CN114836729A - 一种功函数可调的wcn薄膜沉积方法 - Google Patents

一种功函数可调的wcn薄膜沉积方法 Download PDF

Info

Publication number
CN114836729A
CN114836729A CN202210540776.7A CN202210540776A CN114836729A CN 114836729 A CN114836729 A CN 114836729A CN 202210540776 A CN202210540776 A CN 202210540776A CN 114836729 A CN114836729 A CN 114836729A
Authority
CN
China
Prior art keywords
film
plasma
wcn
substrate
tungsten precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210540776.7A
Other languages
English (en)
Inventor
扈静
芮祥新
汪穹宇
李建恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Ande Keming Semiconductor Technology Co ltd
Original Assignee
Hefei Ande Keming Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Ande Keming Semiconductor Technology Co ltd filed Critical Hefei Ande Keming Semiconductor Technology Co ltd
Priority to CN202210540776.7A priority Critical patent/CN114836729A/zh
Publication of CN114836729A publication Critical patent/CN114836729A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开一种功函数可调的WCN薄膜沉积方法,包括以下步骤:先将钨前驱体加热到80‑150℃,前驱体运输管路及ALD腔体预热;通过NH3等离子体与钨前驱体反应沉积形成单原子层WN薄膜,重复X次,形成X层WN薄膜;通过H2等离子体与钨前驱体反应沉积形成单原子层WC薄膜,重复步骤Y次,形成Y层WC薄膜;重复上述步骤Z次,直到达到预期厚度的WCN薄膜。本发明通过WC薄膜和WN薄膜膜交替沉积的方法制备的WCN薄膜,能实现WCN之间的原子结合,取代现有的通过调节单一WCN薄膜的沉积的工艺参数调节WCN内部C,N比例的方式,可以达到精确调节C、N含量,从而实现功函数的可调。

Description

一种功函数可调的WCN薄膜沉积方法
技术领域
本发明涉及半导体功能薄膜制备技术领域,具体的是一种功函数可调的WCN薄膜沉积方法。
背景技术
传统CMOS器件栅电极采用的是掺杂的P型多晶硅和N型多晶硅,但随着器件尺寸的减小,多晶硅电极遇到了越来越多的问题:多晶硅耗尽效应、RC延迟响应,多晶硅和高K介质层费米能级钉扎问题。针对这些问题解决的方法是采用金属电极替代多晶电极,金属电极的功函数要求能够匹配NMOS和PMOS,以达到低的阈值电压。一般NMOS电极功函数≈4ev,PMOS电极功函数≈5ev。但是使用不同的金属作为CMOS的电极会增加工艺整合的难度,同时也会出现交叉污染的现象,最好的解决方法是采用单一的并且功函数可调的金属作为金属栅极,大量研究发现通过调节WCN(钨碳氮)薄膜电极中C和N的百分比可以能够实现功函数在4~5ev可调。
目前的WCN电极是主要是采用ALD(原子层沉积)制备,通过调整工艺参数实现不同比例的C和N含量。然而这种方法制备难度大,C、N含量难以把控,大规模量产很难实现。主要有以下几种WCN薄膜成分调整方法:(1)通过调整ALD工艺中的还原性等离子气体的氮气和氢气的流量比例(氮气和氢气同时流入腔体内)实现薄膜中的C,N比例的调整(如图1所示),缺点是薄膜功函数严格受控于工艺参数,一旦出现工艺漂移,将导致薄膜功函数的变化,从而导致器件失效;(2)通过调整薄膜生长的工艺方式微量调节薄膜中C与N的成分比例(如图2所示),缺点是只能实现功函数微调,而且调整幅度不受控;(3)通过在每一个ALD沉积循环中增加一步氢气等离子处理(如图3所示),使得每一个沉积循环获得一层WCN层,并通过控制氢气等离子的处理时间控制每一层薄膜中的C和N的比例,缺点是最终薄膜成分受控于工艺参数,特别是氢等离子的处理功率及时长,一旦出现漂移,对薄膜功函数将产生影响。
发明内容
为解决上述背景技术中提到的不足,本发明的目的在于提供一种功函数可调并且稳定的WCN薄膜沉积方法,通过WC薄膜和WN薄膜膜交替沉积的方法制备的WCN薄膜,能实现WCN之间的原子结合,取代现有的通过调节单一WCN薄膜的沉积的工艺参数调节WCN内部C,N比例的方式,可以达到精确调节C、N含量,从而实现功函数的可调。
本发明的目的可以通过以下技术方案实现:
一种功函数可调的WCN薄膜沉积方法,包括以下步骤:
(1)将钨前驱体加热到80-150℃,前驱体运输管路及阀门加热到90-250℃,ALD腔体温度加热到100-350℃,将ALD腔体抽真空至0.1-10Pa;
(2)通过惰性气体载气向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附;
(3)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间5s-100s;
(4)通过载气向ALD腔体中通入反应气体NH3,与此同时打开等离子体电源产生NH3等离子,电源功率为100-1000W,NH3等离子与吸附在衬底上的钨前驱体反应,等离子体持续时间为0.01-50s;
(5)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间5s-100s,在基底表面沉积形成单原子层WN薄膜;
(6)重复步骤(2)-(5)X次,形成X层单原子层WN薄膜;
(7)通过惰性气体载气再向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附;
(8)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间5s-100s;
(9)通过载气向ALD腔体中通入反应气体H2,与此同时打开等离子体电源产生H2等离子,电源功率设为100-1000W,H2等离子与吸附在衬底上的钨前驱体反应,等离子体持续时间为0.01-50s;
(10)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间5s-100s,在基底表面沉积形成单原子层WC薄膜;
(11)重复步骤(7)-(10)Y次,形成Y单原子层WC薄膜;
(12)重复步骤(2)-(11)Z次,直到达到预期厚度的WCN薄膜。
本发明的有益效果:
本发明所得薄膜受工艺参数变化的影响较小,在一定工艺参数范围内,薄膜内C,N比例基本保持不变,从而保证WCN功函数的稳定性,保证器件的稳定性,同时C,N成分调节的范围宽。本发明工艺通过调整X、Y的次数可以调整薄膜中C,N的百分比含量,Z的次数取决于需求的薄膜厚度,实际成膜过程可以先进行(2)-(5)(WNm)的沉积X次,再进行(7)-(10)(WCn)的沉积Y次,再重复Z次,形成(WCxNy);也可以先进行(7)-(10)(WCn)的沉积Y次,再进行(2)-(5)(WNm)的沉积X次,再循环Z次,形成(WCxNy)薄膜。本发明工艺生长WCxNy前增加衬底表前处理步骤,前处理包括衬底表面清洁、衬底表面激活等,前处理完成后,再进行WCxNy的薄膜沉积,从而增加后续WCxNy薄膜在衬底表面的粘附性。本发明WCxNy成膜后可进行N2,Ar,H2,NH3或其中任意两种或三种混合气体的热处理,热处理温度为300℃~1000℃,热处理时间为5s-30min,热处理的目的包含但不限于去除薄膜内应力,增加C元素和N元素的均匀性,微调C元素和N元素的比例等。
附图说明
下面结合附图对本发明作进一步的说明。
图1是现有技术第一种WCN薄膜成分调整方法示意图;
图2是现有技术第二种WCN薄膜成分调整方法示意图;
图3是现有技术第三种WCN薄膜成分调整方法示意图;
图4是本发明功函数可调的WCN薄膜沉积方法成膜过程的流程图;
图5是本发明具体实施方式中的WNm薄膜(膜厚约为
Figure BDA0003648191640000041
粗糙度:
Figure BDA0003648191640000042
)AFM扫描示意图;
图6是本发明具体实施方式中的WCn薄膜(膜厚约为
Figure BDA0003648191640000043
粗糙度:
Figure BDA0003648191640000044
)AFM扫描示意图;
图7是本发明具体实施方式中WCxNy薄膜GIXRD扫描;
图8是本发明具体实施方式中功函数与WCxNy中N含量(原子百分比)的关系;
图9是本发明具体实施方式中功函数与WCxNy中C含量(原子百分比)的关系。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,“X”、“Y”、“Z”表示WN薄膜、WC薄膜或WCN薄膜的层数,其数值选自自然数集,如0、1、2、3...,在以下实施例中,都不是特定的数值,而是根据所需膜的厚度、每次沉积的单层膜厚度进行选择,不能理解为对本发明的限制。
实施例1
如图4(A)所示,一种功函数可调的WCN薄膜沉积方法,包括以下步骤:
(1)将衬底进行前处理,从而使衬底表面清洁和激活,前处理包括臭氧处理、氧等离子处理、氨气等离子处理、氢气等离子处理和混合气体等离子处理;
(2)将钨前驱体加热到90℃,前驱体运输管路及阀门加热到120℃,ALD腔体温度加热到300℃,将ALD腔体抽真空至1Pa;
(3)通过惰性气体载气向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附,钨前驱体为双(叔丁亚胺基)双(二甲胺基)钨,其化学结构式如下:
Figure BDA0003648191640000051
(4)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间25s;
(5)通过载气向ALD腔体中通入反应气体NH3,与此同时打开等离子电源,等离子体功率为300W,NH3等离子与吸附在衬底上的钨前驱体完全反应;等离子体持续时间为5s;
(6)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间25s,在基底表面沉积形成单原子层WN薄膜;
(7)重复步骤(3)-(6)X次,形成X层WN薄膜;
(8)通过惰性气体载气再向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附;
(9)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间25s;
(10)通过载气向ALD腔体中通入反应气体H2,与此同时打开等离子电源,等离子体功率设为300W,H2等离子与吸附在衬底上的钨前驱体完全反应;等离子体持续时间为3s;
(11)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间25s,在基底表面沉积形成单原子层WC薄膜;
(12)重复步骤(8)-(11)Y次,形成Y层WC薄膜;
(13)重复步骤(3)-(12)Z次,直到达到厚度为20nm的WCN薄膜;
(14)将沉积得到的WCN薄膜进N2,Ar,H2,NH3或其中任意两种或三种混合气体的热处理,热处理温度为500℃,热处理时间为20分钟,热处理的目的包含但不限于去除薄膜内应力,增加C元素和N元素的均匀性,微调C元素和N元素的比例等。
实施例2
如图4(B),一种功函数可调的WCN薄膜沉积方法,包括以下步骤:
(1)将衬底进行前处理,从而使衬底表面清洁和激活,前处理包括臭氧处理、氧等离子处理、氨气等离子处理、氢气等离子处理和混合气体等离子处理;
(2)将钨前驱体加热到100℃,前驱体运输管路及阀门加热到120℃,ALD腔体温度加热到250℃,将ALD腔体抽真空至0.5Pa;
(3)通过惰性气体载气再向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附,钨前驱体为双(叔丁亚胺基)双(二甲胺基)钨;
(4)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间20s;
(5)通过载气向ALD腔体中通入反应气体H2,与此同时打开等离子电源,等离子体功率设为350W,H2等离子与吸附在衬底上的钨前驱体完全反应,等离子体持续时间为5s;
(6)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间35s,在基底表面沉积形成单原子层WC薄膜;
(7)重复步骤(3)-(6)Y次,形成Y层WC薄膜;
(8)通过惰性气体载气向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附;
(9)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间20s;
(10)通过载气向ALD腔体中通入反应气体NH3,与此同时打开等离子电源,等离子体功率为350W,NH3等离子与吸附在衬底上的钨前驱体完全反应,等离子体持续时间为5s;
(11)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间35s,在基底表面沉积形成单原子层WN薄膜;
(12)重复步骤(8)-(11)X次,形成X层WN薄膜;
(13)重复步骤(3)-(12)Z次,直到达到厚度为45nm的WCN薄膜;
(14)将沉积得到的WCN薄膜进N2,Ar,H2,NH3或其中任意两种或三种混合气体的热处理,热处理温度为500℃,热处理时间为15分钟,热处理的目的包含但不限于去除薄膜内应力,增加C元素和N元素的均匀性,微调C元素和N元素的比例等。
实施例3
一种功函数可调的WCN薄膜沉积方法,包括以下步骤:
(1)将衬底进行前处理,从而使衬底表面清洁和激活,前处理包括臭氧处理、氧等离子处理、氨气等离子处理、氢气等离子处理和混合气体等离子处理;
(2)将钨前驱体加热到100℃,前驱体运输管路及阀门加热到125℃,ALD腔体温度加热到300℃,将ALD腔体抽真空至1Pa;
(3)通过惰性气体载气向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附,钨前驱体为双(叔丁亚胺基)双(叔丁胺基)钨,其化学结构式如下:
Figure BDA0003648191640000081
(4)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间20s;
(5)通过载气向ALD腔体中通入反应气体NH3,与此同时打开等离子电源,等离子体功率为400W,NH3等离子与吸附在衬底上的钨前驱体完全反应;等离子体持续时间为12s;
(6)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间30s,在基底表面沉积形成单原子层WN薄膜;
(7)重复步骤(3)-(6)X次,形成X层WN薄膜;
(8)通过惰性气体载气再向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附;
(9)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间20s;
(10)通过载气向ALD腔体中通入反应气体H2,与此同时打开等离子电源,等离子体功率设为600W,H2等离子与吸附在衬底上的钨前驱体完全反应;等离子体持续时间为12s;
(11)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间30s,在基底表面沉积形成单原子层WC薄膜;
(12)重复步骤(8)-(11)Y次,形成Y层WC薄膜;
(13)重复步骤(3)-(12)Z次,直到达到厚度为20nm的WCN薄膜;
(14)将沉积得到的WCN薄膜进N2,Ar,H2,NH3或其中任意两种或三种混合气体的热处理,热处理温度为500℃,热处理时间为20分钟,热处理的目的包含但不限于去除薄膜内应力,增加C元素和N元素的均匀性,微调C元素和N元素的比例等。
实施例4
一种功函数可调的WCN薄膜沉积方法,包括以下步骤:
(1)将衬底进行前处理,从而使衬底表面清洁和激活,前处理包括臭氧处理、氧等离子处理、氨气等离子处理、氢气等离子处理和混合气体等离子处理;
(2)将钨前驱体加热到100℃,前驱体运输管路及阀门加热120℃,ALD腔体温度加热到275℃,将ALD腔体抽真空至5Pa;
(3)通过惰性气体载气再向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附,钨前驱体为双(异丙亚胺基)双(甲乙胺基)钨,其化学结构式如下:
Figure BDA0003648191640000101
(4)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间20s;
(5)通过载气向ALD腔体中通入反应气体H2,与此同时打开等离子电源,等离子体功率设为600W,H2等离子与吸附在衬底上的钨前驱体完全反应;等离子体持续时间为6s;
(6)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间35s,在基底表面沉积形成单原子层WC薄膜;
(7)重复步骤(3)-(6)Y次,形成Y层WC薄膜;
(8)通过惰性气体载气向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附;
(9)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间35s;
(10)通过载气向ALD腔体中通入反应气体NH3,与此同时打开等离子电源,等离子体功率为600W,NH3等离子与吸附在衬底上的钨前驱体完全反应;等离子体持续时间为10s;
(11)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间100s,在基底表面沉积形成单原子层WN薄膜;
(12)重复步骤(8)-(11)X次,形成X层WN薄膜;
(13)重复步骤(3)-(12)Z次,直到达到厚度为2nm的WCN薄膜;
(14)将沉积得到的WCN薄膜进N2,Ar,H2,NH3或其中任意两种或三种混合气体的热处理,热处理温度为600℃,热处理时间为5分钟,热处理的目的包含但不限于去除薄膜内应力,增加C元素和N元素的均匀性,微调C元素和N元素的比例等。
性能与检测:
本实验中,前驱体加热温度:95℃,WNm和WCn的沉积温度:300℃;吹扫气体为Ar气,其中:
WNm层沉积的前驱体脉冲时间为1s,前驱体吹扫时间为15s,氨气等离子脉冲为5s,等离子功率500W,等离子后的吹扫时间为15s,WNm的沉积速率为
Figure BDA0003648191640000111
薄膜电阻率约4000μΩ·cm,密度10.88g/cm3
WCn层沉积的前驱体脉冲时间为1s,前驱体吹扫时间为15s,氢气等离子脉冲为13s,等离子功率500W,等离子后的吹扫时间为15s,WCn的沉积速率为
Figure BDA0003648191640000121
薄膜电阻率约250μΩ·cm,密度10.73g/cm3
WNm薄膜和WCn薄膜的AFM扫描(膜厚约为
Figure BDA0003648191640000122
)如图5,图6所示。
调节X,Y的比例后,设定目标厚度为
Figure BDA0003648191640000123
获得5个样品对应不同X和Y比例。
GIXRD对部分薄膜表征显示沉积完成后薄膜已结晶(图7),晶型均为Cubic(Fm-3m)结构(参见ICDD卡,WN:03-065-2898,WC:00-020-1316),如图7所示,随着X,Y循环比例的变更,薄膜晶型并未改变,但峰的位置因为成份的变化而发生移动,表明薄膜本身并不是WN和WC两种成分简单混合而成,而是形成了WCxNy合金(图7中“□”组成的曲线),所得的薄膜进行XPS表征,所得薄膜中C,N含量如表1所示:
表1:不同XY比例条件下薄膜中的C和N的原子百分比
X:Y 1:0 3:1 1:1 1:3 0:1
C(at.%) 16.83 23.43 26.26 39.72 47.56
N(at.%) 32.98 28.75 19.72 13.76 7.34
同样的薄膜用UPS进行功函数表征,所得的数据如图8,图9所示,图中的数据显示,本实例通过调节WNm和WCn的膜层循环比例(X:Y)实现WCxNy薄膜功函数稳定可调,实例中功函数可调范围4.4eV-4.85eV。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (6)

1.一种功函数可调的WCN薄膜沉积方法,其特征在于,包括以下步骤:
(1)将钨前驱体加热到80-150℃,前驱体运输管路及阀门加热到90-250℃,ALD腔体温度加热到100-350℃,将ALD腔体抽真空至0.1-10Pa;
(2)通过惰性气体载气向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附;
(3)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间5s-100s;
(4)通过载气向ALD腔体中通入反应气体NH3,与此同时打开等离子体电源产生NH3等离子,电源功率为100-1000W,NH3等离子与吸附在衬底上的钨前驱体反应,等离子体持续时间为0.01-50s;
(5)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间5s-100s,在基底表面沉积形成单原子层WN薄膜;
(6)重复步骤(2)-(5)X次,形成X层单原子层WN薄膜;
(7)通过惰性气体载气再向ALD腔体中通入钨前驱体,钨前驱体在衬底表面形成化学吸附;
(8)将未被吸附的前驱体以及反应的副产物,用惰性气体吹扫干净,吹扫时间5s-100s;
(9)通过载气向ALD腔体中通入反应气体H2,与此同时打开等离子体电源产生H2等离子,电源功率设为100-1000W,H2等离子与吸附在衬底上的钨前驱体反应,等离子体持续时间为0.01-50s;
(10)用惰性气体将未反应的气体,以及反应副产物吹扫干净,吹扫时间5s-100s,在基底表面沉积形成单原子层WC薄膜;
(11)重复步骤(7)-(10)Y次,形成Y单原子层WC薄膜;
(12)重复步骤(2)-(11)Z次,直到达到预期厚度的WCN薄膜。
2.根据权利要求1所述的功函数可调的WCN薄膜沉积方法,其特征在于,所述钨前驱体为含有胺基的钨前驱体,其化学结构式如下:
Figure FDA0003648191630000021
其中,R1-R6为氢、烷基、烯基、炔基或芳香基。
3.根据权利要求1所述的功函数可调的WCN薄膜沉积方法,其特征在于,所述衬底在沉积WCN薄膜前进行前处理,所述衬底的前处理包括臭氧处理、氧等离子处理、氨气等离子处理、氢气等离子处理和混合气体等离子处理。
4.根据权利要求1所述的功函数可调的WCN薄膜沉积方法,其特征在于,所述步骤(12)中达到预期厚度的WCN薄膜后进行N2、Ar、H2和NH3中的一种、两种或三种气体混合的热处理,热处理温度为300℃~1000℃,热处理时间为5s~30min。
5.根据权利要求1所述的功函数可调的WCN薄膜沉积方法,其特征在于,将步骤(2)-(5)与步骤(7)-(10)的顺序互换,即先沉积Y层WC薄膜,再沉积X层WN薄膜,然后重复Z次形成预期厚度的WCN薄膜。
6.根据权利要求1或5所述的功函数可调的WCN薄膜沉积方法,其特征在于,重复Z次形成的WCN薄膜厚度为0.2~50nm。
CN202210540776.7A 2022-05-17 2022-05-17 一种功函数可调的wcn薄膜沉积方法 Pending CN114836729A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210540776.7A CN114836729A (zh) 2022-05-17 2022-05-17 一种功函数可调的wcn薄膜沉积方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210540776.7A CN114836729A (zh) 2022-05-17 2022-05-17 一种功函数可调的wcn薄膜沉积方法

Publications (1)

Publication Number Publication Date
CN114836729A true CN114836729A (zh) 2022-08-02

Family

ID=82569623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210540776.7A Pending CN114836729A (zh) 2022-05-17 2022-05-17 一种功函数可调的wcn薄膜沉积方法

Country Status (1)

Country Link
CN (1) CN114836729A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584487A (zh) * 2022-10-18 2023-01-10 合肥安德科铭半导体科技有限公司 一种双(烷基亚胺基)双(烷基胺基)钨(vi)的制备方法及应用
CN116536650A (zh) * 2023-05-05 2023-08-04 浙江大学 用于薄膜生长优化的薄膜生长界面优化方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231487A1 (en) * 2006-03-31 2007-10-04 Tokyo Electron Limited Method of forming a metal carbide or metal carbonitride film having improved adhesion
US20120100308A1 (en) * 2010-10-25 2012-04-26 Asm America, Inc. Ternary metal alloys with tunable stoichiometries
CN102965616A (zh) * 2012-11-19 2013-03-13 江苏科技大学 Wcn纳米复合膜及其制备方法
CN103681671A (zh) * 2012-08-31 2014-03-26 爱思开海力士有限公司 具有钨栅电极的半导体器件及其制造方法
US20140235054A1 (en) * 2011-09-27 2014-08-21 L'Air Liquide, Société Änonyme pour I'Etude et I'Exploitation des Procédés Georges Glaude Tungsten diazabutadiene precursors, their synthesis, and their use for tungsten containing film depositions
KR101546319B1 (ko) * 2015-01-02 2015-08-24 (주)마이크로켐 텅스텐 함유 막을 증착시키기 위한 텅스텐 전구체 및 이를 포함하는 텅스텐 함유 필름 증착방법
KR101621473B1 (ko) * 2015-04-10 2016-05-17 영남대학교 산학협력단 텅스텐 함유 박막 형성 방법
CN107004765A (zh) * 2014-12-05 2017-08-01 英特尔公司 用于相变存储器元件的阻挡膜技术与构造
CN107039283A (zh) * 2017-04-11 2017-08-11 中国科学院微电子研究所 一种基于可变功函数栅极的晶体管器件及其制备方法
CN107435137A (zh) * 2016-05-27 2017-12-05 Tes股份有限公司 碳化金属薄膜的蒸镀方法
CN108735577A (zh) * 2017-03-30 2018-11-02 朗姆研究公司 选择性沉积用于互连的wcn阻挡/粘附层
CN109399586A (zh) * 2018-11-24 2019-03-01 冯良荣 一种制备碳氮化钨的方法
CN112221528A (zh) * 2020-11-05 2021-01-15 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 一种单原子催化剂及其制备方法与应用
CN112490191A (zh) * 2019-09-12 2021-03-12 台湾积体电路制造股份有限公司 半导体装置与其形成方法
CN113488434A (zh) * 2020-07-16 2021-10-08 台湾积体电路制造股份有限公司 使用相同功函数材料的复合功函数层的形成

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231487A1 (en) * 2006-03-31 2007-10-04 Tokyo Electron Limited Method of forming a metal carbide or metal carbonitride film having improved adhesion
US20120100308A1 (en) * 2010-10-25 2012-04-26 Asm America, Inc. Ternary metal alloys with tunable stoichiometries
US20140235054A1 (en) * 2011-09-27 2014-08-21 L'Air Liquide, Société Änonyme pour I'Etude et I'Exploitation des Procédés Georges Glaude Tungsten diazabutadiene precursors, their synthesis, and their use for tungsten containing film depositions
CN103681671A (zh) * 2012-08-31 2014-03-26 爱思开海力士有限公司 具有钨栅电极的半导体器件及其制造方法
CN102965616A (zh) * 2012-11-19 2013-03-13 江苏科技大学 Wcn纳米复合膜及其制备方法
CN107004765A (zh) * 2014-12-05 2017-08-01 英特尔公司 用于相变存储器元件的阻挡膜技术与构造
KR101546319B1 (ko) * 2015-01-02 2015-08-24 (주)마이크로켐 텅스텐 함유 막을 증착시키기 위한 텅스텐 전구체 및 이를 포함하는 텅스텐 함유 필름 증착방법
KR101621473B1 (ko) * 2015-04-10 2016-05-17 영남대학교 산학협력단 텅스텐 함유 박막 형성 방법
CN107435137A (zh) * 2016-05-27 2017-12-05 Tes股份有限公司 碳化金属薄膜的蒸镀方法
CN108735577A (zh) * 2017-03-30 2018-11-02 朗姆研究公司 选择性沉积用于互连的wcn阻挡/粘附层
CN107039283A (zh) * 2017-04-11 2017-08-11 中国科学院微电子研究所 一种基于可变功函数栅极的晶体管器件及其制备方法
CN109399586A (zh) * 2018-11-24 2019-03-01 冯良荣 一种制备碳氮化钨的方法
CN112490191A (zh) * 2019-09-12 2021-03-12 台湾积体电路制造股份有限公司 半导体装置与其形成方法
CN113488434A (zh) * 2020-07-16 2021-10-08 台湾积体电路制造股份有限公司 使用相同功函数材料的复合功函数层的形成
CN112221528A (zh) * 2020-11-05 2021-01-15 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 一种单原子催化剂及其制备方法与应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584487A (zh) * 2022-10-18 2023-01-10 合肥安德科铭半导体科技有限公司 一种双(烷基亚胺基)双(烷基胺基)钨(vi)的制备方法及应用
CN116536650A (zh) * 2023-05-05 2023-08-04 浙江大学 用于薄膜生长优化的薄膜生长界面优化方法
CN116536650B (zh) * 2023-05-05 2023-10-20 浙江大学 用于薄膜生长优化的薄膜生长界面优化方法

Similar Documents

Publication Publication Date Title
KR102482954B1 (ko) 기판 상에 구조물을 형성하는 방법
US11107673B2 (en) Formation of SiOCN thin films
US7723245B2 (en) Method for manufacturing semiconductor device, and substrate processing apparatus
CN114836729A (zh) 一种功函数可调的wcn薄膜沉积方法
TWI595537B (zh) 半導體薄膜穩定的方法
TWI748762B (zh) 沉積氮化矽薄膜的方法
US7531467B2 (en) Manufacturing method of semiconductor device and substrate processing apparatus
JP2011522124A (ja) 原子層堆積によるルテニウム含有膜を形成する方法
TW201617470A (zh) 沉積鈦鋁薄膜或鉭鋁薄膜的製程
JP5280843B2 (ja) 金属化合物層の形成方法、及び金属化合物層の形成装置
TW201350614A (zh) 用於化學氣相沉積及原子層沉積之帶有延長噴嘴的裝置及使用方法
TW202030352A (zh) 使用無氧共反應物之釕的氣相沉積方法
US20060051975A1 (en) Novel deposition of SiON dielectric films
Yuan et al. Role of NH3 feeding period to realize high-quality nickel films by hot-wire-assisted atomic layer deposition
TW200426241A (en) Process for CVD of Hf and Zr containing oxynitride films
TWI582260B (zh) 利用化學氣相沉積法在矽基板上製備鎳薄膜以及在矽基板上製備矽化鎳薄膜的方法
Clark et al. High-K gate dielectric structures by atomic layer deposition for the 32nm and beyond nodes
JP2001110750A5 (zh)
CN106119805A (zh) 一种掺杂改性的镍金属薄膜及其制备方法
US9023728B2 (en) Method of manufacturing metal silicide layer
TWI515803B (zh) 矽化鉭內的摻雜鋁
US8980742B2 (en) Method of manufacturing multi-level metal thin film and apparatus for manufacturing the same
Park et al. Stability of plasma posttreated TiN films prepared by alternating cyclic pulses of tetrakis-dimethylamido-titanium and ammonia
KR20230033713A (ko) 공-반응물 없이 루테늄-함유 필름을 형성하는 방법
JP5372075B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination