CN114836696B - 一种热冲压用390MPa级汽车桥壳用钢及其生产方法 - Google Patents

一种热冲压用390MPa级汽车桥壳用钢及其生产方法 Download PDF

Info

Publication number
CN114836696B
CN114836696B CN202210450190.1A CN202210450190A CN114836696B CN 114836696 B CN114836696 B CN 114836696B CN 202210450190 A CN202210450190 A CN 202210450190A CN 114836696 B CN114836696 B CN 114836696B
Authority
CN
China
Prior art keywords
equal
percent
rolling
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210450190.1A
Other languages
English (en)
Other versions
CN114836696A (zh
Inventor
孙成钱
时晓光
董毅
刘仁东
王洪海
王鑫
王俊雄
董洋
吴成举
韩楚菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN202210450190.1A priority Critical patent/CN114836696B/zh
Publication of CN114836696A publication Critical patent/CN114836696A/zh
Application granted granted Critical
Publication of CN114836696B publication Critical patent/CN114836696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种热冲压用390MPa级汽车桥壳用钢及其生产方法,化学成分按重量百分比计C0.075%~0.155%、Si0.05%~0.20%、Mn1.15%~1.45%、Al0.010%~0.062%、Ti0.004%~0.035%、V0.045%~0.105%、Mo0.08%~0.11%、B0.0010%~0.0030%、稀土元素La+Ce0.010%~0.018%、Ca0.0011%~0.0030%、P≤0.010%、S≤0.005%、N≤0.003%,余量为Fe和杂质。700℃‑740℃保温40s‑60s,热冲压后屈服强度≥415MPa、抗拉强度≥510MPa,A50≥36%。

Description

一种热冲压用390MPa级汽车桥壳用钢及其生产方法
技术领域
本发明涉及金属材料领域,尤其涉及一种热冲压用390MPa级汽车桥壳用钢及其生产方法。主要适用于制造热冲压用汽车桥壳用钢。
背景技术
汽车桥壳是汽车行驶***的主要构件之一,它支撑车架及车架后部分各总成的重量,同时它保护传动***中各部件。在桥壳行业制造领域,有冲焊桥壳与铸造桥壳两种截然不同的产品制造方法。随着桥壳制造技术的发展和汽车减重节能的需要,特别是对于载重汽车驱动的桥壳,已经使用12~16mm厚度的热连轧钢板制作冲焊桥壳,取代了制作工艺复杂、生产效率偏低、笨重、成本较高的铸造桥壳。
公告号为CN 102383032 B的中国专利申请公开了12吨级车桥桥壳用钢的生产方法,是利用普通C-Mn成分体系设计添加一定量的Nb生产出的热轧钢板。但该钢板伸长率最高为35%,不符合难成形汽车零件的要求。
公告号为CN 102383034 B的中国专利申请公开了13吨级车桥桥壳用钢的生产方法,利用普通C-Mn成分体系设计添加一定量的铌、钛,通过碳、锰元素的固溶强化及铌元素和钛元素的细晶强化来提高强度生产出的热轧钢板。但该钢板伸长率最高为31%,不符合难成形汽车零件的要求。
公告号为CN 103805862 B的中国专利申请公开了车桥桥壳用钢及其制备方法,是利用普通C-Mn成分体系设计和添加了多种微合金元素,生产的热轧钢板后续需要调制热处理,生产成本高。但该钢板伸长率最高为31%,不符合难成形汽车零件的要求。
公布号为CN 106480367A的中国专利申请公开了一种高强度冷成型汽车桥壳用钢的生产方法,是利用普通C-Mn成分体系设计添加一定量的铌、钒、钛通过碳、锰元素的固溶强化及铌、钒、钛元素的细晶强化来提高强度生产出的热轧钢板,但该钢板延伸率最高为22.99%,不符合难成形汽车零件的要求。
发明内容
本发明的目的在于提供一种热冲压用390MPa级汽车桥壳用钢及其生产方法,钢板屈服强度≥390MPa、抗拉强度≥540MPa,横向伸长率A50≥40%,并且在700℃-740℃,保温40s-60s,热冲压后空冷至室温,汽车桥壳的屈服强度≥415MPa、抗拉强度≥510MPa,横向伸长率A50≥36%,-40℃横向冲击功≥102J。
为了达到上述目的,本发明采用以下技术方案实现:
一种热冲压用390MPa级汽车桥壳用钢,钢中化学成分按重量百分比计为:C0.075%~0.155%、Si 0.05%~0.20%、Mn 1.15%~1.45%、Al 0.010%~0.062%、Ti0.004%~0.035%、V 0.045%~0.105%、Mo 0.08%~0.11%、B 0.0010%~0.0030%、稀土元素La+Ce 0.010%~0.018%、Ca 0.0011%~0.0030%、P≤0.010%、S≤0.005%、N≤0.003%,余量为Fe和不可避免的杂质。
本发明中一种热冲压用390MPa级汽车桥壳用钢成分的主要作用为:
C:碳是钢中最主要的固溶强化元素,是钢材强度的保证。考虑到后续需要热冲压成形,保证热冲压后的强度,碳含量过低,钢板热冲压后强度达不到预期目标。同时,碳元素的提高,有利于增加钢的淬透性,本发明中碳的最优范围为0.075-0.155%。
Si:硅是固溶强化元素,可以通过固溶强化作用提高钢板的强度。同时还具有提高钢板的淬透性作用,然而,钢中过高的硅会影响热轧表面质量,出现大量氧化铁皮。本发明中硅的含量为0.05-0.20%。
Mn:锰在钢中可以形成置换固溶体,起到较强的固溶强化作用,使屈服强度和抗拉强度线性增加,该元素含量在一定的范围内增加钢强度的同时几乎不降低钢的塑性和韧性,同时也可以提高钢的淬透性,但锰含量过高,可使钢的碳当量增加,并且会在冶炼及热轧过程中恶化钢板组织均匀性,易于使组织中出现严重的带状组织缺陷。因此,选定锰含量为1.15-1.45%。
P:磷可以提高α相的形成温度,扩大形成α相的温度范围。但磷含量过多,会使钢板的加工性恶化,为了得到较高的延伸率,因此将其上限定为0.010%。
S:硫通过形成MnS等硫化物夹杂,成为裂纹的起点而使加工性能恶化,因此含量越少越好,将其上限定为0.005%。
Al:Al是钢中常用的脱氧剂,在冶炼过程中起到脱氧定氮作用,并能有效提高钢板抗氧化性能,但铝过多会导致大量的铝系夹杂,钢中加入少量的Al,可以形成AlN析出,起到一定的细化晶粒作用,因此,本发明中将Al含量限定在0.010-0.062%。
Ti:钛能够有效地延迟变形奥氏体的再结晶、阻止奥氏体晶粒长大、提高奥氏体再结晶温度,细化晶粒,同时改善钢的强度和韧性,而且,Ti是强碳、氮化物形成元素,能够与碳、氮结合形成稳定细小的碳、氮化物,起到显著的析出强化作用,因此本发明中Ti含量的最优范围在0.004-0.035%之间。
V:钒具有显著的析出强化和细晶强化的作用,钒的作用主要通过与碳、氮形成析出物来实现,尤其与氮形成的VN析出能够很大程度提高钢板的强度,且可以抑制BN析出,避免因B析出导致的强度降低。除此以外,V的加入还可与H结合,提高钢板抗延迟断裂能力,本发明中V添加量为0.045-0.105%。
Mo:钼是碳化物形成元素,能够提高钢板强度和韧性,Mo能够显著提高奥氏体稳定性,增加钢材淬透性,因此本发明的Mo含量的选择在0.08-0.11%。
B:硼元素能显著提高钢的淬透性,当B含量高于0.0050%,过剩的B与钢中的N形成B的化合物,降低钢板的性能,因此本发明硼含量范围为0.0010-0.0030%。
RE:稀土具有强的脱氧、脱硫能力,形成的球状硫化物或硫氧化物取代了长条状硫化锰夹杂,可提高钢板的塑性和各向异性,稀土能够提高钢板的疲劳性能,改善钢板的焊接性能,稀土与钢中其它杂质元素具有强的亲和力,可降低钢中的硫、氧、磷、氢等元素含量,消除其有害作用。因此本发明将稀土(La+Ce)含量限定在0.010-0.018%。
Ca:钙可改变钢种硫化物(MnS)的形态,防止形成长条形的MnS夹杂物,提高钢板的塑性、韧性和疲劳性能。因此本发明将Ca含量控制在0.0011-0.0030%。
N:对于含B钢,N的含量越低越好,但过低会导致生产困难,增加成本,因此本发明中N含量≤0.003%。
钢中组织铁素体体积百分比35%~45%、珠光体体积百分比55%~65%。
钢板屈服强度≥390MPa、抗拉强度≥540MPa,横向伸长率A50≥40%。
钢板凸度控制精度为±45μm,平直度控制在20I以内,厚度控制精度为±45μm。
成品钢板厚度为12~18mm。
一种热冲压用390MPa级汽车桥壳用钢生产的汽车桥壳,在700℃~740℃保温40s~60s,热冲压后空冷至室温,汽车桥壳的屈服强度≥415MPa、抗拉强度≥510MPa,横向伸长率A50≥36%,-40℃横向冲击功≥102J。
一种热冲压用390MPa级汽车桥壳用钢的生产方法,具体方法包括:
1)冶炼工艺:采用RH+LF工艺,严格控制H、O含量,H≤0.0002%,O≤0.0015%,在精炼工序进行钙处理,保证w(Ca)/w(Al)=0.09-0.14,连铸过程中投入电磁搅拌和轻压下技术,铸坯拉速≤1.1m/min;铸坯下线后进行堆垛缓冷。
2)加热工艺:将(160-240)mm厚×(1510~1910)mm宽的连铸板坯直接热送热装到步进式加热炉内加热,热装温度>700℃,预热段以750~950℃的炉气温度进行高温快速预热,预热时间20~35min,加热1段、加热2段的温度分别控制在1000~1200℃、1230~1260℃,加热1段和加热2段的总时间20~25min,均热段的温度1240~1260℃,均热时间110~165min;炉膛压力在动态中始终控制在微正压状态,正压力值控制在4~16Pa;降低氧化烧损。适当的加热温度和合适的保温时间使板坯中合金元素完全固溶、板坯成分均匀,并起到控制原始奥氏体晶粒尺寸及节约能源等作用。
3))轧制工艺:粗轧采用3+3模式的轧制工艺,(R1采用3道次轧制,R2采用3道次轧制)共6道次轧制和4道次除鳞工艺,第一架R1粗轧机在1、3道次除鳞,除鳞箱上下2排喷水集管同时开启,高压水出口压力为18~25MPa,第二架R2粗轧机在4、6道次除鳞,除鳞箱上下2排喷水集管同时开启,高压水出口压力为20~32MPa,粗轧出口温度为1080~1130℃,中间坯厚度50~65mm,宽度1510~1910mm,中间坯进热轧精轧机组前采用保温罩保温,减轻中间坯在延迟辊道上的温降和头尾及板宽方向的温差,精轧为n机架连续轧制,5≤n≤8,精轧前高压水除鳞,精轧入口温度不高于1060℃,终轧温度为800~920℃,精轧采用大张力轧制,保证精轧机F(n-4)与精轧机F(n-3)机架间张力控制在7~20N/mm2,精轧机F(n-3)与精轧机F(n-2)机架间张力控制在8~22N/mm2,精轧机F(n-2)与精轧机F(n-1)机架间张力控制在6~20N/mm2,精轧机F(n-1)与精轧机F(n)机架间张力控制在6~20N/mm2,同时,F(n-1)、F(n)机架采用高水压20~32MPa除鳞,其余机架间冷却水全部开启;
4)冷却工艺:终轧后采用前段快速连续层流冷却,冷却速率≥65℃/s;连续的层流冷却工艺使铁素体大量快速的析出,在抑制晶粒长大同时,还使铁素体的含量得到了保证,从而使得铁素体晶粒细化。
5)卷取温度:卷取温度为600~650℃。卷取温度过高导致钢板强度不足,过低会使延伸率降低,在温度范围,可以保证钢板卷取后第二相粒子的充分析出,同时塑性良好。
与现有技术相比,本发明的有益效果是:
1)Ti的加入能够有效地延迟变形奥氏体的再结晶、阻止奥氏体晶粒长大、提高奥氏体再结晶温度,细化晶粒,同时改善钢的强度和韧性,而且,Ti是强碳、氮化物形成元素,能够与碳、氮结合形成稳定细小的碳、氮化物,起到显著的析出强化作用;
2)V的加入钒具有显著的析出强化和细晶强化的作用,尤其与氮形成的VN析出能够很大程度提高钢板的强度,且可以抑制BN析出,避免因B析出导致的强度降低。除此以外,V的加入还可与H结合,提高钢板抗延迟断裂能力;
3)Mo的加入能够提高钢板强度和韧性,Mo能够显著提高奥氏体稳定性,增加钢材淬透性;
4)稀土具有强的脱氧、脱硫能力,形成的球状硫化物或硫氧化物取代了长条状硫化锰夹杂,可提高钢板的塑性和各向异性,稀土能够提高钢板的疲劳性能,改善钢板的焊接性能;
5)Ca的加入可改变钢种硫化物的形态,提高钢板的塑性、韧性和疲劳性能;
6)轧后采用前段快速连续冷却工艺,避免了钢板中带状组织的产生;
7)本发明具有优异的力学性能,屈服强度≥390MPa、抗拉强度≥540MPa,横向伸长率A50≥40%,并且在700℃-740℃,保温40s-60s,热冲压后空冷至室温,汽车桥壳的屈服强度≥415MPa、抗拉强度≥510MPa,横向伸长率A50≥36%,-40℃横向冲击功≥102J。
具体实施方式
通过实施例对本发明进行更详细的描述,这些实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的范围有任何的限制。
本发明的加热、轧制及热处理的工艺过程如下:
将(160-240)mm厚×(1510~1910)mm宽的连铸板坯直接热送热装到步进式加热炉内加热,热装温度>700℃,预热段以750~950℃的炉气温度进行高温快速预热,预热时间20~35min,加热1段、加热2段的温度分别控制在1000~1200℃、1230~1260℃,加热1段和加热2段的总时间20~25min,均热段的温度1240~1260℃,均热时间110~165min,粗轧采用3+3模式的轧制工艺,(R1采用3道次轧制,R2采用3道次轧制)共6道次轧制和4道次除鳞工艺,第一架R1粗轧机在1、3道次除鳞,除鳞箱上下2排喷水集管同时开启,高压水出口压力为18~25MPa,第二架R2粗轧机在4、6道次除鳞,除鳞箱上下2排喷水集管同时开启,高压水出口压力为20~32MPa,粗轧出口温度为1080~1130℃,中间坯厚度50~65mm,宽度1510~1910mm,中间坯进热轧精轧机组前采用保温罩保温,减轻中间坯在延迟辊道上的温降和头尾及板宽方向的温差,精轧为n机架(5≤n≤8)连续轧制,精轧前高压水除鳞,精轧入口温度不高于1060℃,终轧温度为800~920℃,精轧采用大张力轧制,保证精轧机F(n-4)与精轧机F(n-3)机架间张力控制在7~20N/mm2,精轧机F(n-3)与精轧机F(n-2)机架间张力控制在8~22N/mm2,精轧机F(n-2)与精轧机F(n-1)机架间张力控制在6~20N/mm2,精轧机F(n-1)与精轧机F(n)机架间张力控制在6~20N/mm2,同时,F(n-1)、F(n)机架采用高水压20~32MPa除鳞,其余机架间冷却水全部开启;钢板凸度控制精度为±45μm,平直度控制在20I以内,厚度控制精度为±45μm,成品厚度为12~18mm,终轧后采用前段快速连续层流冷却,冷却速率≥65℃/s,卷取温度为600~650℃。
本发明的6个实施例的具体成分见表1、温度制度见表2、精轧张力控制参数见表3、钢板的性能见表4、组织体积百分比见表5、热冲压后性能见表6。
表1本发明实施例的化学成分(wt,%)
Figure BDA0003618267290000061
表2本发明实施例的热轧温度制度
Figure BDA0003618267290000071
表3本发明实施例精轧张力控制参数(n取5)
Figure BDA0003618267290000072
表4本发明实施例的力学性能参数
Figure BDA0003618267290000081
表5本发明实施例中组织体积百分比
编号 铁素体 珠光体
实施例1 35% 65%
实施例2 38% 62%
实施例3 40% 60%
实施例4 41% 59%
实施例5 44% 56%
实施例6 45% 55%
表6本发明实施例中热冲压后汽车桥壳性能
Figure BDA0003618267290000082

Claims (4)

1.一种热冲压用390MPa级汽车桥壳用钢,其特征在于,钢中化学成分按重量百分比计为:C 0.075%~0.105%、Si 0.05%~0.124%、Mn 1.15%~1.45%、Al 0.025%~0.062%、Ti0.004%~0.035%、V 0.045%~0.105%、Mo 0.08%~0.11%、B 0.0010%~0.0030%、稀土元素La+Ce 0.010%~0.018%、Ca 0.0011%~0.0030%、 P≤0.010%、S≤0.005%、N≤0.003%,余量为Fe和不可避免的杂质;
钢板组织铁素体体积百分比35%~45%、珠光体体积百分比55%~65%;
钢板屈服强度≥390MPa、抗拉强度≥540MPa,横向伸长率A50≥40%;
钢板在700℃~740℃保温40s~60s,热冲压后空冷至室温,生产的汽车桥壳的屈服强度≥415MPa、抗拉强度≥510MPa,横向伸长率A50≥36%,-40℃横向冲击功≥102J;
热冲压用390MPa级汽车桥壳用钢的生产方法,包括:
1)冶炼工艺:采用RH+LF工艺,控制H、O含量,H≤0.0002%,O≤0.0015%,在精炼工序进行钙处理,保证w(Ca)/w(Al)=0 .09-0 .14,铸坯拉速≤1 .1m/min;
2)加热工艺:将连铸板坯热送热装到步进式加热炉内加热,热装温度>700 ℃,预热段温度750~950℃,预热时间20~35min,加热1段、加热2段的温度分别控制在1000~1200℃、1230~1260℃,加热1段和加热2段的总时间20~25min,均热段的温度 1240~1260℃,均热时间110~165min;
3))轧制工艺:中间坯进热轧精轧机组前采用保温罩保温,精轧为n机架连续轧制,5≤n≤8,精轧前除鳞,精轧入口温度不高于1060℃,终轧温度为800~920℃,保证精轧机F(n-4)与精轧机F(n-3)机架间张力控制在7~20N/mm2,精轧机F(n-3)与精轧机F(n-2)机架间张力控制在8~22N/mm2,精轧机F(n-2)与精轧机F(n-1)机架间张力控制在6~20N/mm2,精轧机F(n-1)与精轧机F(n)机架间张力控制在6~20N/mm2,同时,F(n-1)、F(n)机架采用高水压20~32MPa除鳞;
4)冷却工艺:终轧后采用前段快速连续层流冷却,冷却速率≥65℃/s;
5)卷取温度:卷取温度为600~650℃。
2.根据权利要求1所述的一种热冲压用390MPa级汽车桥壳用钢,其特征在于,钢板凸度控制精度为±45μm,平直度控制在20I以内,厚度控制精度为±45μm。
3.根据权利要求1所述的一种热冲压用390MPa级汽车桥壳用钢,其特征在于,成品钢板厚度为12~18mm。
4.根据权利要求1所述的一种热冲压用390MPa级汽车桥壳用钢,其特征在于,粗轧采用3+3模式的轧制工艺,共6道次轧制和4道次除鳞工艺第一架R1粗轧机在1、3道次除鳞,高压水出口压力为18~25MPa,第二架R2粗轧机在4、6道次除鳞,高压水出口压力为20~32MPa,粗轧出口温度为1080~1130℃。
CN202210450190.1A 2022-04-27 2022-04-27 一种热冲压用390MPa级汽车桥壳用钢及其生产方法 Active CN114836696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210450190.1A CN114836696B (zh) 2022-04-27 2022-04-27 一种热冲压用390MPa级汽车桥壳用钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210450190.1A CN114836696B (zh) 2022-04-27 2022-04-27 一种热冲压用390MPa级汽车桥壳用钢及其生产方法

Publications (2)

Publication Number Publication Date
CN114836696A CN114836696A (zh) 2022-08-02
CN114836696B true CN114836696B (zh) 2023-06-20

Family

ID=82568763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210450190.1A Active CN114836696B (zh) 2022-04-27 2022-04-27 一种热冲压用390MPa级汽车桥壳用钢及其生产方法

Country Status (1)

Country Link
CN (1) CN114836696B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747643B (zh) * 2022-11-01 2024-03-15 本钢板材股份有限公司 一种1.2~2.0mm薄规格700MPa级热轧大梁钢及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011746A (zh) * 2019-05-28 2020-12-01 宝山钢铁股份有限公司 一种热冲压后屈服强度600MPa级的钢材料及其制造方法
CN112226690A (zh) * 2020-09-30 2021-01-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辋用酸洗钢板及其制造方法
CN112226691A (zh) * 2020-09-30 2021-01-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辐用热轧钢板及其制造方法
CN112267067A (zh) * 2020-09-30 2021-01-26 鞍钢股份有限公司 2000MPa级热冲压车轮轮辋用热轧钢板及其制造方法
CN112267065A (zh) * 2020-09-30 2021-01-26 鞍钢股份有限公司 2000MPa级热冲压车轮轮辋用酸洗钢板及其制造方法
CN112267066A (zh) * 2020-09-30 2021-01-26 鞍钢股份有限公司 1800MPa级热冲压车轮轮辋用热轧钢板及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101748329B (zh) * 2009-12-24 2012-07-04 马鞍山钢铁股份有限公司 一种610MPa汽车大梁板用钢及其制造方法
CN103556048B (zh) * 2013-10-24 2015-04-29 钢铁研究总院 一种低屈强比、高强度汽车用双相钢板的生产方法
CN108588550A (zh) * 2018-01-19 2018-09-28 河钢股份有限公司承德分公司 一种热轧冲压桥壳用钢板及其生产方法
CN111647805B (zh) * 2020-05-12 2021-12-21 首钢集团有限公司 一种热成形后屈服强度600MPa级桥壳钢及其制备方法、桥壳
CN113416902B (zh) * 2021-06-30 2022-06-14 宝武集团鄂城钢铁有限公司 一种低成本屈服强度460MPa级热成形桥壳钢板及其制备方法
CN114032455B (zh) * 2021-10-18 2022-08-26 武汉钢铁有限公司 一种易焊接800MPa级热连轧桥壳钢及生产方法
CN113957355A (zh) * 2021-10-28 2022-01-21 攀钢集团攀枝花钢铁研究院有限公司 510MPa级热冲压用桥壳钢及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011746A (zh) * 2019-05-28 2020-12-01 宝山钢铁股份有限公司 一种热冲压后屈服强度600MPa级的钢材料及其制造方法
CN112226690A (zh) * 2020-09-30 2021-01-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辋用酸洗钢板及其制造方法
CN112226691A (zh) * 2020-09-30 2021-01-15 鞍钢股份有限公司 1800MPa级热冲压车轮轮辐用热轧钢板及其制造方法
CN112267067A (zh) * 2020-09-30 2021-01-26 鞍钢股份有限公司 2000MPa级热冲压车轮轮辋用热轧钢板及其制造方法
CN112267065A (zh) * 2020-09-30 2021-01-26 鞍钢股份有限公司 2000MPa级热冲压车轮轮辋用酸洗钢板及其制造方法
CN112267066A (zh) * 2020-09-30 2021-01-26 鞍钢股份有限公司 1800MPa级热冲压车轮轮辋用热轧钢板及其制造方法

Also Published As

Publication number Publication date
CN114836696A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN108504958B (zh) 一种690MPa级热轧厚规格低屈强比汽车轮辐用钢及其制备方法
CN112095046B (zh) 一种超高强度冷轧dh1180钢及其制备方法
CN110669914B (zh) 一种冷冲压用高强汽车桥壳用钢及其生产方法
CN104694822A (zh) 一种屈服强度700MPa级高强度热轧钢板及其制造方法
CN107502819B (zh) 一种600MPa级0.6mm以下薄规格冷轧双相钢及其制备方法
CN109487153B (zh) 一种抗拉强度440MPa级高扩孔热轧酸洗钢板
CN113549823B (zh) 一种低屈强比高扩孔率900MPa级热轧酸洗复相钢及其生产方法
CN111455282B (zh) 采用短流程生产的抗拉强度≥1500MPa淬火配分钢及方法
CN105274432A (zh) 600MPa级高屈强比高塑性冷轧钢板及其制造方法
CN110295320A (zh) 一种lf-rh精炼工艺生产的大壁厚x52ms抗酸管线钢板及其制造方法
CN111172466B (zh) 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法
CN110551942B (zh) 一种650MPa级热轧汽车轮辋用双相钢及其制备方法
CN110669913B (zh) 一种高强汽车车轮用热轧酸洗双相钢及其生产方法
CN109898016A (zh) 500MPa级以上高扩孔热轧酸洗钢板及其制造方法
CN109694985B (zh) 性能优良的800MPa级热轧双相钢板及其制造方法
CN114892080B (zh) 一种720MPa级析出强化型热轧贝氏体钢及其生产方法
CN110343967B (zh) 一种正火轧制获得纵向性能均匀的钢板的制造方法
CN114836696B (zh) 一种热冲压用390MPa级汽车桥壳用钢及其生产方法
CN114807780B (zh) 一种热冲压用600MPa级汽车桥壳用钢及其生产方法
WO2021057899A1 (zh) 一种高扩孔复相钢及其制造方法
CN112410671A (zh) 一种采用复相组织生产轮辋用钢的生产方法
CN111996462A (zh) 一种纵向变厚度超高强船板及生产方法
CN113373370A (zh) 一种1100MPa级桥壳钢及其制造方法
CN114807777B (zh) 一种热冲压用500MPa级汽车桥壳用钢及其生产方法
CN113403540A (zh) 500MPa级低合金高强冷轧钢板及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant