文所述的方法在阵列上测序。使用本文所述的任何测序技术对文库进行测序,以对合成的DNA进行最终序列验证。
实施例11:二代测序(NGS)文库制备:
使用224纳克(ng)的纯化基因组DNA作为起始材料,并且使用瓶中基因组NA12878作为DNA来源。来自DNA片段化、末端修复/A-尾接、连接和DNA纯化/大小选择的所有步骤都在图67所示的装置上进行。通过两个PCR循环扩增最终文库,其在单独的PCR后区域中在热循环仪上进行。在芯片外手动进行对照文库以用于数据比较。通过Qubit对文库进行定量,并且通过BioAnalyzer评定片段大小分布。对文库进行相应的归一化并在NextSeq500上测序(例如,浅测序,初始中等输出以2×75个循环运行并且2x 8个循环用于索引,接着以高输出2×150个循环运行另外的覆盖生成)。使用Illumina的bcl2fastq v2.20对测序数据进行解复用,而无需衔接子修剪。使用良好建立的算法(例如,FASTQC、BWA-MEM、SAMtools、Picard和GATK)进行生物信息学分析。
在芯片上制备的文库生成足够的材料用于测序(表1)。芯片外对照生成的DNA材料比芯片上实验多~2.3×;然而,对于芯片上和芯片外文库,平均片段大小高于先前描述的(表1和图68)。所有的测序和映射QC数据证明使用本文所述的***和方法生成高质量测序文库(表1),其中Q30>90%(图69),PF读取%>90%。
表1
Figure GDA0003716418020001481
芯片上和芯片外文库的重复水平较低(图70)并且总体上<10%(表1)。低水平的重复读取也反映在有限的衔接子含量中。我们的初始浅测序(2×75)指示<1%的衔接子污染(图71A),而在将测序深度和读取长度增加至2x150时,对于芯片上和芯片外文库分别检测到高达15%和10%的衔接子(图71B)。芯片上与芯片外之间的差异可能是由于与芯片外对照相比芯片上文库生成的读取数量更高。
通过过滤器的读取的映射率很高(>99%),并且两个文库之间的跨基因组的覆盖率相当(图72),芯片上和芯片外文库的中位覆盖率分别为9X和7X。确定变体和调用单核苷 酸多态性(SNP)的能力。杂合(HET)单核苷酸多态性(SNP)灵敏度在芯片上与芯片外之间在类似覆盖率下相当(表1)。这通过专门观察TP53基因座上的SNP得到确认,其中在基因间区域中检测到两个文库的相同基因型变体(图73)。
实施例12:用于在阵列上进行DNA测序的流程样品制备:
本文所述的阵列上的NGS的流程的实例在图74中示出。通过引入包含化学或酶促细胞裂解试剂的另一个液滴,在阵列上裂解阵列上液滴中的细胞。通过引入阵列的另一个液滴中包含的降解酶来降解液滴中包含的蛋白质,并且将对DNA分子特异性的磁性颗粒引入含有DNA分子的液滴中。磁珠附着至阵列表面上,或者磁珠悬浮在液滴中。使用阵列的磁场将DNA分子与细胞碎片和降解的蛋白质分离。附着至悬浮在溶液中的磁性颗粒或耦合至阵列的磁性颗粒的分离的DNA经历磁珠洗涤过程。将DNA引入在阵列上、邻近阵列或与阵列分开的DNA测序仪。对DNA进行测序。
尽管已经在本文中示出和描述了本发明的优选实施方案,但是对于本领域技术人员而言将显而易见的是,此类实施方案仅为通过举例方式提供。本发明不意在受限于本说明书内提供的具体实施例。虽然已经参考上述具体说明描述了本发明,但是对本文中实施方案的描述和示例说明不意在以限制性意义进行解释。在不背离本发明的情况下,本领域技术人员现将想到多种变型、变化和替代方案。此外,应理解,本发明的所有方面不限于本文中所述的取决于各种条件和变量的具体的描绘、配置或相对比例。应理解,本文所述的本发明的实施方案的各种可选方案可以用于实施本发明。因此,考虑到本发明还应覆盖任何这种可选方案、修改、变型或等同方案。所附权利要求意在限定本发明的范围并且意在由此覆盖处于这些权利要求的范围内的方法和结构及它们的等同方案。
实施例13:连续稀释
连续稀释是广泛用于各种测定的基本液体处理技术。图77描绘了根据一些实施方案在阵列上的文库定量期间的连续稀释过程。此技术可以用于产生含有不同浓度的给定生物标志物的各种液滴。可以从通过连续稀释产生的这些液滴获得的各种读出可以用于生成标准曲线和评估测定灵敏度。连续稀释可以通过添加水或缓冲液进行连续液滴***和稀释来进行。如本文所述,液滴***可以通过两板***中的电润湿或通过在疏水性“切片器”上驱动液滴来实现。连续***和稀释步骤可以手动或以全自动方式(例如,由基于先前测定生成的数据点的机器算法指令)进行。可以使用机器视觉或本文所述的其他液滴感测技术通过体积测量来记录连续稀释和液滴体积准确度。这些测量在多个时间点(例如,每秒、每1-4秒等)发生。
图77描绘了设置在阵列7700上的多个样品,如本文公开的。在一些实施方案中,如所描绘的,较大的样品7760液滴被分成较小的样品液滴7765。在一些实施方案中,液滴所含的化学或生物物质的浓度在液滴已被分离之后维持不变。在一些实施方案中,在液滴分离期间关闭加热***。
实施例14:DNA/RNA扩增、检测和定量。
本文所述的阵列装置和使用所述阵列装置构建的仪器可以与各种可商购获得和新开发的采用各种类型的核酸扩增(例如,PCR、RPA、RCA、线性扩增)的试剂盒结合使用。DNA和/或RNA可以用作扩增的起始材料。如其他部分和/或实施例中所述,DNA和/或RNA可以在扩增和检测(例如,通过qPCR)之前直接从芯片上的细胞中提取。在RNA的情况下,qPCR流程可以设置为一步反应(RT-qPCR,例如TaqManTMRNA-to-CTTM1步试剂盒)或两步反应(逆转录,然后PCR)(例如,ThermoFisher Maxima H Minus逆转录酶、SuperScriptTMIV第一链合成***)。可以将若干样品合并在单个反应中,以增加检测样品的数量(例如,高通量诊断),并且在合并池为阳性的情况下重新检测单个样品。多个靶可以在给定的样品或样品池中多重复用和评定。试剂可以单独提供并且在实验时添加到装置的表面,或者可以是耗材本身的一部分(耗材可以意指先前申请中所述的膜框架、EWOD阵列或EWOD瓦片),例如,一些试剂可以在耗材表面上冻干,并且然后在实验开始时重悬于装置上的水中。定量实验(例如,基因表达、基因分型、文库定量、诊断)可以在阵列上并行运行重复两次或重复三次,以增加准确性。可以从独立引入在耗材上的起始材料的单独等分式样(液滴)开始复制,或者可以通过液滴***直接在芯片上等分初始样品(例如,用于同时操控)。试剂和样品可以制备并储存在芯片上(例如,引物混合物、主混合物),并且通过基于液滴***的连续稀释达到正确的浓度。芯片可以包括邻近阵列的试剂储器。试剂储器可以与阵列的表面流体连通。试剂和样品可以保持在阵列瓦片上的冷区(4℃)中,直到使用。阵列上的荧光或比色测量可以用于检测(例如,阳性相对于阴性诊断检测)或定量(例如,基因表达、测序文库定量)。在文库定量的情况下,定量结果可以用于测序前的下游样品归一化和合并。
核酸可以在恒定温度(例如,37℃、65℃或室温)下通过等温扩增(例如,LAMP、RPA、RCA、SDA)进行扩增。来自RNA样品的核酸可以在等温扩增之前在阵列装置上进行逆转录。在扩增期间,可以通过监测dsDNA结合染料(例如,SYBR)、荧光探针/分子信标或浊度来实时检测信号。可以在反应结束时对扩增信号进行定量,或者使用连接到装置的UV-可见光相机随时间监测扩增信号。目标样品、阳性和阴性对照可以在相同阵列上并行运行。可以提取所得的扩增子用于下游应用(例如,用于二代测序的文库制备)。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
实施例15:检测患者样品中的SARS-nCoV-2的RT-LAMP
该测定能够对特定靶进行RT-LAMP等温扩增:SARS-nCoV2RNA的某些区域和阳性对照。进行RT-LAMP扩增之后,可以直接检测阳性/阴性读出并指示样品/患者结果。可以将仅与双链DNA结合的荧光LAMP染料添加到主混合物中。荧光强度与样品中DNA的量相关并通过荧光测量。图79示出了根据本文所述的实施方案提取的阴性病毒RNA对照7910与阳性病毒RNA对照7905之间的比较。如果样品含有病毒RNA,则液滴可以出现荧光,如图79描绘。
可以将试剂(来自NEB的WarmStart 2X主混合物,dH2O)和靶标7850(例如,DNA或RNA)在装置7800上混合并在所需温度(例如,60-65℃)下加热,如图78描绘。可以将阳性对照7805、阴性对照7810和靶标7850在阵列7800上连续或并行扩增。在一些实施方案中,试剂包括LAMP主混合物7822、LAMP引物混合物7824、水7826、染料7828或其任何组合。
RT-LAMP反应使用成对的内引物(FIB、BIP)、外引物(F3、B3)和环引物(LB、LF)。每个内引物具有与扩增区域的一条链互补的序列。通过逆转录酶和DNA聚合酶介导的链置换合成(存在于来自NEB的WarmStart 2X主混合物中)依次重复逆转录和延伸反应。此方法运作的基本原理是产生大量具有互补序列和交替重复结构的DNA扩增产物。在等温条件下,LAMP可以在不到一小时的时间内以特异性将几个DNA拷贝扩增至109个拷贝。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
表2:SARS-nCoV-2检测和阳性对照的引物设计
Figure GDA0003716418020001521
Figure GDA0003716418020001531
为了增加测定的特异性,可以将分子信标探针添加到反应中。分子探针是在其末端修饰以具有圆形探针的形状的LB引物。每个末端都与荧光团和猝灭剂结合。当分子信标探针不与靶标连接时,荧光被猝灭剂减弱。一旦LB在靶标上发现其互补序列,环状结构受到干扰,从而触发荧光信号的发射。
表3:SARS-nCoV-2和阳性对照检测的分子信标探针
Figure GDA0003716418020001541
每次扩增之后,可以使用顺磁性SPRI珠(例如,用于PCR纯化的AMPure XP)直接在阵列上纯化cDNA/DNA。可以通过凝胶电泳分析在20μL中洗涤和洗脱的扩增子,如图80描绘。图80示出了根据一些实施方案的阴性病毒RNA对照8010与阳性病毒RNA对照8005之间的比较。
实施例16:酶联免疫吸附测定(ELISA)
包括ELISA的免疫测定是研究和诊断中最常用的工具之一,因为它们可以用于快速检测并用作护理点(POC)工具。
通过检测生物流体(例如,全血、血清、唾液)中的大分子或小分子,免疫测定被广泛用于诊断。免疫测定依赖于抗体或抗原与分子特定结构结合的能力。基于分析物、抗原、抗体的结合和使用的方式,ELISA检测分为若干类型的检测。例如,直接ELISA是基于抗原与附着至酶(例如,HRP)的特定抗体之间的结合。添加到反应中的底物(例如,OPD、TMB、ABTS、PNPP)在与酶反应后改变颜色,从而确认样品中存在抗原。夹心型ELISA、竞争型ELISA、反向型ELISA是基于相同的原理,唯一的区别是抗体、分析物和抗原添加到反应中的顺序。免疫测定可以是定量的或定性的。定性免疫测定为用户提供关于分析物(例如,抗原、抗体)存在或不存在的答案。同时,定量免疫测定为用户提供样品中分析物的浓度。
各种类型的免疫测定,包括夹心型ELISA、竞争型ELISA、反向型ELISA、定性和定量ELISA,可以在阵列装置上以基于液滴的形式进行,用于检测来自各种生物流体(例如,全血、血清、唾液)的宽范围的分析物。
可以手动或以自动化方式将样品和试剂引入在阵列瓦片上。在全血的情况下,可以将EDTA或柠檬酸盐添加到全血液滴中,以减少凝血。样品、阳性和阴性对照的连续稀释可以并行进行,以便进行定量测量。定性测量也可以通过连续样品稀释和芯片上测量来进行,直到达到最佳浓度以进行适当的读出。样品(例如,血浆)可以在芯片上稀释,以最小化由非特异性结合引起的背景。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
将一抗或抗原固定在表面上。表面可以是覆盖阵列瓦片的膜(或介电或疏水性表面)、珠(诸如磁珠)或颗粒(例如,等离子体磁性纳米颗粒)的表面。表面、膜、珠或颗粒可以用链霉亲和素涂覆,链霉亲和素是对生物素具有高亲和力的蛋白质。具有生物素化末端的重组抗体或抗原可以通过链霉亲和素-生物素结合附着至表面、膜、珠或颗粒,如图81A描绘。链霉亲和素可以饱和(例如,用0.1%BSA)以减少非特异性结合。图81A描绘了用链霉亲和素8105涂覆的珠8125和膜8115的实施方案。
抗体或抗原表面、膜、珠或颗粒的固定可以通过在链霉亲和素表面上或与链霉亲和素涂覆的珠/颗粒一起混合和温育目标抗体或抗原来在阵列瓦片上进行。磁体可以用于将涂覆的磁珠集中或固定在耗材的特定位置中。
如图81A中描绘的链霉亲和素8105或链霉亲和素涂覆的膜8115可以作为冻干或冷冻干燥样品提供给客户,以保持其活性。然后可以在实验之前对阵列瓦片进行再水化步骤。
图81B描绘了根据本文所述的实施方案的链霉亲和素8105与抗原8130和抗体8135的结合。在一些实施方案中,抗原8130和/或抗体8135被生物素化。在一些实施方案中,抗原和/或抗体包含接头8140。在一些实施方案中,链霉亲和素与抗原或抗体的结合形成生物素链霉亲和素复合物。
可以使用如本文所述的功能化表面、珠或颗粒在相同装置上同时检测抗原或抗体。在抗原或抗体捕获之后,可以在装置上进行末端到末端流程,洗去未结合的材料,通过缀合的示踪抗体与酶并且使用通过在我们的表面、珠或颗粒上连续冲洗试剂和洗涤溶液实现的酶标志物来检测。读出可以由检测从底物产生的显色产物组成,可以实时监测反应并通过向反应中添加酸性或碱性溶液来停止反应。借助吸光度读取器,诸如集成分光光度计***,可以在装置上直接读取与显色反应相关的吸光度,如图11F描绘。此***可以扩展到一个或多个液滴,从而允许同时测量若干样品或生物标志物,如图11H描绘。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
实施例17:SARS-CoV2 IgG检测
本文所述的此类免疫测定可以实现SARS-CoV-2IgG检测。可以在本文所述的阵列上以液滴形式进行免疫测定。图82描绘了基于液滴的SARS-CoV-2IgG检测的实施方案。可以手动或以自动化方式将样品(例如,血浆或血清)和试剂引入在阵列瓦片8200上。根据一些实施方案,在图82中描绘了精确的液滴体积。可以减少液滴的体积以提高灵敏度并降低成本。用于检测样品中的IgG的表面可以是涂覆有SARS-cov2核衣壳蛋白的磁珠。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
免疫测定可以包括阳性对照8205、阴性对照8210、样品8215、生物素化人IgG8220、HRP-链霉亲和素浓缩物8225、TMP底物8230、终止溶液8235、洗涤缓冲液8240、链霉亲和素涂覆磁珠8245和涂覆有病毒RNA(例如,SARS-CoV-2核衣壳蛋白)的磁珠8250。在一些实施方案中,免疫测定的精确体积包括25μL的阳性对照8205、25μL的阴性对照8210、25μL的样品8215、25μL的生物素化人IgG8220、25μL的HRP-链霉亲和素浓缩物8225、25μL的TMP底物8230、12.5μL的终止溶液8235和50μL的洗涤缓冲液8240。在一些实施方案中,阵列8200包括废弃物区8260。
图83A-83F描绘了根据一些实施方案的SARS-CoV2 IgG检测过程。如图83A描绘,可以使用位于阵列装置附近的磁体将涂覆的磁珠8345集中在阵列瓦片8300上。这些珠8345涂覆有生物素化的SARS-CoV-2核衣壳蛋白(例如,Acrobiosystems、Origene、Sydlabs、Sinobiological...)。一旦磁珠被固定,将含有IgG的“阳性液滴”8305、不含IgG的“阴性液滴”8310和样品移到磁珠上并混合。如果样品8315来自免疫的患者,则它含有IgG。SARS-CoV-2核衣壳蛋白珠对IgG具有高亲和力并将它们固定。由于在阴性对照中没有SARS-nCov2IgG,所以珠可以保持不结合。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
使用含有Tween和PBS的洗涤溶液(例如,洗涤缓冲液浓缩物20X,Raybiotech)进行洗涤步骤。洗涤步骤允许去除未固定的材料,只有SARS-nCov2 IgG保持固定在磁珠上。在阳性对照和样品位点上,在样品来自免疫的患者的情况下,剩余的只是与珠结合的一抗,而在阴性对照上,珠保持裸露。
如图83B描绘,可以通过施加磁场将珠下拉到阵列瓦片上。可以使用电润湿将过量的液体输送到废弃物区。可以将含有Tween和PBS的溶液(洗涤溶液)的液滴移到珠上方。在移动此洗涤溶液的同时,珠可以仍然保持下拉。洗涤程序可重复约4次。各种浓度的Tween和PBS可以用于洗涤步骤。可以释放珠以进行适当混合。此后,珠可以再次固定在适当位置,同时使用电润湿去除上清液。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
如图83C描绘,含有与生物素缀合的示踪抗体(例如,RayBiotech、Abcam)的液滴8334可以在磁珠上移动。示踪抗体对IgG(一抗)具有高亲和力并与其结合。可以进行洗涤步骤以去除未结合的材料。
如图83D描绘,可以将含有HRP-链霉亲和素浓缩物的液滴8336在靶区域上移动并将示踪抗体固定在链霉亲和素-生物素部分上,从而允许存在HRP末端。可以进行洗涤步骤以去除未结合的材料。
如图83E描绘,可以将含有底物诸如TMB(例如,RayBiotech、Promega、ThermoFisher)的液滴8330在磁珠上移动,从而产生与复合IgG-示踪抗体接触的显色产物。
如图83F描绘,在含有IgG的阳性液滴的情况下,液滴在450nm处将呈现吸光度。相反,在患者样品中不存在IgG的情况下,液滴在450nm附近将不显示吸光度。可以通过添加含有2M硫酸(例如,RayBiotech、Fisher Scientific)的液滴来停止反应。可以用装置提供的UV-可见光相机8370(如图83A描绘)直接在阵列上读取吸光度。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
实施例18:基于核酸的同时诊断和血清学检测
可以在相同阵列上并行进行同时核酸和蛋白质分析,诸如免疫测定。可以将阵列分区为不同的区域。例如,第一区可以包括基于核酸的诊断区,并且第二区可以包括血清学检测区。
在qPCR/qRT-PCR/PCR/iNAAT扩增和检测的情况下,具有可调节温度的温育区可以专用于每种特定类型的测定。可以如上所述进行基于核酸的诊断和血清学检测。荧光或比色法可以用于实时或在反应结束时进行读出和信号检测,以用于定量核酸扩增或免疫测定检测。
实施例19:同时DNA/RNA提取和检测
可以在装置上同时分析DNA和RNA。DNA/RNA可以从细胞(哺乳动物、细菌、植物)、病毒、生物流体中提取。可以使用洗涤剂和基于酶的裂解,接着通过基于磁珠的纯化(例如,Zymo、Qiagen、ThermoFisher试剂盒)来提取和纯化DNA和RNA。一旦提取了RNA/DNA,可以进行蛋白质和/或RNA/DNA的酶促消化以提高样品的纯度。在RNA提取和检测的情况下,可以在逆转录酶(例如,Maxima H Minus逆转录酶、SuperScriptTMIV第一链合成***)的存在下使用随机引物、oligo-dT引物或基因特异性引物在相同阵列上进行逆转录。然后可以如上所述扩增和检测DNA或cDNA(参阅qPCR,iNAAT)。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
实施例20:基因组装
DNA组装正在成为合成生物学中的重要工具,以为各种下游应用(代谢工程、DNA文库制备、全基因组组装、组合组装、数据存储、新型天然产物发现...)产生定制的DNA片段。本发明通过在如本文所述的阵列装置上在液滴中实施高通量组合DNA组装技术提供了克服96/384孔板限制的独特方式。本发明实现了在EWOD阵列上从DNA组装到蛋白质表达的末端到末端全自动化过程。图84描绘了显示多部分DNA组装的一个顺序列中的步骤的说明性但非限制性流程图。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
可以在阵列上实施基于同源性、重组、扩增和消化/限制的各种基因组装方法。在一些实施方案中,组装***可以使用Gibson组装、Golden Gate、Gateway、连接非依赖性克隆(LIC)、GeneArt II或重叠延伸PCR(OE-PCR)方法。诸如Gibson组装的方法可以在“一锅”反应中组装多达6个片段,而其他组合和链反应可以组装多达数百个不同的片段。许多商业试剂盒诸如NEBuilder HiFi组装混合TM
Figure GDA0003716418020001601
Gate组装试剂盒(BsaI)、GoldenGATEway克隆试剂盒和The GeneArtTMII型组装试剂盒可以转化到我们的平台。
可以组装大范围的DNA片段长度,例如可以从较短的片段组装短基因诸如GFP基因,或者可以组装更长的DNA片段(例如,LacZ基因)并克隆到更大的构建体诸如质粒中。太大而无法通过PCR扩增的DNA区域可以被分成多个重叠PCR扩增子,并且然后组装成一个片段。
可以在阵列装置上以预定的自动化方式、随机自动化方式或手动方式移动、合并和混合含有试剂和待组装的基因片段的液滴。可以在阵列的特定步骤和区域中将液滴加热至特定温度(例如,50℃),以提高组装效率。在一些实施方案中,装置可以在不同温度下集成不同类型的加热垫,在相同装置上实现互补反应(例如,PCR),从而实现组装产物的扩增。可以在流程的每个步骤期间通过机器视觉或感测来追踪液滴。来自机器视觉的感测和反馈可以用于寻找高产量组装DNA片段的最佳条件。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
实施例21:Gibson DNA组装
Gibson DNA组装方法,如图85描绘(例如,参见Gibson等人(2009)Nature Meth.,6:343-345),是用于将非常小(~100个碱基对)的DNA片段组装成非常大的DNA片段(~500-kb)的一步等温体外重组方法。所述方法使用T5核酸外切酶*、Phusion聚合酶*和Taq连接酶*作为主要组分。涉及组装两个DNA片段的步骤如下:将待组装的两个DNA片段与T5核酸外切酶、Phusion聚合酶和Taq连接酶混合。在阵列装置上,这些元件中的每一个呈液滴形式并且在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
将以上混合物在50℃下在阵列装置上温育后,液滴内发生以下顺序的事件。T5核酸外切酶从5'末端开始咀嚼双链DNA,使末端序列重叠暴露。然后将互补的单链DNA突出端退火。两条链退火后,Phusion聚合酶填充间隙并且连接酶最终密封缺口。
此方法用于将GFP基因(720bp)组装成3个相等的240bp片段。Gibson组装是归一化且无痕的方法。待进行的方法是使用NEBuilder HiFi组装混合物TM试剂盒在EWOD阵列8600(阵列装置)上进行的一步反应。组装反应后在相同阵列上进行DNA纯化和扩增。图86描绘了用于连续DNA组装、纯化和扩增的芯片8600上的液滴设置。用于此流程的试剂包括:3个目标片段(8601、8602、8603)、组装混合物8605、无核酸酶水8610、AMPure磁珠8615、乙醇8620、PCR主混合物8625和引物8630(所有在阵列装置上呈液滴形式)。在温育期间,可以将液滴在站8650处主动混合,以提高DNA组装的产量和效率。在实施方案中,提供了5μL的目标片段(8601、8602、8603)、10μL的组装混合物8605、36μL的磁珠8615、100μL的乙醇8620和5μL的PCR主混合物8625。
为了成功组装短片段,任何两个片段可以设计为具有重叠区域。这些重叠区域可以手动设计以允许强互补杂交或自动进行(例如Gibson组装
Figure GDA0003716418020001611
引物设计)。重叠区域的长度可以从20至60pb变化,但在某些情况下可以高达100pb,以增强待组装的片段的退火。
可以手动或以自动化方式将试剂引入在阵列瓦片上。可以将试剂与三个片段混合,按预定顺序在各种温度下温育。序列的顺序、温育温度和时间可以通过在测定中检测随机配置来优化,首先以手动方式,然后以完全自主的方式。可以使用磁珠在相同阵列上纯化含有组装的最终片段的液滴。可以将纯化的组装片段与阵列上的PCR引物和PCR混合物混合并通过PCR扩增。可以通过局部循环液滴的温度或通过使液滴在具有温度梯度的阵列装置上来回运送来在阵列装置上进行PCR扩增。可以优化温育时间、组装步骤期间的混合、增加初始片段的浓度和添加聚乙二醇(PEG),以提高组装产量并限制最终组装片段中不需要的突变的数量。可以提供废弃物区8640以丢弃废弃样品。
在一些实施方案中,阵列8600包括一个或多个区域以进行多于一个工艺。阵列8600可以包括指定用于基因组装的区域。阵列8600可以包括指定用于DNA纯化的区域。阵列8600可以包括指定用于DNA扩增的区域。可以为区域提供用于在特定区域上进行指定工艺的特定试剂。阵列的此分区可以通过本文所述的方法和***来进行。
图87示出了PCR扩增的合成GFP基因的1-2%凝胶电泳。在液滴中在阵列装置上组装GFP基因。
实施例22:Golden Gate组装
Golden Gate组装是通常用于DNA组装的基于限制/消化的方法。此技术被强烈建议用于定点诱变、定制特异性TALEN体外构建和不同群体的组合文库构建。此方法具有两个主要优点:i)能够克服长重复序列所遇到的问题,ii)提供无痕组装片段。该过程是使用IIS型限制性内切酶(即,BsaI、BsmBI)和T4 DNA连接酶作为主要组分的“一锅消化连接”。侧接IIS限制位点的两个或多个待组装的片段在识别位点外被切割,因此实现无痕组装。然后通过连接酶连接消化片段的重叠区域。
图88描绘了Golden Gate组装方法的过程。在此,Golden Gate组装用于组装LacZ基因(3 075bp),其在EWOD阵列上被分为侧接BsaI识别位点的6个~520bp的相等片段。使用NEB Golden Gate组装试剂盒(BsaI)进行DNA组装。组装反应后可以在相同阵列上进行DNA纯化和扩增(纯化和PCR扩增在其他部分中描述)。此流程的试剂包括:6个目标片段、T4 DNA连接酶缓冲液、T4 DNA连接酶、BasI酶、无核酸酶水、AMPure磁珠、乙醇、PCR主混合物和引物。可以手动或以自动化方式在阵列装置上以预定义的顺序合并这些试剂。所有组分的最终混合在阵列上进行,然后在37℃持续5min与16℃持续5min之间进行30个热循的环循环。如本文所述纯化和扩增最终产物。可以使用荧光或其他检测方法实时测量正在组装的DNA的量,并且在产生适当量的DNA时停止循环过程。这是关于能够在使用光学传感器监测的阵列装置上组装DNA的独特特征。可选地,可以使用其他电化学感测方法测量DNA量、产量和组装效率。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
实施例23:DNA组装效率的质量控制
在阵列装置上和芯片外(阵列装置外)评定许多特征,诸如纯度、大小、准确性和定量,作为质量控制。可以使用如图89所示的基于电泳的方法、测序技术(Illumina、PacBio、Oxford Nanopore..)和DNA定量技术进行大小和纯度控制。电泳装置8950与EWOD阵列8900集成在一起,如图89所示,并在瓦片8910上提供。电泳装置可以被其他测量技术替代,以测量阵列装置上DNA的纯度和大小。DNA定量可以使用qPCR直接在阵列上进行,如本文先前所述(参见先前的内容)。由于纯度是关键要素,因此去除未组装的片段是流程中的重要步骤。可以通过多种方式去除未组装的片段。一种方法是使用其他部分中所述的基于磁珠的大小选择(通过仔细控制DNA和磁珠的浓度来选择已知片段大小的DNA片段)。另一种方法是还使用磁珠,但不是大小选择,而是使用磁珠作为固体制成物来固定需要组装的片段。例如,可以将第一个片段的5'末端在组装之前进行生物素化,并且将表面(例如,珠或瓦片)涂覆链霉亲和素。链霉亲和素-生物素相互作用使第一个片段与珠结合,并且DNA的组装过程在珠上进行。具有在其上组装DNA的这些珠的液滴可能包含未组装的片段。如其他部分所述,可以使用阵列装置上的电场和磁场的组合来洗去这些未组装的片段和任何其他杂质。这些洗涤步骤可以发生在DNA片段的连续组装之间,因此去除了未组装的片段。使用SPRI的凝胶迁移提取和大小选择也可以在装置上结合使用。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
实施例24:稀释至单分子和扩增
单分子扩增和检测正成为用于遗传疾病研究(例如,检测罕见基因变体、分析拷贝变异数、NGS、计算特定基因座的丰度、检测甲基化状态)、诊断(例如,病原体检测和定量)、药物基因组学和药物发现(例如,抗体筛选)的越来越常见的工具。这种变革也正在成为克服传统的基于细胞的克隆以生成新的无错误的DNA的首选方法。在EWOD阵列上实现了基于单分子扩增的微流体体外克隆。
分区是单分子分析的关键步骤。主要观点是从生物分子池(DNA/RNA/蛋白质)开始,并且然后分离成独特的分子分区(例如,池)。单个DNA分子的分离由遵循泊松分布的概率模型定义。为了在此阵列上进行,我们可以从含有目标分子的储器(例如,设置在阵列上的液滴)开始。如本公开的其他部分所述,阵列装置***并产生更小的液滴以进行连续稀释。***操作和所得的新产生的液滴含有遵循概率模型(泊松分布)的单分子。
储器液滴可以从不同的初始样品开始,诸如血液、RNA/DNA/蛋白质提取产物。例如,以DNA作为起始材料,每个DNA分子可以使用例如条形码来识别,所述条形码能够在分区之后对单个DNA模板进行特异性检测。可以根据不同的方法在阵列瓦片上实现生物分子分区。可以通过连续稀释在瓦片上获得分区,其中液滴可以连续稀释至最终极限稀释度。***液滴对于进行稀释至关重要,因此可以在瓦片上使用疏水切片器(或其他***机构)。另一方面,在液滴上施加精确而准确的反向电力可以是***液滴的可选方案。
可以用于分区的另一种方法是基于乳液的技术。连续流可以穿过通道(将生物剂封装在纳米飞升液滴中),基于珠乳液的技术(BEAMing)。通道和乳液的产生可以直接在阵列装置上进行,或者可以首先在外部进行,并且然后可以将所得的乳液引入到装置上。所涉及的小体积和大规模并行分区能够在单一运行中实现多个靶的多重测定。聚合酶链反应(PCR)扩增是此应用的传统扩增方法,然而,也可以使用等温扩增,诸如RCA、LAMP和RPA。可以在瓦片上检索扩增后几乎没有错误的产物以用于下游应用(例如,NGS、蛋白质表达等)
实施例25:克隆
DNA克隆是扩增和研究基因的黄金标准应用。图90描绘了基于细胞的DNA克隆的基本原理。本发明提供了用于进行末端到末端克隆应用的独特方法,从扩增到阵列装置上的蛋白质表达全部以液滴形式进行。
液滴中的不同类型的起始材料(例如,PCR扩增子、合成基因、cDNA、提取的DNA)可以在阵列装置上使用。核酸模板可以来自各种来源(例如,整个生物体、组织、细胞、植物、细胞器、合成的)。可以在细胞扩增之前将目标基因(GOI)引入到外源载体中。可以在阵列上使用各种类型的细胞进行扩增(例如,哺乳动物细胞、细菌、酵母、昆虫)。根据应用和GOI的长度/复杂性,可以在阵列上使用不同的载体。通常,细菌质粒(例如,pET、puC19、pGEM-T)用作主要载体,但也可以在阵列上使用其他载体,诸如细菌人工染色体(BAC)、病毒载体(慢病毒、逆转录病毒)。可以在阵列上使用各种方法,诸如限制/消化***、连接和序列非依赖性克隆(LIC)、Gibson克隆方法、Golden Gate方法、Gateway方法,以将GOI连接到主链载体。可以在阵列上使用化学或电学策略来进行复杂的GOI/主链对微生物的转化。可以在阵列上进行并行转化和铺板,从而实现对DNA片段和产生的蛋白质的高通量筛选。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
例如,本文所述的合成GFP(sGFP)基因和pET载体22b(+)(5493pb)均可以使用NcoI进行消化、磷酸化并以全自动化或半自动化方式连接在瓦片上。在消化之前,可以使用侧接NcoI识别位点的引物在阵列上通过PCR扩增sGFP。可以在室温下在阵列上进行消化,并且可以将感受态细胞(大肠杆菌BL21(DE3))添加到阵列上以用于用连接产物进行的化学转化。对于热冲击过程(42℃下30s,然后在RT下5min),在不同温度的热垫上进行转化。可以使用琼脂糖涂覆的表面9150将转化的细胞9155铺板在阵列9100上,如图91描绘。可以通过各种分子方法筛选菌落,诸如PCR菌落或测序。由重组质粒转化的菌落将表达细胞内GFP,并且在装置可以提供的荧光相机下可视化时展示荧光表型。
尽管用于克隆外源DNA的标准方法使用生物宿主,但无细胞方法正变得越来越流行,以克服以下限制,诸如难以克隆高水平序列复杂性(例如,逆转录病毒长末端重复序列、基因编辑载体..)或潜在的细胞毒性。对于DNA扩增,可以在阵列上实施各种方法,诸如等温多引物滚环扩增(MPRCA),如图92描绘。对于此技术,可以在阵列上加载、混合并在95℃、30℃和65℃下温育含有模板DNA、Φ29DNA聚合酶9215、引物9220、焦磷酸酶和二核苷酸9225的液滴9210。可以如本文所述在阵列上纯化最终产物9250,并通过DNA定量和凝胶电泳进行分析。所述引物可以包括随机六聚体引物。
对于蛋白质表达,可以使用各种来源和样品来启动无细胞克隆和阵列上的表达。可以使用外源转录/翻译机器在装置上进行蛋白质表达。可以使用以下方法在阵列上转化此类方法,诸如NEBExpress无细胞大肠杆菌蛋白质合成***、ExpresswayTM迷你无细胞表达***和下一代无细胞蛋白质表达试剂盒(小麦胚芽)。
对于NEBExpress无细胞大肠杆菌合成***流程,可以手动或自动化方式将试剂(
Figure GDA0003716418020001661
S30合成提取物、缓冲液、RNA聚合酶、核糖核酸酶抑制剂和质粒模板)分配在阵列上。例如,可以将先前组装的合成GFP基因连接到pET 22(+),其含有蛋白质表达所需的所有调控元件。可以在37℃下以全自动化或半自动化方式将液滴移动、合并和混合3小时。然后可以在SDS-PAGE或基于色谱的柱上分析最终产物。
实施例26:皮升液滴中的单细胞和单珠
单细胞分析已成为回答广泛生物学问题的关键工具。本文所述的阵列操控从皮升(或低至飞升)到微升的宽范围体积的能力允许捕获和操控单个细胞。连续液滴***(参见新液滴致动机构部分)可以与基于机器视觉的细胞检测结合使用,以分离单个细胞。可以对分离的细胞进行荧光标记,以分离特定的细胞类型(参见细胞富集部分)。细胞分离可以具有自动细胞检测的自动化方式进行。通过将细胞分离与先前所述的样品处理(例如,qPCR、测序文库制备)组合,可以直接在阵列上测定细胞。可以直接在阵列上裂解细胞以捕获它们的遗传物质(例如,DNA、RNA)或内容物(例如,蛋白质)。可以检测单个细胞的特定特征,诸如特定基因的表达或具体DNA突变的存在。以与在液滴中封装和分离单细胞类似的方式,可以在阵列装置上的液滴中单独分离功能化珠。分离的珠可以携带用于捕获DNA/RNA的寡核苷酸、用于捕获特定细胞类型的抗体、肽或蛋白质/酶以测定液滴中的细胞反应。在一些实施方案中,可以将一个细胞和一个珠或若干细胞和若干珠分离在单个液滴中以用于进一步处理或分析。
根据一些实施方案,此整个过程在图93中描绘。在一些实施方案中,液滴9305由储器9310提供。可以在筛选站9320处处理液滴,其中筛选以确定它们是否仅包含单细胞。如果液滴包含多于一个单细胞,它们可以沿着返回路径9315并返回到储器。可以将含有单细胞的液滴与由一个或多个试剂储器9330提供的一种或多种试剂混合。然后液滴可以继续到加热站9340。在加热站9340处,可以加热样品以诱导温育。样品液滴然后可以前进到检测站9350。在样品检测之后,液滴可以前进到废弃物容器9360。在其中液滴具有飞升至微升大小的体积的这些实施方案中,液滴特别容易蒸发。在整个这些反应中,蒸发和湿度控制方法和***可以应用于阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
实施例27:连接/合成长读取
通过对给定DNA片段的单个短片段进行测序来进行的条形编码和读取是长读取测序的替代方案,它利用了短读取测序(例如,Illumina测序)的通量和低成本。可以通过连续稀释和液滴***在单个液滴中单独分离长DNA片段,以达到大多数液滴含有不超过一个片段的状态。可选地,可以在阵列上制备油包水型乳液以分离在单个液滴中的这些单个片段。可以通过连续酶促消化(例如,片段酶)、末端修复和条形码连接在每个液滴中进行短亚片段的分离、片段化和条形编码。对于大量片段,可以并行处理以将这些长片段转化为更短的条形编码片段。此过程可以发生在提取高分子量DNA(在之前的内容中描述)的相同阵列上。可以在测序前纯化条形码片段并合并在阵列上。
实施例28:高分子量DNA的处理
HMW DNA的剪切或片段化是一些长读取测序技术(例如,PacBio)的要求。目前使用机械方法,诸如流体动力剪切、雾化、超声处理(例如,Bioruptor或g-Tube)来产生10-30kb的窄大小范围的DNA。在一些实施方案中,如图94描绘,在阵列9400上,HMW DNA 9405可以被推入到圆柱形的另外的模块管9410中,可以特定的流体动力学模式将特定的液体流施加到所述管上以便紧密地剪切DNA,从而在输出端9420处提供剪切的DNA。
可选地,可以在高表面张力气泡中将HMW DNA加载到阵列上。然后在爆裂过程中释放的流体动力能量将DNA片段化为更小的片段。也可以使用珠磨在阵列上剪切HMW DNA。可以将输入的DNA添加到阵列上的预加载珠(例如,Zymo研究洗涤珠)中。可以将HMW DNA-珠复合物以预定的自动化方式或手动方式在特定频率和一定时间段内在阵列上混合,以产生窄范围的DNA片段。
可以通过电泳在阵列上选择特定的DNA片段大小。可以将剪切的DNA加载到阵列的不同琼脂糖预填充区域中,并且可以施加特定电压。不同分子量的片段将在阵列上以特定的速度迁移并分离。然后可以提取所需长度的DNA片段。
可以在阵列上实施各种长读取文库制备流程(即Oxford Nanopore、PacificBiosciences)。例如,可以通过以末端到末端方式进行所有不同步骤(从DNA损伤修复、末端修复/A-尾接、衔接子连接到消化和纯化)将SMRTbell HiFi文库制备方法转化到阵列。可以将此流程所需的生物试剂以手动或自动化方式以优化的空间设置中分配在阵列上。可以将液滴以预定的自动化方式或以手动方式合并、温育和混合。
实施例29:软件架构
可以将允许用户在阵列装置上配置液滴致动(致动意指使液滴经受运动、混合、加热或其他操作)的用户界面应用于被配置用于指令本文所述的方法和***的计算机处理器。在用户界面上,可以定义待在阵列装置上执行的生物或化学协议。通过此界面,待在协议中使用的关于液体的信息(诸如处方量)可以由用户手动输入或使用自然语言处理算法自动填充。可以将处方体积转换为阵列装置的相容体积(适合于阵列装置的体积)。这种转换可以通过归一化最大值和最小值并且然后计算相对中间体积来实现。具有不同化学特性的液体可以在阵列装置上不同地分布,并且因此在阵列装置上占据不同数量的致动电极。可以调整这些液滴体积以在归一化范围内提高阵列装置上的移动。
软件界面存储被称为“液滴相互作用特性”的一组值。这些可以包括但不限于试剂相容性(试剂接触而不影响生物特性的能力)、其温度随时间变化的历史、其体积或试剂浓度的历史。液滴相互作用特性可以由用户手动输入,或由软件使用传感器诸如温度探针和光学传感器自动记录。这些特性可以用于规定哪些液滴可以接触阵列装置上的相同区域。这些相互作用特性也可以用于确定液滴彼此接触(混合或穿过相同路径)的能力和顺序。液滴可以按共同特性在软件中进行分组,以生成用户界面和自动化液滴路径。可以通过将液滴添加到阵列装置来生成协议。可以使用自动计算的体积来确定网格区域上的液滴足迹。这些足迹可以用于确定被液滴污染的区域。污染区域可以被存储并显示给用户,以便确定液滴放置和清洁阵列装置上的可用区域。在整个这些反应中,软件可以将蒸发和湿度控制方法和***导向到阵列以维持一个或多个液滴、阵列本身以及邻近阵列和/或一个或多个液滴的区域的恒定物理特性。
在装置上执行协议时,可以记录“液滴相互作用特性”。这些特性包括但不限于组成试剂、温度、样品的存在和协议执行期间的错误。这些特性可以显示在阵列装置上的液滴实时视频馈送上,或者在执行期间通过协议的模拟访问。先前被所选液滴覆盖的区域可以在视频馈送上、在模拟网格区域中突出显示或投影(通过安装在阵列装置上方的投影仪)到物理网格区域上。
装置(阵列装置或使用阵列装置的仪器)的操作和性能数据可以由各种传感器和软件部件收集。这些传感器可以包括但不限于光学、电容、温度和湿度传感器。软件部件可以包括但不限于无线通信、有线通信、装置连接和用户交互。收集的数据可以被记录以诊断装置操作和故障。此数据还可以用于实时检测错误。这些检测可以用于在需要用户干预时实时通知用户。此干预可以通过装置上可用的控件(例如,物理按钮或软件UI元件)在本地进行管理,或由用户或支持团队远程管理。收集的数据也可以用于优化用户界面。
数字投影仪可以安装在网格区域上。此投影仪可以用于帮助用户将液体手动移液到网格区域上。这可以通过投影线或其他图案以将用户引导到所需的位置或区域来实现。可以在操作期间将关于液滴位置、体积和其他液滴特性的信息投影到网格区域上,以帮助用户监测协议。在与装置交互时,也可以显示用户帮助,诸如在移液期间中达到所需体积的进度。可以将颜色投影到液滴上,以突出显示阵列上的位置、污染区域(另一个液滴已经穿过的区域)和未来路径,以便将物理网格区域与软件模拟相关联。
可以训练神经网络来检测图像中存在或不存在液滴。可以针对阵列装置的网格区域上的各种视场来训练这些机器学习模型。然后可以使用所述模型来确定哪些电极区域与液滴接触。使用算法诸如滑动窗口法,可以分配液滴位置的置信度,并且然后基于计划协议规定的那些与预期液滴位置相关联。此数据可以用于调整电极状态并标记操作中的潜在错误。还可以训练神经网络来将液滴的图像与其体积相关联。可以为各种类型的液体创建这些模型,以便准确预测具有不同特性的液滴体积。此数据可以用于控制反馈,以便在诸如液滴蒸发的应用中使用。这些模型可以用于装置操作期间的液滴实时视频馈送。
生物协议文档定义了物理操作诸如液体混合和加热以及所需的试剂和液体体积。这些协议被分解为分步说明,其中包含定义这些试剂和操作的参数,诸如试剂浓度和混合速度。阵列装置上这些操作和液体的可行性可以通过检查参数和比较阵列装置的已知极限来推断兼容性来确定。这些特性,包括但不限于试剂、物理操作、液滴体积和化学反应的兼容性可以通过实验确定。然后可以使用这些特性来开发过滤器,其用于确定标准协议与阵列装置兼容或不兼容。然后可以编译这些兼容和不兼容特性的描述符列表并用于创建自然语言处理模型。可以训练此模型以从标准协议文档中提取整体结构以及上述兼容性特性。提取的信息可以通过过滤器来确定标准协议是否与装置兼容。一旦确定了兼容性,然后可以使用密钥信息来通知标准协议操作向装置特定操作转化。这些操作可以被编译并用于生成装置兼容协议。此外,可以开发网络抓取算法,其可以定位生物协议文档并将它们编译到数据库中。然后可以将数据库中的数据作为输入馈送到自然语言处理模型,其确定兼容性并转化为装置协议。然后可以收集这些协议并将其添加到协议库中。
实施例30:可重新配置芯片
阵列装置上的生物协议定义了液滴穿过的区域。一些区域将被液滴更频繁地穿过,例如存在磁场的区域或液滴可以被加热的区域。同样,一些区域可能不被经常穿过--例如混合某种成分的液滴的位置。这些高流量和低流量区域可以在共享类似操作的生物协议之间共享。可以将这些共同区域关联起来以找到阵列装置使用的模式。随着协议库的生成,可以开发可以找到大规模模式的算法。这些模式可以由以下信息组成,诸如网格空间(网格空间意味着阵列装置的致动电极阵列)使用或所需的加热器磁体和/或电极布置。通过这些算法提取的数据可以用于基于协议的要求优化网格区域的物理布局(驱动电极的布置)。然后可以将生成的物理布局转化为自动确定电路布线和物理组装的芯片设计。随着兼容协议的生成或用户创建自定义协议,可以生成优化芯片(芯片意味着阵列装置、EWOD阵列)并使其可用于制造。
尽管已经在本文中示出和描述了本发明的优选实施方案,但是对于本领域技术人员而言将显而易见的是,此类实施方案仅为通过举例方式提供。本发明不意在受限于本说明书内提供的具体实施例。虽然已经参考上述具体说明描述了本发明,但是对本文中实施方案的描述和示例说明不意在以限制性意义进行解释。在不背离本发明的情况下,本领域技术人员现将想到多种变型、变化和替代方案。此外,应理解,本发明的所有方面不限于本文中所述的取决于各种条件和变量的具体的描绘、配置或相对比例。应理解,本文所述的本发明的实施方案的各种可选方案可以用于实施本发明。因此,考虑到本发明还应覆盖任何这种可选方案、修改、变型或等同方案。所附权利要求意在限定本发明的范围并且意在由此覆盖处于这些权利要求的范围内的方法和结构及它们的等同方案。

Claims (124)

1.一种用于处理液滴的方法,所述方法包括:
(a)在阵列上提供所述液滴,其中所述液滴包含一个或多个可检测标记,其中所述一个或多个可检测标记中的可检测标记对应于所述液滴的物理特性;
(b)使用一个或多个光源照明所述阵列上的所述液滴,其中在被所述一个或多个光源照明时,所述可检测标记生成信号;
(c)使用检测器检测所述信号;
(d)使用(c)中检测的所述信号确定所述液滴的所述物理特性;以及
(e)如果(d)中确定的所述物理特性不满足阈值,则操控所述液滴。
2.一种用于处理液滴的方法,所述方法包括:
(a)在阵列上提供所述液滴;
(b)使用一个或多个传感器检测由所述阵列上的所述液滴、所述阵列、邻近所述阵列或所述液滴的区域或其任何组合生成的信号;
(c)使用(b)中检测的由所述阵列上的所述液滴、所述阵列、邻近所述阵列或所述液滴的区域或其任何组合生成的所述信号确定所述阵列上的所述液滴、所述阵列、邻近所述阵列或所述液滴的区域或其任何组合的物理特性;以及
(d)如果(c)中确定的所述物理特性不满足阈值,则操控所述阵列上的所述液滴、所述阵列、邻近所述阵列或所述液滴的区域或其任何组合。
3.如权利要求1或2所述的方法,其中所述阵列包括具有电极阵列的开放配置、没有电极阵列的开放配置、具有非共面电极组的开放配置、一个板上有电极阵列且另一个板上没有电极的两个板、一个板上有非共面电极组且另一个板上没有电极的两个板、一个板上有电极阵列且另一个板上有单个电极的两个板、一个板上有非共面电极组且另一个板上有单个电极的两个板、两个板上均有电极阵列的两个板、两个板上均有非共面电极组的两个板或其任何组合。
4.如权利要求3所述的方法,其中所述阵列包括一个或多个开放配置,并且其中所述阵列是至少部分封闭的。
5.如权利要求1所述的方法,还包括:
i.使用一个或多个传感器检测所述阵列、邻近所述阵列或所述液滴的区域或其任何组合;
ii.使用(i)中检测的所述阵列、邻近所述阵列或所述液滴的区域或其任何组合确定所述阵列、邻近所述阵列或所述液滴的区域或其任何组合的物理特性;以及
iii.如果(ii)中确定的所述物理特性不满足阈值,则操控所述阵列、邻近所述阵列或所述液滴的区域或其任何组合。
6.如权利要求2或5所述的方法,其中所述一个或多个传感器包括阻抗传感器、pH传感器、温度传感器、光学传感器、湿度传感器、相机、电流测量传感器、用于生物分子检测的电子传感器、x射线传感器、电化学传感器、电化学发光传感器、压电传感器或其任何组合。
7.如权利要求1或2所述的方法,其中所述物理特性包括液滴大小、液滴体积、液滴位置、液滴速度、液滴润湿、液滴温度、液滴pH、液滴中的珠、液滴中的细胞、液滴中的细胞计数、液滴颜色或光学特性、运动学、液滴形状、颜色、接触角、反应状态、吸光度、表面等离子共振、其他可检测的特性、化学材料的浓度、生物物质的浓度、液滴中生物或化学物质的类型、跨液滴的电压、通过液滴的电流或其任何组合。
8.如权利要求1所述的方法,其中在(a)中,所述液滴包含对应于所述液滴的不同物理特性的多个可检测标记,其中所述多个可检测标记包括所述可检测标记。
9.如权利要求1所述的方法,其中所述检测器包括至少一个相机。
10.如权利要求1所述的方法,其中(e)包括计算机处理所述物理特性和阈值或值范围。
11.如权利要求1所述的方法,其中在所述阵列上在多个时间点检测来自所述液滴的所述信号。
12.如权利要求2或5所述的方法,其中在多个时间点,检测来自所述阵列上的所述液滴、所述阵列、邻近所述阵列或所述液滴的区域或其任何组合的所述信号。
13.如权利要求9所述的方法,其中所述检测器包括一个或多个滤光器,并且其中所述一个或多个滤光器用于检测所述信号。
14.如权利要求13所述的方法,还包括改变所述一个或多个滤光器的至少一个子集以检测来自所述液滴的另外的信号。
15.如权利要求1或2所述的方法,其中所述参数是液滴体积,并且其中确定所述体积低于阈值体积,并且其中使所述液滴与一个或多个补充液滴接触。
16.如权利要求15所述的方法,还包括在使所述一个或多个补充液滴与所述液滴接触之前,将所述一个或多个补充液滴调控至已知温度。
17.如权利要求15所述的方法,其中所述补充液滴补充所述液滴的体积的约0.1%至约50%。
18.如权利要求1或2所述的方法,其中所述参数用于生成用于确定待引入所述阵列中的一个或多个另外的液滴的所述参数的机器学习模型。
19.如权利要求1或2所述的方法,还包括加热包围所述液滴的一个或多个流体以减少所述液滴的蒸发。
20.如权利要求19所述的方法,其中所述加热通过致动置于所述阵列下方的加热器、加热置于所述阵列上方的板、加热接触所述阵列的一个或多个侧壁或其组合来进行。
21.如权利要求1或2所述的方法,其中在邻近所述阵列或所述液滴的所述区域中维持约50%至约100%的相对湿度。
22.如权利要求21所述的方法,其中所述维持约50%至约100%的所述相对湿度包括在引入包含用于分析的样品的所述液滴之前或之后将一个或多个牺牲液滴引入所述阵列中。
23.如权利要求1或2所述的方法,其中所述参数是液滴位置,其中所述阵列包括多个电极和一个或多个参考电极,并且其中所述方法还包括激活所述多个电极中的电极,其中所述一个或多个参考电极上的电压变化指示所述液滴的液滴位置。
24.如权利要求23所述的方法,其中所述多个电极和所述一个或多个参考电极是共面的。
25.如权利要求23所述的方法,其中所述多个电极和所述一个或多个参考电极邻近一电介质。
26.如权利要求25所述的方法,其中所述多个电极和所述一个或多个参考电极通过所述电介质分开。
27.如权利要求23所述的方法,其中所述多个电极和所述一个或多个参考电极在所述液滴的相反侧上。
28.一种在阵列上合成生物分子的方法,所述方法包括:(a)在所述阵列上提供液滴,其中所述液滴包含一个或多个初级生物分子,以及(b)使用所述初级生物分子来合成所述生物分子,其中所述液滴具有约1飞升至约2微升的体积,并且其中在所述合成期间,所述液滴的体积变化至多50%。
29.如权利要求28所述的方法,其中在所述合成期间,所述体积变化至多10%。
30.如权利要求29所述的方法,其中在所述合成期间,所述体积变化至多1%。
31.如权利要求28所述的方法,其中所述生物分子至少部分地通过将另外的初级生物分子与所述一个或多个初级生物分子连接来合成。
32.如权利要求28所述的方法,其中所述生物分子至少部分地通过将另外的初级生物分子与所述一个或多个初级生物分子杂交来合成。
33.如权利要求31或32所述的方法,其中所述另外的核酸分子包含在另外的液滴中。
34.如权利要求33所述的方法,还包括使所述液滴与所述另外的液滴接触。
35.如权利要求28所述的方法,其中所述生物分子是脱氧核糖核酸或核糖核酸。
36.如权利要求28所述的方法,其中所述生物分子是多肽。
37.如权利要求28所述的方法,其中所述生物分子是小分子。
38.如权利要求28所述的方法,其中所述一个或多个初级生物分子包括单体。
39.如权利要求28所述的方法,其中所述一个或多个初级生物分子包括聚合物。
40.如权利要求28所述的方法,其中将所述合成必需的一种或多种试剂预制在所述阵列上。
41.如权利要求35所述的方法,其中所述生物分子至少部分地通过将单个核苷酸添加至核酸分子的3'-突出端或3'平端或3'凹端来合成。
42.一种用于处理一个或多个液滴的***,所述***包括:
被配置用于支撑筒的支架,所述筒包括被配置用于处理一个或多个液滴的阵列,其中所述阵列不包括覆盖的电润湿电极;和
被配置用于在所述筒被支撑时指令所述一个或多个液滴的处理的计算机处理器。
43.如权利要求42所述的***,还包括多个电极。
44.如权利要求43所述的***,还包括邻近所述多个电极的介电层。
45.如权利要求44所述的***,其中所述介电层和所述多个电极不共面。
46.如权利要求43所述的***,其中所述多个电极与所述筒电连通。
47.如权利要求42所述的***,其中所述筒还包括邻近所述阵列的电介质。
48.如权利要求42所述的***,其中所述筒还包括邻近所述阵列的多个电极。
49.如权利要求48所述的***,其中所述筒还包括另外的多个电极。
50.如权利要求49所述的***,其中所述多个电极和所述另外的多个电极不共面。
51.如权利要求42所述的***,其中所述阵列包括聚合物膜。
52.如权利要求42所述的***,其中所述阵列包括液体层。
53.如权利要求52所述的***,其中所述液体层邻近所述电介质和邻近所述阵列的所述多个电极。
54.如权利要求53所述的***,其中所述液体层有利于所述电介质与邻近所述阵列的所述多个电极之间的接触。
55.如权利要求42所述的***,其中所述阵列包括表面液体层。
56.如权利要求55所述的***,其中所述表面液体层与所述一个或多个液滴形成液体与液体界面。
57.如权利要求42所述的***,其中所述筒包括被配置用于维持或产生所述阵列的张力的框架。
58.如权利要求57所述的***,其中所述框架被配置用于在所述阵列上生成真空压力。
59.如权利要求57所述的***,其中所述框架包括流体分配单元,其中所述流体分配单元被配置用于补充所述液体层。
60.如权利要求42所述的***,其中所述筒还包括一个或多个另外的阵列。
61.如权利要求42所述的***,其中所述筒可从所述支架移除。
62.如权利要求42所述的***,其中所述阵列通过精细间距的弹性连接器、板对板连接器、弹簧销或其任何组合与所述装置连通。
63.如权利要求42所述的***,其中所述装置还包括被配置用于容纳所述阵列的模块。
64.如权利要求63所述的***,其中所述模块包括精细间距的弹性连接器、板对板连接器、弹簧销、弹簧连接器、导电浆料或其任何组合。
65.如权利要求42所述的***,还包括被配置用于发射光至所述阵列的一个或多个瓦片上的投影仪,其中所述光包括特定于在所述阵列上的位置的位置信息。
66.如权利要求65所述的***,还包括被配置用于将所述光导向至所述阵列上的一个或多个扫描镜或检流计。
67.如权利要求42所述的***,其中所述阵列包括试剂,其中所述试剂被预制到所述阵列的至少一部分上。
68.一种用于处理多个生物样品的方法,所述方法包括(i)邻近阵列接收包含所述多个生物样品的多个液滴,和(ii)以所述多个液滴之间小于5%的串扰,以所述多个液滴或其衍生物或所述阵列的至少一个参数的小于20%的变异系数(CV),使用至少所述阵列处理所述多个液滴或其衍生物中的所述多个生物样品,从而处理所述多个生物样品。
69.如权利要求68所述的方法,其中所述至少一个参数包括选自以下各项的一个或多个成员:液滴大小、液滴体积、液滴位置、液滴速度、液滴润湿、液滴温度、液滴pH、液滴中的珠、液滴中细胞的数量、液滴颜色、化学材料的浓度、生物物质的浓度或其任何组合。
70.如权利要求68所述的方法,其中所述多个生物样品通过将力场与电场组合进行处理。
71.如权利要求70所述的方法,其中所述力场选自声波、振动、气压、光场、磁场、重力场、离心力、水动力、电泳力、介电润湿力和毛细管力。
72.如权利要求68所述的方法,其中所述多个生物样品用不超过四次移液操作、不超过三次移液操作、不超过两次移液操作或不超过一次移液操作进行处理。
73.如权利要求72所述的方法,其中所述多个生物样品不用移液操作进行处理。
74.如权利要求68所述的方法,还包括在处理所述多个生物样品时,使用反馈回路中的一个或多个传感器来调节所述阵列的一个或多个参数。
75.如权利要求74所述的方法,其中在所述处理所述多个生物样品之前、期间或之后,所述一个或多个传感器测量来自所述多个液滴或其衍生物、所述阵列、邻近所述液滴或所述阵列的区域或其任何组合的一个或多个信号。
76.如权利要求74所述的方法,其中所述一个或多个传感器包括阻抗传感器、pH传感器、温度传感器、光学传感器、相机、电流测量传感器、用于生物分子检测的电子传感器、x射线传感器、电化学传感器、电化学发光传感器、压电传感器或其任何组合。
77.如权利要求68所述的方法,还包括至少一种试剂,其中将所述至少一种试剂预制到所述阵列的部件中。
78.如权利要求68所述的方法,其中所述处理所述多个生物样品包括等温扩增至少一个所选核酸,所述等温扩增包括:
i.通过合并含有多种试剂的液滴来提供包含至少一个核酸的至少一个样品,所述多种试剂有效允许在没有机械操控的情况下进行所述样品的至少一个等温扩增反应;和
ii.进行至少一个等温扩增反应以扩增所述核酸。
79.如权利要求68所述的方法,其中包括使用电润湿力、介电润湿力、介电泳(DEP)作用、声学力、疏水刀或其任何组合,所述阵列将至少一个液滴分区成多个液滴,从而产生至少一个分区的液滴。
80.如权利要求68所述的方法,所述阵列使用介电泳力(DEP)用于细胞分选、细胞分离、操控至少一个珠或其任何组合。
81.如权利要求68所述的方法,其中所述多个液滴沉积在多个阵列上。
82.如权利要求81所述的方法,其中所述多个阵列包括至少一个EWOD阵列、至少一个DEW阵列、至少一个DEP阵列、至少一个微流体阵列、玻璃、塑料或其任何组合。
83.如权利要求81所述的方法,其中所述多个阵列包括至少一个通道、至少一个孔或其任何组合。
84.如权利要求83所述的方法,其中所述至少一个通道在至少一个表面之间穿过。
85.如权利要求83所述的方法,其中气体、液体、固体或其任何组合通过所述至少一个孔转移。
86.一种用于处理一个或多个液滴的***,所述***包括:
(a)电润湿阵列;
(b)邻近所述阵列的外壳;以及
(c)在所述外壳内且邻近所述阵列的封闭区域,其中所述封闭区域不包括填充液,并且其中所述外壳被配置用于调控所述封闭区域内的温度、相对湿度、压力或其任何组合。
87.如权利要求86所述的***,其中所述电润湿阵列不包括覆盖的电润湿电极。
88.如权利要求86所述的***,还包括邻近所述电润湿阵列的一个或多个电润湿电极。
89.如权利要求86所述的***,其中所述外壳包括盖体、密封件、腔室、不混溶流体、蜡、膜或其任何组合。
90.如权利要求86所述的***,还包括邻近所述电润湿阵列的加热器,其中所述加热器被配置用于加热所述封闭区域。
91.如权利要求90所述的***,其中所述加热器耦合至所述外壳的侧壁、顶表面、底表面或其任何组合。
92.如权利要求91所述的***,其中所述加热器包括蛇形迹线。
93.如权利要求86所述的***,还包括被配置用于将一个或多个牺牲液滴分配到所述电润湿阵列上且在所述封闭区域内的分配器。
94.如权利要求86所述的***,还包括邻近所述电润湿阵列且在所述外壳内的水储器。
95.如权利要求86所述的***,还包括选自温度传感器、湿度传感器和相机的一个或多个传感器,其中所述一个或多个传感器耦合至所述外壳或所述电润湿阵列。
96.如权利要求86所述的***,还包括被配置用于将一个或多个补充液滴分配到所述电润湿阵列上且在所述封闭区域内的分配器。
97.如权利要求86所述的***,其中所述外壳被配置用于维持所述相对湿度在约50%至约100%。
98.如权利要求95所述的***,还包括被配置用于处理由所述一个或多个传感器检测到的信号和阈值或值范围的计算机处理器,其中所述阈值或值范围特定于所述信号。
99.如权利要求98所述的***,其中所述计算机处理器还被配置用于致动加热器以加热所述封闭区域。
100.如权利要求98所述的***,其中所述计算机处理器还被配置用于致动分配器以将一个或多个牺牲液滴分配到所述电润湿阵列上。
101.如权利要求98所述的***,其中所述计算机处理器还被配置用于致动分配器以将一个或多个补充液滴分配到所述电润湿阵列上。
102.如权利要求95所述的***,其中所述一个或多个传感器被配置用于在所述电润湿阵列上在多个时间点检测来自所述一个或多个液滴或所述封闭区域的信号。
103.一种用于对阵列上的液滴中包含的细胞进行电穿孔的方法,其中所述阵列包括一个或多个电润湿电极和一个或多个电穿孔电极,并且其中所述阵列不包括覆盖的电润湿电极,所述方法包括:
(a)将所述液滴设置在所述一个或多个电穿孔电极上方;
(b)用电压对至少所述一个或多个电穿孔电极进行脉冲处理;以及
(c)致动所述一个或多个电润湿电极以诱导所述液滴的运动。
104.如权利要求103所述的方法,其中所述一个或多个电润湿电极位于所述阵列上方。
105.如权利要求103所述的方法,其中所述一个或多个电润湿电极包括一个或多个参考电极。
106.如权利要求103所述的方法,其中所述阵列包括光滑表面。
107.如权利要求106所述的方法,其中所述光滑表面包括光滑涂层。
108.如权利要求107所述的方法,其中所述光滑涂层包括聚合物膜。
109.如权利要求107所述的方法,其中所述光滑涂层是多孔的。
110.如权利要求109所述的方法,其中所述光滑涂层填充有光滑材料以实现均匀表面。
111.如权利要求110所述的方法,其中所述光滑材料是油。
112.如权利要求107至111中任一项所述的方法,其中所述光滑涂层还填充有导电材料。
113.一种用于处理一个或多个液滴的***,所述***包括:
(a)阵列,其中所述阵列包括具有电极阵列的开放配置、没有电极阵列的开放配置、具有非共面电极组的开放配置、一个板上有电极阵列且另一个板上没有电极的两个板、一个板上有非共面电极组且另一个板上没有电极的两个板、一个板上有电极阵列且另一个板上有单个电极的两个板、一个板上有非共面电极组且另一个板上有单个电极的两个板、两个板上均有电极阵列的两个板、两个板上均有非共面电极组的两个板或其任何组合,并且其中所述阵列不包括邻近所述阵列的填充液;
(b)一个或多个液体处理单元,其中所述一个或多个液体处理单元将所述一个或多个液滴导向至邻近所述阵列。
114.如权利要求113所述的***,其中所述一个或多个液体处理单元包括机器人液体处理***、声学液体分配器、注射器泵、喷墨喷嘴、微流体装置、针、基于微隔膜的泵分配器、压电泵、压电声学装置或其任何组合。
115.如权利要求113所述的***,其中所述阵列耦合至至少一个试剂或样品储存单元或其组合。
116.如权利要求113所述的***,还包括一个或多个传感器,其中所述一个或多个传感器被配置用于检测由所述阵列上的所述液滴、所述阵列、邻近所述阵列或所述液滴的区域或其任何组合生成的信号。
117.如权利要求116所述的***,其中所述一个或多个传感器包括阻抗传感器、pH传感器、温度传感器、光学传感器、湿度传感器、相机、电流测量传感器、用于生物分子检测的电子传感器、x射线传感器、电化学传感器、电化学发光传感器、压电传感器或其任何组合。
118.如权利要求116所述的***,还包括被配置用于处理由所述一个或多个传感器检测到的信号和阈值或值范围的计算机处理器,其中所述阈值或值范围特定于所述信号。
119.如权利要求118所述的***,还包括反馈回路,其中所述反馈回路包括所述阵列、所述一个或多个液体处理单元、所述一个或多个传感器、所述计算机处理器或其任何组合之间的通信。
120.如权利要求119所述的***,其中所述反馈回路被配置用于自主发现或优化所述阵列上的反应条件或两者。
121.如权利要求113所述的***,其中所述多个阵列包括至少两个阵列。
122.如权利要求121所述的***,其中所述至少两个阵列中的阵列邻近所述至少两个阵列中的另一个阵列。
123.如权利要求121所述的***,其中所述至少两个阵列中的所述阵列水平邻近所述至少两个阵列中的另一个阵列。
124.如权利要求121所述的***,其中所述至少两个阵列中的所述阵列垂直邻近所述至少两个阵列中的另一个阵列。
CN202080075566.4A 2019-08-27 2020-08-27 用于液滴操控的方法和*** Pending CN114868006A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201962892495P 2019-08-27 2019-08-27
US62/892,495 2019-08-27
US202062980013P 2020-02-21 2020-02-21
US62/980,013 2020-02-21
US202063005097P 2020-04-03 2020-04-03
US63/005,097 2020-04-03
US202063009376P 2020-04-13 2020-04-13
US63/009,376 2020-04-13
PCT/US2020/048241 WO2021041709A1 (en) 2019-08-27 2020-08-27 Methods and systems for droplet manipulation

Publications (1)

Publication Number Publication Date
CN114868006A true CN114868006A (zh) 2022-08-05

Family

ID=74685300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080075566.4A Pending CN114868006A (zh) 2019-08-27 2020-08-27 用于液滴操控的方法和***

Country Status (8)

Country Link
US (1) US20230279512A1 (zh)
EP (1) EP4022281A4 (zh)
JP (1) JP2022547801A (zh)
CN (1) CN114868006A (zh)
AU (1) AU2020336448A1 (zh)
CA (1) CA3151817A1 (zh)
IL (1) IL290803A (zh)
WO (1) WO2021041709A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449471A (zh) * 2022-11-10 2022-12-09 南方科技大学 扩增结构、快速核酸检测芯片、装置与方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717178B (zh) * 2019-12-30 2021-01-21 財團法人工業技術研究院 一種具氣密空腔的微機電裝置
JP2024512325A (ja) * 2021-03-02 2024-03-19 ヴォルタ ラブズ,インク. 液滴操作のための方法およびシステム
EP4304778A1 (en) * 2021-03-08 2024-01-17 Nuclera Ltd Digital microfluidic device with capacitive sensing
NL1043994B1 (en) * 2021-04-14 2022-10-25 Digi Bio B V A method for identifying the best therapeutics producing candidates using a digital microfuidics based lab-on-a-chip platform
US12014830B2 (en) * 2021-04-18 2024-06-18 Mary Hitchcock Memorial Hospital, For Itself And On Behalf Of Dartmouth-Hitchcock Clinic System and method for automation of surgical pathology processes using artificial intelligence
WO2022256774A1 (en) * 2021-06-03 2022-12-08 Verily Life Sciences Llc Droplet sortation
CN113406736A (zh) * 2021-06-16 2021-09-17 广东工业大学 一种基于超浸润的微透镜阵列芯片及其制备方法和相关适配体传感器
GB202110125D0 (en) 2021-07-14 2021-08-25 Nuclera Nucleics Ltd A method of forming arrays of droplets
WO2023059908A2 (en) * 2021-10-07 2023-04-13 Volta Labs, Inc. Methods and systems for droplet operations
WO2023069109A1 (en) * 2021-10-22 2023-04-27 Hewlett-Packard Development Company, L.P. Digital droplet pcr system
WO2023069108A1 (en) * 2021-10-22 2023-04-27 Hewlett-Packard Development Company, L.P. Pcr system
CN114292742A (zh) * 2022-01-05 2022-04-08 中国科学院上海微***与信息技术研究所 基于数字微流控的集成化外泌体来源核酸提取***及方法
WO2023195977A1 (en) * 2022-04-05 2023-10-12 Hewlett-Packard Development Company, L.P. Digital microfluidic devices with surface-enhanced luminescence substrates
US20230321815A1 (en) * 2022-04-11 2023-10-12 Intrinsic Innovation Llc General fixture for robotic assembly processes
CN114768907B (zh) * 2022-04-12 2024-03-12 深圳欢影医疗科技有限公司 基于环形阵列超声换能器的超声移液方法及其***
WO2023215298A1 (en) * 2022-05-02 2023-11-09 University Of Cincinnati Methods for nuclear extraction and amplification using a bio-field programmable gate array
US20230384580A1 (en) * 2022-05-26 2023-11-30 Gentex Corporation Electrowetting, active self-cleaning surface
GB202207816D0 (en) * 2022-05-27 2022-07-13 Nuclera Nucleics Ltd Creating nucleic acids for protein synthesis
WO2024014767A1 (ko) * 2022-07-15 2024-01-18 주식회사 시큐어메드 전도성 폴리머를 이용한 액적 액추에이터 및 그것의 전극 구조
GB202211204D0 (en) 2022-08-01 2022-09-14 Nuclera Nucleics Ltd A method of forming arrays of droplets
CN115475668B (zh) * 2022-08-22 2023-07-07 湖北师范大学 合成形貌可控的纳米银的装置及方法
WO2024105091A1 (en) * 2022-11-15 2024-05-23 Imec Vzw Method and system for droplet manipulation
WO2024105032A1 (en) * 2022-11-15 2024-05-23 Imec Vzw Instrument, system and method for droplet manipulation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672259A1 (en) * 2008-05-13 2013-12-11 Advanced Liquid Logic, Inc. Droplet actuator devices, systems and methods
WO2010111231A1 (en) * 2009-03-23 2010-09-30 Raindance Technologies, Inc. Manipulation of microfluidic droplets
WO2014186697A2 (en) * 2013-05-16 2014-11-20 Advanced Liquid Logic, Inc. Droplet actuator for electroporation and transforming cells
CN105393094B (zh) * 2013-05-29 2019-07-23 生物辐射实验室股份有限公司 低成本光学高速离散测量***
WO2016197106A1 (en) * 2015-06-05 2016-12-08 Miroculus Inc. Evaporation management in digital microfluidic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115449471A (zh) * 2022-11-10 2022-12-09 南方科技大学 扩增结构、快速核酸检测芯片、装置与方法

Also Published As

Publication number Publication date
JP2022547801A (ja) 2022-11-16
WO2021041709A1 (en) 2021-03-04
CA3151817A1 (en) 2021-03-04
EP4022281A1 (en) 2022-07-06
US20230279512A1 (en) 2023-09-07
AU2020336448A1 (en) 2022-03-24
EP4022281A4 (en) 2024-01-24
IL290803A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US20230279512A1 (en) Methods and systems for droplet manipulation
US20220155251A1 (en) Droplet-based surface modification and washing
CN109863396B (zh) 用于样品分析的装置和方法
CN108350497B (zh) 单细胞核酸序列分析
US9395329B2 (en) Droplet-based particle sorting
US8470153B2 (en) Cartridge and system for manipulating samples in liquid droplets
EP2016189B1 (en) Droplet-based pyrosequencing
US8613889B2 (en) Droplet-based washing
US7727723B2 (en) Droplet-based pyrosequencing
US20240035087A1 (en) Methods and systems for droplet manipulation
US8492168B2 (en) Droplet-based affinity assays
US20150174577A1 (en) Filler Fluids for Droplet Operations
US20130252262A1 (en) Droplet-based affinity assays
EP2925449A2 (en) Handling liquid samples
JP6668336B2 (ja) 非混和性液体を分離して少なくとも1つの液体を効果的に単離する方法及び装置
Tong et al. Combining sensors and actuators with electrowetting-on-dielectric (EWOD): advanced digital microfluidic systems for biomedical applications
EP2943279B1 (en) System for manipulating samples in liquid droplets
CN117715701A (zh) 用于液滴操控的方法和***
WO2023059908A2 (en) Methods and systems for droplet operations
Houchaimi Performing DNA ligation on a low-cost inkjet-printed digital microfluidic device
WO2023174938A1 (en) Loading and formation of multiple reservoirs
WO2023037334A1 (en) System and method for single cell phenotypical profiling and deterministic nanoliter-droplet encapsulation and deterministic droplet consortia assemblies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination