CN114841917A - 一种航空铝合金表面疲劳裂纹尖端动态检测方法及*** - Google Patents

一种航空铝合金表面疲劳裂纹尖端动态检测方法及*** Download PDF

Info

Publication number
CN114841917A
CN114841917A CN202210257303.6A CN202210257303A CN114841917A CN 114841917 A CN114841917 A CN 114841917A CN 202210257303 A CN202210257303 A CN 202210257303A CN 114841917 A CN114841917 A CN 114841917A
Authority
CN
China
Prior art keywords
crack
image
gray
aluminum alloy
gray level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210257303.6A
Other languages
English (en)
Inventor
赵延广
张崴
孙士勇
阎军
樊俊铃
杨鹏飞
朱颠立
李佳琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
AVIC Aircraft Strength Research Institute
Ningbo Research Institute of Dalian University of Technology
Original Assignee
Dalian University of Technology
AVIC Aircraft Strength Research Institute
Ningbo Research Institute of Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology, AVIC Aircraft Strength Research Institute, Ningbo Research Institute of Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202210257303.6A priority Critical patent/CN114841917A/zh
Publication of CN114841917A publication Critical patent/CN114841917A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20132Image cropping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种航空铝合金表面疲劳裂纹尖端动态检测方法及***,涉及裂纹图像识别技术领域,获取航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像;将当前时刻的裂纹图像进行灰度处理,得到当前裂纹灰度图像;将上一时刻的裂纹图像进行灰度处理,得到上一裂纹灰度图像;将当前裂纹灰度图像与上一裂纹灰度图像进行做差处理,得到裂纹灰度差图像;基于第一灰度阈值对裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像。通过将航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像进行灰度处理后做差得到裂纹区域的裂纹尖端图像进而识别航空铝合金表面疲劳的裂纹尖端,提高裂纹识别的精度。

Description

一种航空铝合金表面疲劳裂纹尖端动态检测方法及***
技术领域
本发明涉及裂纹图像识别技术领域,特别是涉及一种航空铝合金表面疲劳裂纹尖端动态检测方法及***。
背景技术
金属疲劳指机械零部件在交变应力作用下经一段时间后,在局部高应力区形成微小裂纹,再由微小裂纹扩展以致断裂。据统计,150多年来,大约有80%以上的飞机结构失效是由于疲劳破坏。疲劳破坏由于具有在时间上的突发性,在位置上的局部性以及对环境和缺陷的敏感性等特点,不易被及时发现,易于造成事故。因而,在飞机等飞行器的设计工作中,需要对试验机或者是机身零部件进行疲劳试验,观察机身薄弱位置的裂纹扩展情况,实时监测裂尖的位置,掌握裂纹扩展的动态信息,便于后续的分析处理以及优化设计。现有的基于图像处理的裂纹检测方法,主要是针对某一时刻的一张裂纹图片,进行灰度分析处理,设定阈值等操作来识别出裂纹,但是对于裂纹尖端(简称裂尖,指裂纹扩展部分)等不易识别部位,其灰度信息与背景区分度不明显,容易造成漏判。
发明内容
本发明的目的是提供一种航空铝合金表面疲劳裂纹尖端动态检测方法及***,能够识别航空铝合金表面疲劳的裂纹尖端,提高裂纹识别的精度。
为实现上述目的,本发明提供了如下方案:
一种航空铝合金表面疲劳裂纹尖端动态检测方法,包括:
获取航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像;所述裂纹区域内包括裂纹;
将当前时刻的裂纹图像进行灰度处理,得到当前裂纹灰度图像;
将上一时刻的裂纹图像进行灰度处理,得到上一裂纹灰度图像;
将所述当前裂纹灰度图像与所述上一裂纹灰度图像进行做差处理,得到裂纹灰度差图像;
基于第一灰度阈值对所述裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像。
可选的,在所述获取航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像之前还包括:
获取航空铝合金表面图像;
对所述航空铝合金表面图像进行灰度处理,得到航空铝合金表面灰度图像;
基于第二灰度阈值对所述航空铝合金表面灰度图像进行二值化处理,确定航空铝合金表面的裂纹位置。
基于所述裂纹位置确定所述裂纹区域。
可选的,在所述将上一时刻的裂纹图像进行灰度处理,得到上一裂纹灰度图像之后还包括:
利用高斯滤波算法,分别对所述当前裂纹灰度图像和所述上一裂纹灰度图像进行去噪处理。
可选的,在所述基于第一灰度阈值对所述裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像之后还包括:
将所述裂纹尖端图像与所述当前裂纹灰度图像进行叠加处理,得到裂纹区域的裂纹延展图像。
一种航空铝合金表面疲劳裂纹尖端动态检测***,包括:
裂纹图像获取模块,用于获取航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像;所述裂纹区域内包括裂纹;
第一灰度处理模块,用于将当前时刻的裂纹图像进行灰度处理,得到当前裂纹灰度图像;
第二灰度处理模块,用于将上一时刻的裂纹图像进行灰度处理,得到上一裂纹灰度图像;
裂纹灰度差图像确定模块,用于将所述当前裂纹灰度图像与所述上一裂纹灰度图像进行做差处理,得到裂纹灰度差图像;
裂纹尖端图像确定模块,用于基于第一灰度阈值对所述裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像。
可选的,所述***还包括:
航空铝合金表面图像获取模块,用于获取航空铝合金表面图像;
第三灰度处理模块,用于对所述航空铝合金表面图像进行灰度处理,得到航空铝合金表面灰度图像;
裂纹位置确定模块,用于基于第二灰度阈值对所述航空铝合金表面灰度图像进行二值化处理,确定航空铝合金表面的裂纹位置。
裂纹区域确定模块,用于基于所述裂纹位置确定所述裂纹区域。
可选的,所述***还包括:
去噪模块,用于利用高斯滤波算法,分别对所述当前裂纹灰度图像和所述上一裂纹灰度图像进行去噪处理。
可选的,所述***还包括:
裂纹延展图像确定模块,用于将所述裂纹尖端图像与所述当前裂纹灰度图像进行叠加处理,得到裂纹区域的裂纹延展图像。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明提供了一种航空铝合金表面疲劳裂纹尖端动态检测方法及***,通过将航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像进行灰度处理后做差,得到裂纹灰度差图像;再对裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像进而识别航空铝合金表面疲劳的裂纹尖端,提高裂纹识别的精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中航空铝合金表面疲劳裂纹尖端动态检测方法流程图;
图2为本发明实施例中疲劳裂纹尖端动态检测的原理图;
图3为本发明实施例中航空铝合金表面图像;
图4为本发明实施例中航空铝合金表面裂纹区域示意图;
图5为本发明实施例中当前时刻的裂纹图像;
图6为本发明实施例中上一时刻的裂纹图像;
图7为本发明实施例中裂纹灰度差图像。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种航空铝合金表面疲劳裂纹尖端动态检测方法及***,能够识别航空铝合金表面疲劳的裂纹尖端,提高裂纹识别的精度。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1,本发明提供了一种航空铝合金表面疲劳裂纹尖端动态检测方法,方法包括:
步骤101:获取航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像;裂纹区域内包括裂纹;
步骤102:将当前时刻的裂纹图像进行灰度处理,得到当前裂纹灰度图像;当前时刻的裂纹图像如图5所示。
步骤103:将上一时刻的裂纹图像进行灰度处理,得到上一裂纹灰度图像;上一时刻的裂纹图像如图6所示。
步骤104:将当前裂纹灰度图像与上一裂纹灰度图像进行做差处理,得到裂纹灰度差图像;裂纹灰度差图像如图7所示。
步骤105:基于第一灰度阈值对裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像。
在步骤101之前还包括:
获取航空铝合金表面图像;航空铝合金表面图像如图3所示。
对航空铝合金表面图像进行灰度处理,得到航空铝合金表面灰度图像;
基于第二灰度阈值对航空铝合金表面灰度图像进行二值化处理,确定航空铝合金表面的裂纹位置。
基于裂纹位置确定裂纹区域。
在步骤103之后还包括:
利用高斯滤波算法,分别对当前裂纹灰度图像和上一裂纹灰度图像进行去噪处理。
在步骤105之后还包括:
将裂纹尖端图像与当前裂纹灰度图像进行叠加处理,得到裂纹区域的裂纹延展图像。
如图2,本发明技术方案具体如下:
步骤一:搭建图像采集平台,开始疲劳试验。利用计算机视觉***,比如说CCD相机等,针对疲劳裂纹扩展的过程,进行裂纹图像的采集;采集的图像为固定的区域的图像,包含应力集中缺口、裂纹(萌生于应力集中缺口处)、裂纹待扩展区域(后续扩展为裂纹的区域)。进行疲劳试验时,裂纹会萌生在预设的应力集中处,试件位置是固定的,相机相对于试件位置也是固定的,相机对焦完成后,采集到的图像区域是固定区域。
步骤二:将采集到的图片输入到编写的程序中去,对裂纹图像进行灰度处理,将RGB图像转化为灰度图像,获得图像像素点的灰度信息;
步骤三:采用高斯滤波对图像进行去噪处理,减小或者消除背景噪声的干扰;
步骤四:如果采集到的裂纹图像在前后两幅图中由于振动发生了位置的偏移,则利用标定算法对裂纹进行标定校正,此处主要是针对振动可能会导致裂纹在像素坐标中发生位置偏移的问题,利用自己编写的算法对裂纹及其周边区域进行识别(具体算法:假定初始裂纹为线段AB,A为初始点坐标,B为终点坐标,即裂尖部位;线段CD为扩展后的裂纹,C为裂纹初始点坐标,D为终点裂尖坐标。如果不受振动影响,A点与C点应重合,线段CD是线段AB的延伸。假设受振动影响,裂纹CD在图像中发生位置的偏移,比如说整体轮廓沿纵轴向下平移等,如图4所示,在试件表面预先贴上标识点,对采集到的图像进行标识点的识别,识别到两个标识点后,对采集到的初始图像进行区域裁剪,即可确定进行图像灰度作差的区域。)保证前后两幅图中待作差部分代表的区域相同,完成标定校正,确保前后两幅图进行灰度作差分析的区域相同。
步骤五:针对裂纹扩展过程,对裂纹扩展前后的指定区域进行灰度作差,并设定合适的阈值N,(阈值选取原则:材料的表面状态、试验环境等因素都会影响到阈值的选取,因此本发明方法的阈值可灵活设置。对于一种新的材料,新的实验环境,在裂尖分析处理前进行预处理分析,设置合适阈值,后续同种材料及环境,即可沿用此设置。对于本试验环境及材料,设置阈值为18)当待检测区域内的某个像素点对应的前后灰度差值大于N,说明此像素点对应裂尖的生长区域,将此类像素点进行二值化处理;此时裂纹扩展部分灰度值为255,其余部分都为0,所以裂尖边缘对应的灰度值为255。
步骤六:利用canny算法,对二值化处理后的裂尖生长部分轮廓进行识别,然后将识别结果与当前时刻裂纹进行对应像素点的像素值求和,这样便清楚的表现出了这一时刻裂纹的生长扩展部分,读取裂尖的位置信息。叠加部分指新增裂纹部分的轮廓+当前时刻图像,将新增的裂纹扩展部分表示在当前时刻图像中,同时读取裂尖坐标。其中用轮廓叠加是为了方便观察,如果直接用裂尖扩展部分叠加,增长区域的灰度值都为255,视觉效果不好。
此外,本发明,还提供了一种航空铝合金表面疲劳裂纹尖端动态检测***,包括:
裂纹图像获取模块,用于获取航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像;裂纹区域内包括裂纹;
第一灰度处理模块,用于将当前时刻的裂纹图像进行灰度处理,得到当前裂纹灰度图像;
第二灰度处理模块,用于将上一时刻的裂纹图像进行灰度处理,得到上一裂纹灰度图像;
裂纹灰度差图像确定模块,用于将当前裂纹灰度图像与上一裂纹灰度图像进行做差处理,得到裂纹灰度差图像;
裂纹尖端图像确定模块,用于基于第一灰度阈值对裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像。
航空铝合金表面图像获取模块,用于获取航空铝合金表面图像;
第三灰度处理模块,用于对航空铝合金表面图像进行灰度处理,得到航空铝合金表面灰度图像;
裂纹位置确定模块,用于基于第二灰度阈值对航空铝合金表面灰度图像进行二值化处理,确定航空铝合金表面的裂纹位置。
裂纹区域确定模块,用于基于裂纹位置确定裂纹区域。
去噪模块,用于利用高斯滤波算法,分别对当前裂纹灰度图像和上一裂纹灰度图像进行去噪处理。
裂纹延展图像确定模块,用于将裂纹尖端图像与当前裂纹灰度图像进行叠加处理,得到裂纹区域的裂纹延展图像。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的***而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
针对航空铝合金等表面状态差的材料,背景区域存在大量的噪声干扰,材料表面疲劳裂纹尖端生长部位与背景的区分度不明显,灰度信息差别不大,如果直接利用现有技术进行去噪后的裂纹识别,很容易造成裂尖部位的漏判。本发明利用裂纹生长前后,图像标定作差,识别裂尖生长部位灰度信息的变化,然后设置合适阈值,对生长区进行二值化处理,最后进行裂尖检测,解决了裂尖生长部位与背景区分度不明显的难题。比如说,假设背景区域灰度值为N,裂尖生长区域灰度值为N+5,如果直接基于灰度信息利用已有技术进行裂纹识别,很难实现裂尖部位的准确检测。本发明如果设置阈值为3,通过对裂纹生长前后的灰度作差,检测到裂尖生长部位变化的灰度值为5,此时大于阈值,则对该类像素点进行二值化处理,后续即可准确识别出裂尖生长部位。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种航空铝合金表面疲劳裂纹尖端动态检测方法,其特征在于,所述方法包括:
获取航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像;所述裂纹区域内包括裂纹;
将当前时刻的裂纹图像进行灰度处理,得到当前裂纹灰度图像;
将上一时刻的裂纹图像进行灰度处理,得到上一裂纹灰度图像;
将所述当前裂纹灰度图像与所述上一裂纹灰度图像进行做差处理,得到裂纹灰度差图像;
基于第一灰度阈值对所述裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像。
2.根据权利要求1所述的航空铝合金表面疲劳裂纹尖端动态检测方法,其特征在于,在所述获取航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像之前还包括:
获取航空铝合金表面图像;
对所述航空铝合金表面图像进行灰度处理,得到航空铝合金表面灰度图像;
基于第二灰度阈值对所述航空铝合金表面灰度图像进行二值化处理,确定航空铝合金表面的裂纹位置。
基于所述裂纹位置确定所述裂纹区域。
3.根据权利要求1所述的航空铝合金表面疲劳裂纹尖端动态检测方法,其特征在于,在所述将上一时刻的裂纹图像进行灰度处理,得到上一裂纹灰度图像之后还包括:
利用高斯滤波算法,分别对所述当前裂纹灰度图像和所述上一裂纹灰度图像进行去噪处理。
4.根据权利要求1所述的航空铝合金表面疲劳裂纹尖端动态检测方法,其特征在于,在所述基于第一灰度阈值对所述裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像之后还包括:
将所述裂纹尖端图像与所述当前裂纹灰度图像进行叠加处理,得到裂纹区域的裂纹延展图像。
5.一种航空铝合金表面疲劳裂纹尖端动态检测***,其特征在于,所述***包括:
裂纹图像获取模块,用于获取航空铝合金表面裂纹区域的当前时刻的裂纹图像和上一时刻的裂纹图像;所述裂纹区域内包括裂纹;
第一灰度处理模块,用于将当前时刻的裂纹图像进行灰度处理,得到当前裂纹灰度图像;
第二灰度处理模块,用于将上一时刻的裂纹图像进行灰度处理,得到上一裂纹灰度图像;
裂纹灰度差图像确定模块,用于将所述当前裂纹灰度图像与所述上一裂纹灰度图像进行做差处理,得到裂纹灰度差图像;
裂纹尖端图像确定模块,用于基于第一灰度阈值对所述裂纹灰度差图像进行二值化处理,得到裂纹区域的裂纹尖端图像。
6.根据权利要求5所述的航空铝合金表面疲劳裂纹尖端动态检测***,其特征在于,所述***还包括:
航空铝合金表面图像获取模块,用于获取航空铝合金表面图像;
第三灰度处理模块,用于对所述航空铝合金表面图像进行灰度处理,得到航空铝合金表面灰度图像;
裂纹位置确定模块,用于基于第二灰度阈值对所述航空铝合金表面灰度图像进行二值化处理,确定航空铝合金表面的裂纹位置。
裂纹区域确定模块,用于基于所述裂纹位置确定所述裂纹区域。
7.根据权利要求5所述的航空铝合金表面疲劳裂纹尖端动态检测***,其特征在于,所述***还包括:
去噪模块,用于利用高斯滤波算法,分别对所述当前裂纹灰度图像和所述上一裂纹灰度图像进行去噪处理。
8.根据权利要求5所述的航空铝合金表面疲劳裂纹尖端动态检测***,其特征在于,所述***还包括:
裂纹延展图像确定模块,用于将所述裂纹尖端图像与所述当前裂纹灰度图像进行叠加处理,得到裂纹区域的裂纹延展图像。
CN202210257303.6A 2022-03-16 2022-03-16 一种航空铝合金表面疲劳裂纹尖端动态检测方法及*** Pending CN114841917A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210257303.6A CN114841917A (zh) 2022-03-16 2022-03-16 一种航空铝合金表面疲劳裂纹尖端动态检测方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210257303.6A CN114841917A (zh) 2022-03-16 2022-03-16 一种航空铝合金表面疲劳裂纹尖端动态检测方法及***

Publications (1)

Publication Number Publication Date
CN114841917A true CN114841917A (zh) 2022-08-02

Family

ID=82562951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210257303.6A Pending CN114841917A (zh) 2022-03-16 2022-03-16 一种航空铝合金表面疲劳裂纹尖端动态检测方法及***

Country Status (1)

Country Link
CN (1) CN114841917A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117329977A (zh) * 2023-11-28 2024-01-02 中国飞机强度研究所 复杂工况下结构疲劳裂纹视觉特征表征与测量处理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117329977A (zh) * 2023-11-28 2024-01-02 中国飞机强度研究所 复杂工况下结构疲劳裂纹视觉特征表征与测量处理方法
CN117329977B (zh) * 2023-11-28 2024-02-13 中国飞机强度研究所 复杂工况下结构疲劳裂纹视觉特征表征与测量处理方法

Similar Documents

Publication Publication Date Title
CN101995223B (zh) 一种芯片外观检测方法及***
CN109752392B (zh) 一种pcb板缺陷类型检测***和方法
CN108871185B (zh) 零件检测的方法、装置、设备以及计算机可读存储介质
CN108520514B (zh) 基于计算机视觉的印刷电路板电子元器一致性检测方法
CN104697476A (zh) 粗糙度光切轮廓曲线的自动检测方法及装置
CN114240944B (zh) 一种基于点云信息的焊接缺陷检测方法
CN111539927B (zh) 汽车塑料组合件紧固卡扣缺装检测装置的检测方法
CN113554667B (zh) 一种基于图像识别的三维位移检测方法及装置
WO2017071406A1 (zh) 金针类元件的引脚检测方法和***
CN106225702A (zh) 裂缝宽度检测装置和方法
CN109118476B (zh) 一种零部件边缘轮廓完整性检测方法及装置
CN105205803A (zh) 显示面板缺陷检测方法
CN113237889A (zh) 一种多尺度的陶瓷检测方法及***
CN107388991A (zh) 一种端面多圆角轴类零件圆角半径测量方法
CN114841917A (zh) 一种航空铝合金表面疲劳裂纹尖端动态检测方法及***
CN110132975B (zh) 一种用于核燃料棒包壳表面检测的方法、装置
CN103177426A (zh) 一种基于形态学的强干扰激光边缘图像修复方法
JP2002140713A (ja) 画像処理方法およびその装置
CN114882009A (zh) 可适应多种表面状态的疲劳裂纹尖端自动检测方法及***
CN115829981A (zh) 一种退役轴承端面损伤的视觉检测方法
JP7344156B2 (ja) 穴広げ試験のき裂判定装置、き裂判定方法及びプログラム
CN109118511B (zh) 一种倾斜传感器的图像处理方法
JP2000132684A (ja) 外観検査方法
TWI638992B (zh) 畫作缺陷檢測方法
CN109579720B (zh) 一种边缘距离测量的引伸计动态测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination