CN114765046A - 使用平面相关斜坡率和定时控制用于程序操作的存储器装置和操作方法 - Google Patents

使用平面相关斜坡率和定时控制用于程序操作的存储器装置和操作方法 Download PDF

Info

Publication number
CN114765046A
CN114765046A CN202110681588.1A CN202110681588A CN114765046A CN 114765046 A CN114765046 A CN 114765046A CN 202110681588 A CN202110681588 A CN 202110681588A CN 114765046 A CN114765046 A CN 114765046A
Authority
CN
China
Prior art keywords
program operation
bit line
program
default
lookup table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110681588.1A
Other languages
English (en)
Inventor
连佑中
曾怀远
T·埃利亚什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SanDisk Technologies LLC
Original Assignee
SanDisk Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SanDisk Technologies LLC filed Critical SanDisk Technologies LLC
Publication of CN114765046A publication Critical patent/CN114765046A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • G11C16/3427Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3404Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • G11C16/3454Arrangements for verifying correct programming or for detecting overprogrammed cells
    • G11C16/3459Circuits or methods to verify correct programming of nonvolatile memory cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/32Timing circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)

Abstract

本发明题为“使用平面相关斜坡率和定时控制用于程序操作的存储器装置和操作方法”。本发明提供了一种存储器装置和操作方法。该装置包括连接到字线和位线并布置在多个平面中的存储器单元。该装置还包括控制电路,该控制电路耦接到字线和位线并且被配置为确定存储器单元的程序操作是否涉及该多个平面中的全部平面。响应于该存储器单元的该程序操作不涉及该多个平面中的全部平面,该控制电路在该程序操作期间基于与在该程序操作中被编程验证的该存储器单元相关联的该多个平面的量调整施加到该位线的位线电压的位线斜坡率和施加到该字线的至少一个字线电压的字线斜坡率中的至少一者。

Description

使用平面相关斜坡率和定时控制用于程序操作的存储器装置 和操作方法
技术领域
本申请涉及非易失性存储器装置和非易失性存储器装置的操作。
背景技术
本节段提供与本公开相关联的技术相关的背景信息,并且由此不一定为现有技术。
电荷俘获材料可以用于存储器设备中以存储表示数据状态的电荷。电荷俘获材料可以被垂直布置在三维(3D)堆叠的存储器结构中,或者被水平布置在二维(2D)存储器结构中。3D存储器结构的一个示例是位成本可扩展(BiCS)体系结构,该体系结构包括交替的导电层和介电层的堆叠。在叠堆中形成存储器孔,然后通过用包括电荷俘获层的材料填充存储器孔来形成NAND串。直NAND串在一个存储器孔中延伸,而管或U形NAND串(P-BiCS)包括在两个存储器孔中延伸并且通过底部背栅接合的一对存储器单元的竖直列。存储器单元的控制栅由导电层提供。
然而,在操作此类存储器设备时存在各种挑战。例如,在程序操作期间的特定时间将各种电压施加到位线和字线。施加这些电压的速率可影响存储器设备的电流消耗以及编程操作的速度。
发明内容
本节段提供了本公开的一般概述,并且不是其全部范围或其所有特征和优点的全面公开。
本公开的目的是提供解决和克服上述缺点的存储器装置和操作该存储器装置的方法。
因此,本公开的一个方面是提供一种装置,该装置包括连接到字线和位线并布置在多个平面中的多个存储器单元。该装置还包括控制电路,该控制电路耦接到字线和位线并且被配置为确定多个存储器单元的程序操作是否涉及多个平面中的全部平面。响应于多个存储器单元的程序操作不涉及多个平面中的全部平面,控制电路被配置为在多个存储器单元的程序操作期间基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量调整施加到位线的位线电压的位线斜坡率和施加到字线的至少一个字线电压的字线斜坡率中的至少一者。
根据本公开的另一方面,提供了一种与存储器装置通信的控制器,该存储器装置包括连接到字线和位线并布置在多个平面中的多个存储器单元。控制器被配置为确定多个存储器单元的程序操作是否涉及多个平面中的全部平面。响应于多个存储器单元的程序操作不涉及多个平面中的全部平面,控制器指示存储器装置在多个存储器单元的程序操作期间基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量调整施加到位线的位线电压的位线斜坡率和施加到字线的至少一个字线电压的字线斜坡率中的至少一者。
根据本公开的附加方面,提供了一种操作存储器装置的方法。存储器装置包括连接到字线和位线并布置在多个平面中的多个存储器单元。该方法包括确定多个存储器单元的程序操作是否涉及多个平面中的全部平面的步骤。该方法的下一个步骤是响应于多个存储器单元的程序操作不涉及多个平面中的全部平面,在多个存储器单元的程序操作期间基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量调整施加到位线的位线电压的位线斜坡率和施加到字线的至少一个字线电压的字线斜坡率中的至少一者。
根据本文提供的描述,另外的适用领域将变得显而易见。本发明内容中的描述和具体示例仅旨在用于例证的目的,并非旨在限制本发明的范围。
附图说明
本文所述的附图仅用于所选实施方案的例示性目的,而不是所有可能的具体实施,并且不旨在限制本公开的范围。
图1A为根据本公开的各方面的示例性非易失性存储器***的框图;
图1B是根据本公开的各方面的包括多个非易失性存储器***的存储模块的框图;
图1C为根据本公开的各方面的分级存储***的框图;
图2A是根据本公开的各方面的图1A的非易失性存储器***的控制器的示例性部件的框图;
图2B是根据本公开的各方面的图1A的非易失性存储器***的非易失性存储器管芯的示例性部件的框图;
图3为根据本公开的各方面的示例浮栅晶体管的框图;
图4是根据本公开的各方面的作为通过浮栅晶体管汲取的控制栅电压的函数的漏-源电流的曲线的图示;
图5A是根据本公开的各方面的被组织成块的多个存储器单元的框图;
图5B是根据本公开的各方面的在不同平面中被组织成块的多个存储器单元的框图;
图6是根据本公开的各方面的示例二维NAND型闪存存储器阵列的电路图;
图7是根据本公开的各方面的三维(3-D)NAND串的示例物理结构;
图8是根据本公开的各方面的U形3-D NAND串的示例物理结构;
图9描绘了根据本公开的各方面的3-D NAND存储器阵列的块的示例配置;
图10A是根据本公开的各方面的沿着示例存储器结构的位线方向(沿着y方向)的横截面图,其中直的竖直NAND串从衬底中或附近的公共源极连接延伸到在存储器单元的物理级上方延伸的全局位线;
图10B是根据本公开的各方面的图10A的单独可选NAND串组的电路图;
图10C是根据本公开的各方面的沿x-z平面的横截面中的单独可选NAND串组的电路图;
图11A是根据本公开的各方面的存储两位数据的存储器单元的阈值电压分布曲线的曲线图;
图11B是根据本公开的各方面的存储三位数据的存储器单元的阈值电压分布曲线的曲线图;
图11C是根据本公开的各方面的存储四位数据的存储器单元的阈值电压分布曲线的曲线图;
图12为根据本公开的各方面的图2B的感测块的示例配置的框图;
图13A示出了根据本公开的各方面的编程时间与位线电压斜坡率参数的曲线图;
图13B示出了根据本公开的各方面的峰值电流与位线电压斜坡率参数;
图14A示出了根据本公开的各方面的用于具有两个平面的装置的具有各种定时的峰值电流与位线电压斜坡率参数的曲线图;
图14B示出了根据本公开的各方面的在程序操作期间针对位线电压斜坡率参数的多个值的一段时间内装置的电流消耗的曲线图;
图15A和图15B示出了根据本公开的各方面的用于调整施加到位线的位线电压斜坡率参数或位线电压的位线斜坡率的示例默认位线电压斜坡率查找表和示例移位位线电压斜坡率查找表;
图16示出了根据本公开的各方面的高电压电源电平VDDSA、VHSA和对应的峰值电流的示例曲线图;
图17A和图17B示出了根据本公开的各方面的示例默认通过电压斜坡率查找表和示例移位通过电压斜坡率查找表;
图18A和图18B示出了根据本公开的各方面的示例默认读取电压斜坡率查找表和示例移位读取电压斜坡率查找表;
图19A和图19B示出了根据本公开的各方面的示例默认通过电压斜坡变化时间段查找表和示例移位通过电压斜坡变化时间段查找表;
图20A和图20B示出了根据本公开的各方面的示例默认读取电压斜坡变化时间段查找表和示例移位读取电压斜坡变化时间段查找表;
图21示出了根据本公开的各方面的如何参考电压相对于时间的曲线图来确定通过电压或读取电压斜坡率;以及
图22示出了根据本公开的各方面的操作存储器装置的方法的步骤。
具体实施方式
在以下描述中,阐述了细节以提供对本公开的理解。在一些情况下,尚未详细描述或示出某些电路、结构和技术,以免模糊本公开。
一般来讲,本公开涉及非常适用于许多应用的类型的非易失性存储器装置。将结合一个或多个示例实施方案来描述本公开的非易失性存储器装置和相关联的操作成方法。然而,所公开的具体示例实施方案仅仅是为了清楚地描述本发明的概念、特征、优点和目的,以允许本领域的技术人员理解和实践本公开。具体地,提供了示例实施方案,使得本公开将为全面的,并且将向本领域的技术人员完全传达该范围。阐述了许多具体细节,诸如具体部件、设备和方法的示例,以提供对本公开的实施方案的透彻理解。对于本领域的技术人员将显而易见的是,不需要采用具体细节,示例实施方案可以多种不同形式体现,并且均不应理解为限制本公开的范围。在一些示例实施方案中,没有详细描述众所周知的过程、众所周知的设备结构和众所周知的技术。
在一些存储器设备或装置中,存储器单元彼此接合,诸如在块或子块中的NAND串中。每个NAND串包括多个存储器单元,该多个存储器单元串联连接在位于连接到位线的NAND串的漏极侧上的一个或多个漏极侧SG晶体管(SGD晶体管)与位于连接到源极线的NAND串的源极侧上的一个或多个源极侧SG晶体管(SGS晶体管)之间。此外,存储器单元可以布置有用作控制栅极的公共控制栅极线(例如,字线)。一组字线从块的源极侧延伸到块的漏极侧。存储器单元可以其他类型的串连接,并且也可以其他方式连接。
在3D存储器结构中,存储器单元可被布置以叠堆的竖直串,其中该叠堆包括交替的导电层和介电层。导电层用作连接到存储器单元的字线。存储器单元可包括有资格存储用户数据的数据存储器单元,以及没有资格存储用户数据的虚设存储器单元或非数据存储器单元。
每个存储器单元可根据程序命令中的写入数据与数据状态相关联。基于该存储器单元的数据状态,存储器单元将保持在擦除状态或被编程为编程数据状态。例如,在每单元一位存储器设备或装置中,存在两种数据状态,包括擦除状态和编程状态。在每单元两位存储器设备中,存在四种数据状态,这些数据状态包括擦除状态和三种更高的数据状态,称为A、B和C数据状态(参见图11A)。在每单元三位的存储器设备中,存在八种数据状态,包括擦除状态和七种更高的数据状态,该七种更高的数据状态被称为A、B、C、D、E、F和G数据状态(参见图11B)。在每单元四位存储器设备中,存在十六种数据状态,包括擦除状态和十五种更高的数据状态(参见图11C)。
对存储器装置进行编程的各个阶段可能需要可变量的电流,从而导致装置在程序操作期间消耗的电流总量。例如,在编程期间,在特定时间将各种电压施加到位线和字线。施加这些电压的速率可影响电流消耗以及编程操作的速度。然而,使用存储器装置或设备的主机或设备可能具有电流消耗限制,其限制各种电压如何施加到位线和字线。
图1A是示出存储器***100的框图。存储器***100可包括控制器102以及可由一个或多个存储器管芯104组成的存储器。如本文所用,术语管芯指的是在单个半导体基板上形成的一组存储器单元以及用于管理这些存储器单元的物理操作的相关电路。控制器102可与主机***相连接,并将用于读取、编程和擦除操作的命令序列发送到非存储器管芯104。
该控制器102(可以是闪存存储器控制器)可以采用以下形式:例如处理电路、微处理器或处理器,以及存储可由(微)处理器执行的计算机可读程序码的计算机可读介质(例如,软件或固件)、逻辑门、开关、专用集成电路(ASIC)、可编程逻辑控制器和嵌入式微控制器。控制器102可以配置有硬件和/或固件,以执行下文描述并且在流程图中示出的各种功能。另外,示出为在控制器内部的一些部件可也存储在控制器外部,并且可以使用其他部件。此外,短语“操作地与...通信”可能意味着直接或间接地(有线或无线)与一个或多个部件通信、通过一个或多个部件通信,其可在本文中示出或未示出。
如本文所用,控制器102是管理存储在存储器管芯中的数据并与主机诸如计算机或电子设备通信的设备。除了本文所述的特定功能之外,控制器102还可具有各种功能。例如,控制器102可格式化存储器管芯104以确保其正常工作,标出坏的闪存存储器单元,并分配备用单元以替换未来发生故障的单元。备用单元的一些部分可用于保持固件以操作控制器102并实现其他特征。在操作中,当主机需要从存储器管芯104读取数据或将数据写入该存储器管芯时,主机将与控制器102通信。如果主机提供要向其读取/写入数据的逻辑地址,则控制器102可将从主机接收的逻辑地址转换为存储器管芯104中的物理地址。(或者,主机可以提供物理地址)。控制器102还可执行各种存储器管理功能,诸如但不限于损耗均衡(分配写入以避免损耗否则将被重复写入的特定存储器块)和垃圾收集(在块已满之后,仅将有效的数据页面移动到新块,因此可以擦除并重新使用完整块)。
控制器102和非易失性存储器管芯104之间的接口可以是任何合适的接口,诸如闪存接口,包括被配置用于切换模式200、400、800、1000或更高的接口。对于一些示例性实施方案,存储器***100可以是基于卡的***,诸如安全数字(SD)或微型安全数字(微型SD)卡。在另选的示例性实施方案中,存储器***100可以是嵌入式存储器***的一部分。
在图1A所示的实施例中,存储器***100被示为包括控制器102和非易失性存储器管芯104之间的单个通道。然而,本文所述的主题不限于具有单个存储器通道的存储器***。例如,在一些存储器***中,诸如体现NAND架构的那些存储器***,根据控制器能力,在控制器102和存储器管芯104之间可存在2、4、8或更多个通道。在本文描述的任何实施方案中,即使在附图中示出单个信道,控制器和存储器管芯104之间也可以存在多于一个单个信道。
图1B示出了包括多个非易失性存储器***100的存储模块200。因此,存储模块200可包括与主机和存储***204相连接的存储控制器202,该存储***包括多个非易失性存储器***100。存储控制器202和非易失性存储器***100之间的接口可为总线接口,诸如作为示例的串行高级技术附件(SATA)、***组件接口express(PCIe)接口、嵌入式多媒体卡(eMMC)接口、SD接口或通用串行总线(USB)接口。在一个实施方案中,存储模块200可以是固态驱动器(SSD),诸如存在于便携式计算设备(诸如膝上型电脑和平板电脑)和移动电话中。
图1C是示出了分级存储***210的框图。分级存储***210可包括多个存储控制器202,每个存储控制器控制相应的存储***204。主机***212可经由总线接口访问分级存储***210内的存储器。作为示例,示例性总线接口可包括非易失性存储器express(NVMe)、以太网光纤信道(FCoE)接口、SD接口、USB接口、SATA接口、PCIe接口或eMMC接口。在一个实施方案中,图1C中所示的存储***210可以是可由多个主计算机访问的可机架安装的大容量存储***,诸如将存在于数据中心或需要大容量存储的其他位置中。
图2A是更详细地示出控制器102的示例性部件的框图。控制器102可包括与主机进行交互的前端模块108、与非易失性存储器管芯104进行交互的后端模块110以及执行非易失性存储器***100的各种功能的各种其他模块。一般来讲,模块可以是硬件或硬件和软件的组合。例如,每个模块可包括专用集成电路(ASIC),现场可编程门阵列(FPGA),电路,数字逻辑电路,模拟电路,离散电路、门或任何其他类型的硬件的组合,或者其组合。除此之外或另选地,每个模块可包括存储器硬件,该存储器硬件包括可用处理器或处理器电路执行以实现模块的特征中的一个或多个的指令。当模块中的任一个包括存储器的包括可用处理器执行的指令的部分时,模块可包括或可不包括处理器。在一些示例中,每个模块可仅为存储器的包括可用处理器执行以实现对应模块的特征的指令的部分,而模块不包括任何其他硬件。由于每个模块都包括至少一些硬件,因此即使在所包括的硬件包括软件时,每个模块也可互换地称为硬件模块。
控制器102可包括缓冲管理器/总线控制器模块114,其管理随机存取存储器(RAM)116中的缓冲器并控制内部总线仲裁以在控制器102的内部通信总线117上进行通信。只读存储器(ROM)118可存储和/或访问***引导码。虽然图2A所示为与控制器102分开定位,但在其他实施方案中,RAM 116和ROM 118中的一者或两者可位于控制器102内。在其他实施方案中,RAM 116和ROM 118的部分可以位于控制器102内和控制器102外部。此外,在一些实施方式中,控制器102、RAM 116和ROM 118可以位于单独的半导体管芯上。
另外,前端模块108可包括提供与主机或下一级存储控制器的电接口的主机接口120和物理层接口(PHY)122。主机接口120类型的选择可取决于所使用的存储器的类型。主机接口120的示例类型可包括但不限于SATA、SATA Express、SAS、光纤通道、USB、PCIe和NVMe。主机接口120可通常有利于传输数据、控制信号和定时信号。
后端模块110可包括错误校正代码(ECC)引擎或模块124,该ECC引擎或模块对从主机接收的数据字节进行编码,并且对从非易失性存储器管芯104读取的数据字节进行解码和错误校正。后端模块110可还包括命令定序器126,该命令定序器生成命令序列,诸如编程命令序列、读取命令序列和擦除命令序列,以传输到非易失性存储器管芯104。另外,后端模块110可包括RAID(独立驱动器冗余阵列)模块128,该RAID模块管理RAID奇偶校验的生成和失败数据的恢复。RAID奇偶校验可用作写入到非易失性存储器***100中的数据的附加级的完整性保护。在一些情况下,RAID模块128可为ECC引擎124的一部分。存储器接口130向非易失性存储器管芯104提供命令序列,并且从非易失性存储器管芯104接收状态信息。连同命令序列和状态信息,可通过存储器接口130传送要编程到非易失性存储器管芯104中和从非易失性存储器管芯读取的数据。在一个实施方案中,存储器接口130可以是双数据速率(DDR)接口和/或切换模式200、400、800或更高的接口。控制层132可控制后端模块110的整体操作。
图2A中所示的非易失性存储器***100的附加模块可包括媒体管理层138,该媒体管理层执行非易失性存储器管芯104的存储器单元的损耗均衡、地址管理、并促进折叠操作,如下面进一步详细描述的。非易失性存储器***100可还包括其他分立部件140,诸如外部电气接口、外部RAM、电阻器、电容器或可与控制器102进行交互的其他部件。在另选的实施方案中,RAID模块128、媒体管理层138和缓冲区管理/总线控制器114的一者或多者是控制器102中可能不需要的任选部件。
图2B是更详细地示出存储器管芯104的示例性部件的框图。存储器管芯104可包括存储器单元结构142,该存储器单元结构包括多个存储器单元,或存储器元件。任何合适类型的存储器可用于存储器单元142。作为示例,存储器可以是动态随机存取存储器(“DRAM”)或静态随机存取存储器(“SRAM”),非易失性存储器,诸如电阻式随机存取存储器(“ReRAM”)、电可擦除可编程只读存储器(“EEPROM”)、闪存存储器(也可以被认为是EEPROM的子集)、铁电随机存取存储器(“FRAM”)和磁阻随机存取存储器(“MRAM”),以及能够存储信息的其他半导体元件。每种类型的存储器可具有不同的配置。例如,闪存存储器设备可以NAND配置或NOR配置进行配置。
存储器可以任何组合由无源和/或有源元件形成。举非限制性示例而言,无源半导体存储器元件包括ReRAM设备元件,该无源半导体存储器元件在一些实施方案中包括电阻率切换存储元件诸如反熔丝、相变材料等,以及任选地包括导引元件诸如二极管等。进一步举非限制性示例而言,有源半导体存储器元件包括EEPROM和闪存存储器设备元件,该有源半导体存储器元件在一些实施方案中包括具有电荷存储区域的元件,诸如浮栅、导电纳米粒子或电荷存储介电材料。
多个存储器元件可被配置为使得它们串联连接或者使得每个元件可被单独访问。以非限制性示例的方式,NAND配置中的闪存存储器设备(NAND存储器)通常包含串联连接的存储器元件。NAND存储器阵列可被配置为使得该阵列由存储器的多个串构成,其中串由共享单个位线并作为组被访问的多个存储器元件构成。另选地,可配置存储器元件,使得每个元件可被单独访问,例如NOR存储器阵列。NAND和NOR存储器配置是示例性的,并且存储器元件可以其它方式配置。
位于基板内和/或上方的半导体存储器元件可被布置成两个或三个维度,诸如二维存储器结构或三维存储器结构。
在二维存储器结构中,半导体存储器元件被布置在单个平面或单个存储器设备级中。通常,在二维存储器结构中,存储器元件被布置在平面中(例如,在x-z方向平面中),该平面基本上平行于支撑存储器元件的基板的主表面延伸。基板可以是存储器元件的层在其之上或之中形成的晶圆,或者其可以是在存储器元件形成后附接到其的承载基板。作为非限制性示例,基板可包括半导体,诸如硅。
存储器元件可被布置在处于有序阵列中(诸如在多个行和/或列中)的单个存储器设备级中。然而,存储器元件可以非常规配置或非正交配置排列。存储器元件可各自具有两个或更多个电极或接触线,诸如位线和字线。
布置三维存储器阵列,使得存储器元件占据多个平面或多个存储器设备级,从而形成三维结构(即x,y和z方向,其中z方向基本上垂直,并且x方向和y方向基本上平行于基板的主表面)。
作为非限制性示例,三维存储器结构可被垂直地布置为多个二维存储器设备级的堆叠。作为另一个非限制性示例,三维存储器阵列可被布置为多个垂直列(例如,基本上垂直于基板的主表面延伸的列,即,在z方向上),其中在每一列中每一列均具有多个存储器元件。列可以二维配置例如在x-y平面中布置,从而得到存储器元件的三维布置,其中元件位于多个垂直堆叠的存储器平面上。三维存储器元件的其他配置也可构成三维存储器阵列。
对于一些存储器配置,诸如闪存存储器,多个存储器单元142的存储器单元可以是浮栅晶体管(FGT)。图3示出了示例FGT 300的电路示意图。FGT 300可包括源极302、漏极304、控制栅306、浮栅308和衬底310。浮栅308可由绝缘体或绝缘材料包围,有助于保持浮栅308中的电荷。浮栅308内部的电荷的存在或不存在可引起FGT的阈值电压的移位,该阈值电压用于区分逻辑电平。对于存储在浮栅308中的每个给定电荷,发生相对于施加到控制栅306的固定控制栅电压VCG的对应漏-源导电电流ID。另外,FGT 300可具有可编程到其浮栅308上的相关联范围电荷,该相关联范围电荷限定对应的阈值电压窗口或对应的传导电流窗口。以此方式,每个FGT的阈值电压可指示存储在存储器单元中的数据。
图4是示出作为施加到控制栅306的控制栅电压VCG的函数的通过FGT 300汲取的漏-源电流ID的四条曲线402、404、406、408的图示。每条曲线402-408对应于浮栅308可在任何给定时间选择性地存储的四个不同电荷或电荷水平Q1、Q2、Q3、Q4中的相应一者。换句话讲,四条曲线402-408表示可在FGT 300,的浮栅308上编程的四个可能的电荷电平,分别对应于四个可能的存储器状态。在图4的示例图示中,FGT群体的阈值电压窗口在0.5伏(V)至3.5V的范围内。七个可能的存储器状态“0”、“1”、“2”、“3”、“4”、“5”和“6”被限定或延伸跨过阈值电压窗口,并且分别表示一个擦除状态和六个编程状态。不同状态可通过将阈值电压窗口划分为0.5V间隔的六个区域来界定。根据存储在其浮栅308中的电荷,FGT 300可处于这些状态中的一者,并且其中其漏-源电流ID与参考电流IREF相交。例如,FGT被编程为将电荷Q1存储在存储器状态“1”中,因为其曲线402在由控制栅电压VCG界定的阈值电压区域的在0.5V至1.0V范围内的区域中与参考电流IREF相交。FGT 300被编程为存储的存储器状态越多,限定阈值电压窗口的区域越细分。在一些示例配置中,阈值电压窗口可从-1.5V延伸到5V,从而提供6.5V的最大宽度。如果FGT 300可被编程为十六个可能状态中的任一个,则每个状态可占据跨越200毫伏(mV)至300mV的相应区域。阈值电压窗口的分辨率越高(即,FGT300可被编程到的状态越多),编程和读取操作中成功读取和写入数据所需的精度越高。下文相对于编程、编程验证和读取操作更详细地提供对存储器状态和阈值电压的进一步描述。
参见图5A,存储器单元142可被组织成N个块,从第一块Block 1延伸到第N块BlockN。参见图5B,对于一些示例配置,N个块被组织成多个平面。图5B示出了将块组织成两个平面的示例性配置,包括第一平面Plane 0和第二平面Plane 1。每个平面被示出为包括M个块,从第一块Block 1延伸到第M个块Block M。如图所示,平面0包括偶数块0、2、4、...、等,并且平面1包括奇数块1、3、5、...等。应当理解,尽管仅示出了两个平面,但存储器装置可替代地包括4个平面架构(或更多数量的平面)。对于平面0,块地址定义为4n;对于平面1,块地址定义为4n+1;对于平面2,块地址定义为4n+2;对于平面3,块地址定义为4n+3。可同时或独立地感测存储在不同平面中的数据。
对于存储器单元被组织成二维阵列的配置,存储器单元可被配置成块中的每一个块中的行和列的矩阵状结构。在行和列的交叉处是存储器单元。存储器单元的列被称为串,并且串中的存储器单元串联电连接。存储器单元的行被称为页面。在存储器单元是FGT的情况下,页面或行中的FGT的控制栅可电连接在一起。
另外,每个块包括连接到存储器单元的字线和位线。存储器单元的每个页面耦接到字线。在存储器单元是FGT的情况下,每条字线可在页面中耦接到FGT的控制栅。此外,每个存储器单元串耦接到位线。此外,单个串可跨越多条字线,并且串中的存储器单元的数量可等于块中的页面的数量。
图6是示例性二维NAND型闪存存储器阵列600的至少一部分的电路示意图,其可表示多个存储器单元142的至少一部分。例如,存储器阵列600可表示存储器管芯104上的块的单个平面。存储器阵列600可包括N个块6020至602N-1。每个块602包括P数量的FGT604的串,其中每个串耦接到P数量的位线BL0至BLP-1中的相应一条位线。另外,每个框602包括M个数量的FGT 604的页面,其中每个页面耦接到M条字线WL0至WLM-1中的相应一条字线。给定块602的每个第i、第j FGT(i,j)连接到给定块的第i条字线WLi并连接到第j条位线BLj。如图6所示,位线BL0至BLP-1在块6020至602N-1之间共享,这些位线可以在块之间共享,诸如相同平面内的块。
在每个框602内,每个串在一端连接到相关联的漏极选择栅晶体管606,并且每个串经由相关联的漏极选择栅晶体管606耦接到其相关联的位线BL。漏极选择栅晶体管6060至606P-1的开关可使用漏极选择栅偏置线SGD来控制,该漏极选择栅偏置线提供漏极选择栅偏置电压VSGD以接通和断开漏极选择晶体管6060至606P-1。此外,在每个框602内,每个串在其另一端连接到相关联的源极选择栅晶体管608,并且每个串经由相关联的源极选择栅晶体管608耦接到公共源极线SL。源极选择栅晶体管6080至608P-1的开关可使用源极选择栅偏置线SGS来控制,该源极选择栅偏置线提供源极选择栅偏置电压VSGS以接通和断开源极选择晶体管6080至608P-1。另外,虽然未示出,但在一些情况下,也可以在与源极选择栅晶体管6080至608P-1。相邻的存储器阵列600中使用不包含用户数据的虚设字线。虚设字线可以用于屏蔽边缘字线和FGT免受某些边缘效应的影响。
常规二维(2-D)NAND阵列的另选布置是三维(3-D)阵列。与沿着半导体晶圆的平坦表面形成的2-D NAND阵列相比,3-D阵列从晶圆表面向上延伸,并且通常包括向上延伸的存储器单元的叠堆或列。各种3D布置是可能的。在一种布置中,NAND串竖直地形成,其中一端(例如,源极)在晶圆表面处,并且另一端(例如,漏极)在顶部上。在另一种布置中,NAND串形成为U形,使得NAND串的两端可在顶部访问,从而便于此类串之间的连接。
图7示出了NAND串701的第一示例,该NAND串在垂直方向上延伸,即在垂直于衬底的x-y平面的z方向上延伸。形成存储器单元,其中竖直位线(本地位线)703穿过字线(例如,WL0、WL1等)。本地位线与字线之间的电荷俘获层存储电荷,该电荷影响由耦接到其所环绕的竖直位线(沟道)的字线(栅极)形成的晶体管的阈值电压。此类存储器单元可通过形成字线的叠堆并且然后蚀刻其中要形成存储器单元的存储器孔来形成。然后存储器孔衬有电荷俘获层,并且填充有合适的本地位线/沟道材料(具有用于隔离的合适的介电层)。
与二维(平面)NAND串一样,选择栅705、707位于串的任一端,以允许NAND串选择性地连接到外部元件709、711或与之隔离。此类外部元件通常是导电线,诸如服务于大量NAND串的公共源极线或位线。竖直NAND串可以以与平面NAND串类似的方式操作,并且单层单元(SLC)和多层单元(MLC)操作都是可能的。虽然图7示出了具有32个串联连接的单元(0-31)的NAND串的示例,但NAND串中的单元的数量可以是任何合适的数量。为清楚起见,并未示出全部单元。应当理解,在字线3-29(未示出)与本地竖直位线相交的地方形成附加单元。
图8示出了在竖直方向(z方向)上延伸的NAND串815的第二示例。在这种情况下,NAND串815形成U形,与位于结构顶部的外部元件(源极线“SL”和位线“BL”)连接。NAND串815的底部是连接NAND串815的两个翼816A、816B的可控栅(背栅“BG”)。在字线WL0-WL63与竖直本地位线817相交的地方形成总共64个单元(但在其他示例中,可以提供其他数量的单元)。选择栅SGS、SGD位于NAND串815的任一端,以控制NAND串815的连接/隔离。
竖直NAND串可以各种方式布置以形成3-D NAND阵列。图9示出了块中的多个NAND串连接到位线BL0的示例。具体地讲,示出了块BLK0及其子块SB0至SB6。在SB0-SB6中分别提供示例NAND串900n、910n、920n、930n、940n、950n和960n。在每个子块中,提供了多个NAND串。NAND串900n包括沟道900a、SGS晶体管901、连接到源极侧虚设字线WLDS的源极侧虚设存储器单元902、数据存储器单元903-913、连接到漏极侧虚设字线WLDD的漏极侧虚设存储器单元914以及SGD晶体管915-918。这种布置是方便的,但不是必需的,并且其他模式也是可能的。
NAND串910n包括沟道910a、SGS晶体管921、连接到源极侧虚设字线WLDS的源极侧虚设存储器单元922、数据存储器单元923-933、连接到漏极侧虚设字线WLDD的漏极侧虚设存储器单元934以及SGD晶体管935-938。
NAND串920n包括沟道920a、SGS晶体管941、连接到源极侧虚设字线WLDS的源极侧虚设存储器单元942、数据存储器单元943-953、连接到漏极侧虚设字线WLDD的漏极侧虚设存储器单元954以及SGD晶体管955-958。
NAND串930n包括沟道930a、SGS晶体管961、连接到源极侧虚设字线WLDS的源极侧虚设存储器单元962、数据存储器单元963-973、连接到漏极侧虚设字线WLDD的漏极侧虚设存储器单元974以及SGD晶体管975-978。
NAND串940n包括沟道940a、SGS晶体管981、连接到源极侧虚设字线WLDS的源极侧虚设存储器单元982、数据存储器单元983-993、连接到漏极侧虚设字线WLDD的漏极侧虚设存储器单元994以及SGD晶体管995-998。
NAND串950n包括沟道950a、SGS晶体管1001、连接到源极侧虚设字线WLDS的源极侧虚设存储器单元1002、数据存储器单元1003-1013、连接到漏极侧虚设字线WLDD的漏极侧虚设存储器单元1014以及SGD晶体管1015-1018。
NAND串960n包括沟道960a、SGS晶体管1021、连接到源极侧虚设字线WLDS的源极侧虚设存储器单元1022、数据存储器单元1023-1033、连接到漏极侧虚设字线WLDD的漏极侧虚设存储器单元1034以及SGD晶体管1035-1038。
SGD晶体管918、938、958、978、998、918和938分别是SB0-SB6中的第一最顶部SGD晶体管,SGD晶体管917、937、957、977、997、1017和1037分别是SB0-SB6中的第二SGD晶体管,SGD晶体管916、936、956、976、996、1016和1036分别是SB0-SB6中的第三SGD晶体管,并且SGD晶体管915、935、955、975、995、915和935分别是SB0-SB6中的第四SGD晶体管。
NAND串的源极端连接到公共源极线SL,并且NAND串的漏极端连接到公共位线BL0。
SGD晶体管可以在NAND串、子块和块内以各种方式连接。在该示例中,在每个子块SB0-SB6内,SGD晶体管915-918、935-938、955-958、975-978、995-998、1015-1018和1035-1038的控制栅极分别借由导电路径918a、938a、958a、978a、998a、1018a和1038a分别彼此连接。不同子块中的SGD晶体管的控制栅极彼此不连接。在每个子块中,NAND串中的连接的SGD晶体管利用公共控制栅极电压进行驱动。这提供了简化的具体实施,因为对于每个子块,一个SGD驱动器就足够了。
在擦除操作中,主要在第一SGD晶体管中产生GIDL。例如,该方法允许通过在不同子块中施加不同的SGD控制栅极电压而在不同子块中产生不同量的GIDL,同时横贯所有子块施加公共位线电压。
图10A示出了沿位线方向(沿y方向)的横截面中的存储器结构,其中直的竖直NAND串从衬底中或附近的公共源极连接延伸到在存储器单元的物理级上方延伸的全局位线(GBL0-GBL3)。块中的给定物理电平的字线由导电材料片形成。存储器孔结构向下延伸穿过这些导电材料片以形成存储器单元,该存储器单元通过竖直位线(BL0-BL3)竖直地(沿着z方向)串联连接以形成竖直NAND串。在给定块内,存在连接到给定全局位线的多个NAND串(例如,GBL0与多个BL0连接)。NAND串被分组为共享公共选择线的串组。因此,例如,由源极选择线SGS0和漏极选择线SGD0选择的NAND串可被视为一组NAND串并且可被指定为串0,而由源极选择线SGS1和漏极选择线SGD1选择的NAND串可被视为另一组NAND串并且可被指定为串1,如图所示。框可以由任何合适数量的此类可单独选择的串组组成。应当理解,图10A仅示出GBL0 GBL3的部分,并且这些位线在y方向上进一步延伸,并且可以与块中和其他块中的附加NAND串连接。此外,附加位线平行于GBL0-GBL3延伸(例如,在沿着x轴、在图10A的横截面的位置的前面或后面的不同位置处)。
图10B示意性地示出了图10A的单独可选NAND串组。可以看出,全局位线(GBL0-GBL3)中的每个全局位线连接到所示块的部分中的多个单独可选NAND串组(例如,GBL0连接到串0的竖直位线BL0,并且还连接到串1的竖直位线BL0)。在一些情况下,块的全部串的字线是电连接的,例如串0中的WL0可连接到串1、串2等的WL0。此类字线可形成为延伸穿过块的所有组串的导电材料的连续片。源极线对于块的所有串也可以是公共的。例如,衬底的一部分可被掺杂以形成块下面的连续导体。源极选择线和漏极选择线不由不同串组共享,使得例如SGD0和SGS0可被偏置以选择串0,而不类似地偏置SGD1和SGS1。因此,可以单独选择串0(连接到全局位线和公共源极),而串1(和其他串组)保持与全局位线和公共源极隔离。在编程和读取操作期间访问块中的存储器单元通常包括向一对选择线(例如,SGS0和SGD0)施加选择电压,同时向块的所有其他选择线(例如,SGS1和SGD1)提供未选择电压。然后,将适当的电压施加到块的字线,使得可以访问所选择的串组中的特定字线(例如,将读取电压施加到特定字线,而将读取通过电压施加到其他字线)。可对整个块(块中的所有串组)而不是块中的特定串组应用擦除操作。
图10C示出了沿X-Z平面的横截面中图10A至图10B的单独可选NAND串组串0。可以看出,每个全局位线(GBL0-GBLm)连接到串0中的一个竖直NAND串(竖直位线BL0-BLm)。可通过向选择线SGD0和SGS0施加适当的电压来选择串0。其他串组类似地在沿Y方向的不同位置处连接到全局位线(GBL0-GBLm),并且具有当选择串0时可接收未选择电压的不同选择线。
重新参考图2B,存储器管芯104还可包括读取/写入电路144,其包括多个或p个感测块(也称为感测模块或感测电路)146。如下文进一步详细描述的,感测块146被配置为并行地参与读取或编程存储器单元的页面。
存储器管芯104可还包括行地址解码器148和列地址解码器150。当从存储器单元142读取或向其写入数据时,行地址解码器148可对行地址解码并且选择存储器阵列142中的特定字线。列地址解码器150可对列地址解码以选择存储器阵列142中的要读取/写入电路144的特定位线组。
此外,非易失性存储器管芯104可包括***电路152。***电路152可包括控制逻辑电路154,该控制逻辑电路可被实现为向控制器102提供存储器操作的片上控制以及状态信息的状态机。***电路152还可包括片上地址解码器156,该片上地址解码器提供由控制器102和/或主机使用的寻址与由行和列解码器148、150使用的硬件寻址之间的地址接口。此外,***电路152也可包括易失性存储器158。易失性存储器158的示例性配置可包括锁存器,但是其他配置也是可能的。
此外,***电路152可包括功率控制电路160,该功率控制电路被配置为生成电压并将电压供应到存储器阵列142,该电压包括到字线的电压(包括编程电压脉冲)、擦除电压(包括擦除电压脉冲)、到源极选择栅偏置线SSG的源极选择栅偏置电压VSSG、到漏极选择栅偏置线DSG的漏极选择栅偏置电压VDSG、源极线SL上的单元源极电压Vcelsrc,以及可提供给存储器阵列142、读取/写入电路144(包括感测块146)和/或存储器管芯104上的其他电路部件的其他电压。下文更详细地描述由功率控制电路160提供的各种电压。功率控制电路160可包括各种电路拓扑结构或配置中的任一种,以提供适当水平下的电压,从而执行读取、写入和擦除操作,诸如驱动器电路、电荷泵、参考电压生成器和脉冲生成电路,或者其组合。用于产生电压的其他类型的电路可为可能的。此外,功率控制电路160可与控制逻辑电路154、读取/写入电路144,和/或感测块146通信和/或由其控制,以便以适当的电平并且在适当的时间提供电压以执行存储操作。
为了对目标存储器单元特别是FGT进行编程,功率控制电路160向存储器单元的控制栅施加编程电压,并且连接到目标存储器单元的位线接地,这继而使得电子从沟道注入浮栅中。另一方面,位线电压升高到VHSA以防止电子注入浮栅中,所谓的编程禁止。峰值电流(Icc)在BL操作期间出现。最高峰值Icc出现在编程循环的中间,其中几乎相等量的位线保持在地,并且另一半上升到VHSA。位线之间的电压差导致位线-位线耦合以及严重的峰值Icc。在程序操作期间,连接到目标存储器单元的位线被称为选择的位线。相反,在程序操作期间未连接到目标存储器单元的位线被称为未选择的位线。在该上下文中,位线的状态可以指位线是选择的还是未选择的。换句话讲,位线可以处于选择的还是未选择的两种状态中的一种。当电子聚积在浮栅中时,浮栅变得带负电,并且存储器单元的阈值电压VTH升高。功率控制电路160在连接到目标存储器单元的字线上施加编程电压VPGM,以便使目标存储器单元的控制栅接收编程电压VPGM并且使存储器单元被编程。如前所述,在块中,每个NAND串中的一个存储器单元共享相同的字线。在程序操作期间,连接到目标存储器单元的字线被称为选择的字线。相反,在程序操作期间未连接到目标存储器单元的字线被称为未选择的字线。
图11A至图11C是针对存储在存储器单元中的不同位数的阈值电压分布曲线的曲线图。针对阈值电压VTH绘制阈值电压分布曲线,该阈值电压分布曲线作为存储器单元数量的函数。图11A示出了被编程为存储两位数据的存储器单元的阈值电压分布曲线,图11B示出了被编程为存储三位数据的存储器单元的阈值电压分布曲线,并且图11C示出了被编程为存储四位数据的存储器单元的电压分布曲线。对于被编程为存储除两个、三个和四个之外的位数的存储器单元,可以生成类似的阈值电压分布曲线。
在给定时间点,每个存储器单元可处于多个存储器状态(或者称为数据状态)中的特定一个存储器状态。存储器状态可包括擦除状态和多个编程状态。因此,在给定时间点,每个存储器单元可处于擦除状态或处于多个编程状态中的一个编程状态。编程状态的数量对应于存储器单元被编程以存储的位数。参考图11A,对于被编程为存储两位的存储器单元,存储器单元可处于擦除状态Er或三个编程状态A、B、C中的一者。参考图11B,对于被编程为存储三位的存储器单元,存储器单元可处于擦除状态Er或处于七个编程状态A、B、C、D、E、F、G中的一个。参考图11C,对于被编程为存储四位的存储器单元,存储器单元可处于擦除状态Er或十五个编程状态1、2、3、4、5、6、7、8、9、A、B、C、D、E、F中的一个。如图11A至图11C所示,每个电压分布曲线与擦除状态或者这些编程状态中的一个相关联。
另外,每个阈值电压分布曲线定义不同的阈值电压范围和/或与不同的阈值电压范围相关联,所述不同的阈值电压范围继而定义多个预先确定的N位二进制值中不同的二进制值、被分配所述不同的二进制值或与所述不同的二进制值相关联。因此,确定在哪个阈值电压VTH下存储器单元允许确定存储器单元正存储的数据(即,位的逻辑值)。被编程到存储器单元中的数据与存储器单元的阈值电压电平之间的具体关系取决于用于对存储器单元进行编程的数据编码方案。在一个示例中,如图11A和图11B所示,使用格雷码方案将数据值分配给阈值电压分布曲线。根据此方案,对于用两位数据编程的存储器单元,数据值“11”被分配给与已擦除状态Er相关联的阈值电压范围,数据值“01”被分配给与已编程状态A相关联的阈值电压范围,数据值“00”被分配给与已编程状态B相关联的阈值电压范围,并且数据值“10”被分配给与已编程状态C相关联的阈值电压范围。对于被编程为存储三位、四位或其它位数据的存储器单元,可建立数据值与存储器状态之间的类似关系。
在执行对多个或一组目标存储器单元进行编程的程序操作之前,该组中经受编程操作和/或被选择在编程操作中被编程的所有存储器单元可处于擦除状态。在编程操作期间,功率控制电路160可以将编程电压施加到选择的字线,继而到目标存储器单元的控制栅作为一系列编程电压脉冲。同时编程的目标存储器单元连接到相同的选择的字线。在许多编程操作中,功率控制电路160以预定步长用每个连续脉冲增大编程脉冲的量值。另外,如下面进一步详细描述的,作为程序循环或程序操作的一部分,功率控制电路160可以在编程脉冲之间将一个或多个验证脉冲施加到目标存储器单元的控制栅。另外,在编程操作期间,功率控制电路160可以向未选择的字线施加一个或多个升压电压。
除非已经禁止它们进行编程,否则连接到选择的字线的目标存储器单元将同时地具有其阈值电压变化。当目标存储器单元中的一个目标存储器单元的编程操作完成时,在后续程序循环中,目标存储器单元被禁止进一步编程,而其他目标存储器单元的编程操作继续。另外,对于一些示例编程操作,控制逻辑电路154可以保持对编程脉冲进行计数的计数器。
在对一组目标存储器单元编程的程序操作期间,根据要在程序操作期间编程到目标存储器单元中的写入数据,将每个目标存储器单元分配给多个存储器状态中的一个存储器状态。基于存储器单元的分配的存储器状态,给定目标存储器单元将保持擦除状态或被编程为不同于擦除状态的编程状态。当控制逻辑154从控制器102接收程序命令或以其他方式确定执行程序操作时,写入数据存储在包括在读取/写入电路144中的锁存器中。在编程操作期间,读取/写入电路144可以读取写入数据以确定目标存储器单元中的每一个将被编程到的相应存储器状态。
如下文更详细地描述,并且如图11A至图11C所示,每个编程状态与相应的验证电压电平VV相关联。当给定目标存储器单元的阈值电压VTH高于与分配给该目标存储器单元的存储器状态相关联的验证电压VV时,该给定目标存储器单元被编程在其分配的存储器状态中。只要给定目标存储器单元的阈值电压VV低于相关联的验证电压VV,目标存储器单元的控制栅就可以经受编程脉冲,以将目标存储器单元的阈值电压VTH增加到与分配给给定目标存储器单元的存储器状态相关联的阈值电压范围内。另选地,当给定目标存储器单元的阈值电压VTH增加到高于相关联的验证电压电平VV时,则可以针对给定目标存储器单元完成编程。如下面进一步详细描述的,感测块146可以参与确定给定存储器单元的编程是否完成的程序操作。
如前所述,经受程序操作的目标存储器单元也可经受验证操作,该验证操作确定每个目标存储器单元的编程何时完成。验证操作在编程脉冲之间完成,因此编程操作和验证操作以交替或循环的方式执行。编程操作和验证操作的组合被称为程序操作。因此,程序操作包括交替执行的多个编程操作和多个验证操作。也就是说,程序操作涉及编程操作,之后是验证操作,之后是另一个编程操作,之后是另一个验证操作,依此类推,直到程序操作不再具有要执行的编程或验证操作。此外,程序操作的单个编程操作包括功率控制电路160为该单个编程操作向选择的字线提供一个或多个编程脉冲,并且程序操作的单个验证操作包括功率控制电路160为该单个编程操作向选择的字线提供一个或多个验证脉冲。因此,程序操作可以包括功率控制电路160向选择的字线提供脉冲串或一系列电压脉冲,其中脉冲串包括一个或多个编程脉冲,之后是一个或多个验证脉冲,之后是一个或多个编程脉冲,之后是一个或多个验证脉冲,依此类推,直到编程-验证过程不再有更多编程或验证脉冲用于功率控制电路160供应到选择的字线。
当程序操作的验证部分识别出全部存储器单元已被编程到其分配的阈值电压VTH时,程序操作完成。如所提及的,当验证过程确定目标存储器单元的阈值电压已增加到高于与目标单元将被编程到的存储器状态相关联的验证电压电平VV时,验证过程验证或确定给定目标存储器单元已完成编程。
对于一些示例程序操作,经受程序操作的全部目标存储器单元不同时经受单个验证操作。另选地,对于单个验证操作,仅分配给相同存储器状态的那些目标存储器单元经受验证操作。对于单个验证操作,经受单个验证操作的目标存储器单元被称为选择的存储器单元或选择的目标存储器单元,并且不经受单个验证操作的目标存储器单元被称为未选择的存储器单元或未选择的目标存储器单元。同样,对于连接到程序操作的目标存储器单元的一组位线,连接到用于单个验证操作的选择的存储器单元的位线被称为选择的位线,并且连接到用于单个验证操作的未选择的存储器单元的位线被称为未选择的位线。在该上下文中,位线的状态可以指位线是选择的还是未选择的。换句话讲,位线可以处于选择的还是未选择的两种状态中的一种。
对于验证操作中的每一个,功率控制电路160或功率控制电路160、读取/写入电路144和感测块146的某种组合可将适当电平的电压提供给选择的字线和未选择的字线以及选择的位线和未选择的位线,以便对目标存储器单元的经受程序操作的选择的存储器单元执行验证操作。为清楚起见,并且除非另外指明,否则用于在给定存储器操作(例如,编程操作、验证操作、程序操作、读取操作或擦除操作)期间以适当电平偏置选择和未选择的字线和位线的功率控制电路160、读取/写入电路144和感测块146的组合在本文中统称为电压供应电路。电压供应电路可指功率控制电路160、感测块电路146、读取/写入电路144的其他电路部件或它们的任何组合。
为了执行块中的验证操作,电压供应电路可响应于电压供应电路在公共源极线SL上向位线供应合适电平的电压,以接通漏极选择栅极晶体管和源极选择栅极晶体管的电平,将漏极选择栅偏置线SGD上的漏极选择栅偏置电压VSGD供应到漏极选择栅晶体管(例如,图6的晶体管606)的控制栅以及将源极选择栅偏置线SGS上的源极选择栅偏置电压VSGS供应到漏极选择栅晶体管(例如,图6的晶体管608)的控制栅。
另外,电压供应电路在公共源极线SL上以单元源极电压电平Vcelsrc(或者称为单元源极电压Vcelsrc)供应源极线电压。此外,电压供应电路用高供应电压VHSA偏置选择的位线的漏极侧,该高供应电压在量值上高于单元源极电压Vcelsrc。高供应电压VHSA与单元源极电压电平Vcelsrc之间的差值可足够大,以允许电流在选择的目标存储器单元具有允许其传导电流的阈值电压VTH的情况下从包括选择的目标存储器单元的串的漏极侧流动到源极侧。在验证操作期间,根据选择的存储器单元的阈值电压VTH,选择的存储器单元通常可被表征为完全传导、略微传导或不传导。另外,电压供应电路将未选择的位线的漏极侧偏置到单元源极电压Vcelsrc。通过将未选择的位线的漏极侧和源极侧偏置到单元源极电压Vcelsrc,漏极侧和源极侧电压之间的电压差将不允许电流流过连接到未选择的位线的NAND串。此外,电压供应电路偏置未选择的字线,继而是耦接至未选择的字线的FGT的控制栅,到读取电压Vread。读取电压足够高,以使得耦接到未选择的字线的FGT传导电流,而不管其阈值电压VTH如何。此外,电压供应电路用控制栅参考电压VCGRV偏置选择的字线,该控制栅参考电压可以是如前所述的一个或多个验证脉冲的形式。控制栅参考电压VCGRV可以是不同的,以用于验证不同存储器状态的目标存储器单元。例如,当验证被编程为状态A的目标存储器单元而不是当验证被编程为状态B的目标存储器单元时,电压供应电路可供应不同的控制栅参考电压VCGRV(或不同电平的控制栅参考电压VCGRV),等等。
一旦电压供应电路向选择的和未选择的字线和位线以及向漏极选择栅晶体管、源极选择栅晶体管、漏极选择栅偏置线SGD以及源极选择栅偏置线SGS供应电压,感测块就可以执行识别所选择的目标存储器单元是否传导并且继而被充分编程的感测操作。验证操作的感测操作部分的更多细节在下文中进一步详细描述。
如前所述,存储器单元的阈值电压VTH可识别其存储的数据的数据值。对于块中的给定读取操作,要从其读取数据的存储器单元被称为选择的存储器单元,并且不从其读取数据的存储器单元被称为未选择的存储器单元。因此,当要从用于特定读取操作的存储器单元的页面读取数据时,页面中的那些存储器单元是选择的存储器单元,并且块的不是页面的一部分的存储器单元是未选择的存储器单元。另外,连接到选择的存储器单元的页面的字线被称为选择的字线,并且块的其他字线被称为未选择的字线。
在读取操作以读取存储在页面的目标存储器单元中的数据期间,感测块146被配置为执行感测操作,该感测操作感测电流是否流过连接到页的目标存储器单元的位线。电压供应电路可基于目标存储器单元的阈值电压VTH以导致电流流动或不流动的适当电平在选择字线和未选择字线上提供电压。对于一些配置,提供给选择字线的电压电平可根据存储器单元的状态而变化。
电压供应电路也可偏置位线,使得将高供应电压VDDSA施加到位线的漏极侧,并且将单元源极电压Vcelsrc施加到位线的源极侧以允许电流流动,前提条件是选择存储器单元的阈值电压VTH允许其流动。对于一些示例读取配置,其中感测块146可以针对页面的少于全部存储器单元执行感测操作。对于此类配置,页面的经受给定感测操作和/被选择用于给定感测操作的目标存储器单元被称为选择的存储器单元或选择的目标存储器单元。相反,页面的不经受感测操作和/或未被选择用于感测操作的目标存储器单元被称为未选择的存储器单元。因此,连接到选择的目标存储器单元的位线称为选择的位线,连接到未选择的目标存储器单元的位线称为未选择的位线。在该上下文中,位线的状态可以指位线是选择的还是未选择的。换句话讲,位线可以处于选择的还是未选择的两种状态中的一种。电压供应电路可以各种组合和/或各种序列和/或通过各种感测操作将电压供应到选择和未选择的字线以及选择和未选择的位线,以便确定目标存储器单元的阈值电压,使得可以确定目标存储器单元存储的数据的数据值。
图12是感测块1200的示例配置的框图,该感测块可表示图2B的感测块146(1)至146(p)中的一者。感测块1200可以包括多个感测电路1202和多组锁存器1204。每个感测电路(也称为感测放大器电路)1202可与锁存器1204中的相应一者相关联。即,每个感测电路1202可被配置为使用数据与感测操作通信和/或执行感测操作和/或将数据存储到其相关联的锁存器组1204中。另外,感测块1200可以包括感测电路控制器1206,该感测电路控制器被配置为控制感测块1200的感测电路1202和锁存器组1204的操作。感测电路控制器1206可以与控制逻辑154通信和/或可以是该控制逻辑的一部分。感测电路控制器1206可在硬件或硬件和软件的组合中实现。例如,感测电路控制器1206可包括执行存储在存储器中的计算机指令以执行其功能中的至少一些的处理器。
如前所讨论,使用存储器装置或设备的主机或设备可具有电流消耗限制。例如,来自主机的电流限制可以是预先确定的主机电流限制。另外,主机或***可容许的预定主机电流限制通常为不应超过的固定数。
在其他存储器设备中,可能的是,对于全部具有并联操作的多个管芯的多个平面(例如,四个平面),可能需要甚至更多的峰值电流。因此,考虑到其中多个平面一次操作的最差情况,可以修剪操作参数,并且用于程序操作的多个平面的这些优化修剪参数应当能够在最差情况下存活。
基于设备或***对存储器单元的使用,使用比实际可用平面总数更少数量的平面非常频繁地发生。例如,如果主机尝试编程的数据量小于整个容量(4个平面、所有页面),则***或装置将仅编程所需的平面(尽管所有页面都是在完整序列的情况下,并且在一些情况下由于装置“填充”一些垃圾以填充其他页面)。主机通常不具有足够的数据来写入整个元块。在这种情况下,***或装置可使用“残余”或虚设数据用于下一数据块。另选地,可以尝试在RAM(例如,DRAM)中收集数据以便填充全部平面(即,装置等待更多数据),然而,并非所有产品都由于其费用而包括RAM,或者没有足够的RAM来存储全部数据。
另一种情况是主机在发送数据之后询问“数据提交”时。这意味着主机将不发送下一个数据,直到存储器装置完成写入当前数据(通常意味着不使用高速缓存)。因此,装置需要将数据写入存储器单元并在提交之前检查数据完整性。在这种情况下,装置将很少能够将全部平面编程在一起。
图13A示出了针对禁止位线电压VHSATGT的各种目标值的编程时间与位线电压斜坡率参数、禁止位线斜坡率IBLRR_P的曲线图。在达到禁止位线电压VHSATGT的目标值之前,调节(或控制)斜坡变化速度。在达到禁止位线电压VHSATGT之后,不再存在对斜坡率或斜坡速度的控制。因此,百分比越低,斜升所需的位线电压的量越少,并且消耗更多电流,反之亦然。该参数也是性能和功耗之间的权衡。
图13B示出了针对禁止位线电压VHSATGT的各种目标值的峰值电流(Icc)与位线电压斜坡率参数IBLRR_P。这里,位线电压斜坡率参数IBLRR_P与用于偏置位线的感测放大器的高感测放大器电压VHSA相关。每个曲线图中的位线电压斜坡率参数IBLRR_P(即,电流)的量越大,表明高感测放大器电压的斜坡率越大,越积极。如图所示,在编程性能或速度与峰值电流Icc之间存在权衡。具体地讲,编程性能越好,峰值Icc越高。
图14A示出了针对具有两个平面的装置的峰值电流(Icc)与具有各种定时(即,平滑)的位线电压斜坡率参数IBLRR_P的曲线图。可能需要利用不同的功耗规格。在所示的示例中,每10ns测量电流消耗Icc。如果功耗规格为1us,则测量数据将具有100行行数据之间的移动平均值。类似地,如果规格为5us,则测量数据将具有500行数据之间的移动平均值。因此,“平滑”越高,图越平坦,并且功耗规格目标越小。如图所示,由于字线存在限制,并且全部平滑或功耗规范的最小设置差(DAC)为4DAC。图14B示出了对于位线电压斜坡率参数IBLRR_P的多个值(P、Q、R、S、T、U、V、W),程序操作期间装置在一段时间内的电流消耗的曲线图。如图所示,峰值电流主要归因于位线上的电压的斜坡率(曲线图的任一端处的较高振幅峰值),而不是字线的电压的斜坡变化(具有较低振幅的曲线图的中心区)。
当程序操作涉及较少数量的平面时,使用针对许多平面操作(例如,四个平面)优化的参数将导致相同的性能(编程时间/Tprog),但具有低得多的峰值电流。因此,由于容许峰值电流是固定的,因此更少数量的平面可以使用优化参数的更积极的斜坡率以及位线(BL)和字线(WL)上的其对应时钟或定时,以用于进一步的性能增益。
因此,本文提供了一种装置(例如,图1A至图2B的存储器***100),包括连接到字线(例如,图6的WL0至WLM-1)和位线(例如,图6的BL0至BLP-1)并布置在多个平面(例如,图5B的平面0、平面1)中的多个存储器单元(例如,图2B的存储器单元142、图3的浮栅晶体管300、图6的FGT 604)。控制电路(例如,图1A至图2B的控制器102和***电路152、图1C的存储控制器202、感测块1200)耦接到字线和位线,并且被配置为确定多个存储器单元的程序操作是否涉及全部多个平面。响应于多个存储器单元的程序操作不涉及多个平面中的全部平面,控制电路被配置为在多个存储器单元的程序操作期间基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量调整施加到位线的位线电压的位线斜坡率和施加到字线的至少一个字线电压的字线斜坡率中的至少一者。另选地,控制电路进一步被配置为响应于多个存储器单元的程序操作涉及全部多个平面,以预先确定的默认修剪位线斜坡率将位线电压施加到位线。类似地,控制电路被配置为响应于多个存储器单元的程序操作涉及全部多个平面,在多个存储器单元的程序操作期间以预先确定的默认修剪字线斜坡率将至少一个字线电压施加到字线。
如上面参考图11A至图11C所讨论的,程序操作可以包括多个回路,其中每个回路包括一个编程脉冲以将阈值电压VTH升高到目标阈值电压VTH,以及一个验证操作或编程验证以检查被编程的存储器单元的阈值电压VTH。因此,如果连接到位线中的一者的存储器单元达到预期或目标阈值电压VTH,则不需要进一步编程脉冲。因此,位线包括在程序操作期间的某一时间被编程的多条未被禁止的位线以及在该时间未被编程的多条被禁止的位线。根据一个方面,位线电压是施加到多条被禁止的位线的抑制电压(即,VHSA)。具体地讲,位线斜升到VDDSA或保持在Vss(0V),这取决于与这些位线存储器单元相关联的存储器单元是否将被编程。因此,如果连接到位线中的一者的存储器单元达到预期或目标阈值电压VTH,则该位线将升高到VDDSA以禁止进一步编程。然而,应当理解,位线电压可以是另一个电压。
为了调整施加到位线的位线电压的位线斜坡率,可以将“移位”参数“DIBLRR_P_PB”存储在存储器中(例如,存储在图2A和图2B的ROM118中),以使少于全部数量的平面使用更积极的位线斜坡率。可以提前(例如,在生产之前)确定位线斜坡率变化如何“积极”用于较少平面程序操作。因此,根据一个方面,装置包括具有位线电压斜坡率参数或位线电压的多个默认位线电压斜坡率IBLRR_P的默认位线电压斜坡率查找表。装置还包括具有多个“移位”参数或位线移位偏移DIBLRR_P_PB的移位位线电压斜坡率查找表。图15A和图15B示出了用于调整施加到位线的位线电压的位线斜坡率的示例默认位线电压斜坡率查找表和示例移位位线电压斜坡率查找表。控制电路被配置为参考默认位线电压斜坡率查找表和移位位线电压斜坡率查找表,并根据多个位线移位偏移DIBLRR_P_PB中所选择的一个并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量确定多个默认位线电压斜坡率IBLRR_P中的哪个默认位线电压斜坡率在程序操作中使用。
因此,例如,如果多个平面包括总共四个平面,则涉及全部四个平面的程序操作使用位线电压的多个默认位线电压斜坡率IBLRR_P中的一个默认位线电压斜坡率。具体地讲,提前选择多个默认位线电压斜坡率IBLRR_P中的一个默认位线电压斜坡率以用于装置(例如,在产品开发期间确定以及在生产期间使用)。类似地,提前选择多个位线移位偏移DIBLRR_P_PB中的一个位线移位偏移以用于装置(例如,在产品开发期间确定并且在生产期间使用)。如果程序操作涉及少于全部数量的平面,则参考移位位线电压斜坡率查找表的多个位线移位偏移DIBLRR_P_PB中的一个位线移位偏移来选择所使用的位线电压斜坡率。例如,所使用的位线电压斜坡率是多个默认位线斜坡率IBLRR_P中的一个默认位线斜坡率加上多个位线移位偏移DIBLRR_P_PB中的一个位线移位偏移(即,对于三个平面,IBLRR_P+DIBLRR_P_PB)。类似地,如果程序操作涉及四个平面中仅两个平面,则所使用的位线电压斜坡率是多个默认位线斜坡率IBLRR_P中的一个默认位线斜坡率加上二乘以多个位线移位偏移DIBLRR_P_PB中的一个位线移位偏移(即,对于两个平面,IBLRR_P+2*DIBLRR_P_PB)。此外,如果程序操作涉及四个平面中仅一个平面,则所使用的位线电压斜坡率是多个默认位线斜坡率IBLRR_P中的一个默认位线斜坡率加上三乘以多个位线移位偏移DIBLRR_P_PB中的一个位线移位偏移(即,对于一个平面,IBLRR_P+3*DIBLRR_P_PB)。
因此,如果针对涉及全部四个平面的编程验证操作,在默认位线电压斜坡率查找表中,装置的多个默认位线电压斜坡率中的一个默认位线电压斜坡率被选择为B2,并且为装置选择的多个位线移位偏移中的一个位线移位偏移为+1DAC,则涉及四个平面中仅三个平面的程序操作将使用B3斜坡率。涉及四个平面中仅两个平面的程序操作将使用B4斜坡率,并且涉及四个平面中仅一个平面的程序操作将使用B5斜坡率。然而,如果为装置选择的多个位线移位偏移DIBLRR_P_PB中的一个位线移位偏移替代地为+2DAC,则涉及四个平面中仅三个平面的程序操作将使用B4斜坡率。涉及四个平面中仅两个平面的程序操作将使用B6斜坡率,并且涉及四个平面中仅一个平面的程序操作将使用B8斜坡率。
此外,每当基于默认位线电压斜坡率查找表和移位位线电压斜坡率查找表确定的位线电压斜坡率超过多个默认位线电压斜坡率IBLRR_P中的最大一个默认位线电压斜坡率(即,DAC),控制电路被配置为使用多个默认位线电压斜坡率IBLRR_P中的最大一个默认位线电压斜坡率(例如,B8斜坡率)。
因此,在程序操作的位线电压斜坡变化时间段期间,位线电压根据默认位线电压斜坡率查找表和移位位线电压斜坡率查找表并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量而斜坡变化。根据一个方面,控制电路被配置为根据默认位线电压斜坡率查找表和移位位线电压斜坡率查找表并且基于在与程序操作中被编程验证的多个存储器单元相关联的多个平面的量,基于位线电压的斜坡变化,自动确定在程序操作中使用的位线电压斜坡变化时间段。用于斜坡变化禁止位线电压的定时包括位线功率电路中的自反馈。斜坡率越快,自动使定时越短。因此,对于位线斜坡变化时钟,当高电压供应VHSA达到高电压供应电平VDDSA的75%-90%时,自动确定位线电压斜坡变化时间段(例如,P5)。图16示出了VDDSA、VHSA和对应的VHSA峰值电流的示例曲线图。
如前所讨论,字线包括在程序操作期间的某一时间被编程验证的选择的字线和在该时间未被编程验证的多条未选择的字线。此外,至少一个字线电压包括在程序操作的编程部分期间施加到多条选择的和未选择的字线的通过电压Vpass。为了调整施加到多条未选择的字线的通过电压Vpass的字线斜坡率,装置包括默认通过电压斜坡率查找表,该查找表具有多个默认通过电压斜坡率RRC_VPASS。装置还包括具有多个通过电压移位偏移DRRC_VPASS_PB的移位通过电压斜坡率查找表。图17A和图17B示出了示例默认通过电压斜坡率查找表和示例移位通过电压斜坡率查找表。在所示的示例中,数字越大,斜坡率越慢。控制电路进一步被配置为根据多个通过电压移位偏移DRRC_VPASS_PB中的一个通过电压移位偏移并基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,使在程序操作中使用的多个默认通过电压斜坡率RRC_VPASS中的一个默认通过电压斜坡率移位。
因此,例如,如果多个平面包括总共四个平面,则当至少一个字线电压是通过电压Vpass时,涉及全部四个平面的程序操作使用多个默认通过电压斜坡率RRC_VPASS中的一个默认通过电压斜坡率。与多个默认位线电压斜坡率IBLRR_P中的一个默认位线电压斜坡率一样,提前选择多个默认通过电压斜坡率RRC_VPASS中的一个默认通过电压斜坡率用于装置(例如,在产品开发期间确定并且在生产期间使用)。类似地,提前选择多个通过电压移位偏移DRRC_VPASS_PB中的一个通过电压移位偏移用于装置(例如,在产品开发期间确定并且在生产期间使用)。如果程序操作涉及少于全部四个平面,则参考移位通过电压斜坡率查找表的多个通过电压移位偏移DRRC_VPASS_PB中的一个通过电压移位偏移来选择所使用的通过电压斜坡率。例如,用于三个平面的通过电压斜坡率是多个默认通过电压斜坡率RRC_VPASS中的一个默认通过电压斜坡率加上多个通过电压移位偏移DRRC_VPASS_PB中的一个通过电压移位偏移(即,对于三个平面,RRC_VPASS+DRRC_VPASS_PB)。类似地,如果程序操作涉及四个平面中仅两个平面,则所使用的通过电压斜坡率是多个默认通过电压斜坡率RRC_VPASS中的一个默认通过电压斜坡率加上二乘以多个通过电压移位偏移DRRC_VPASS_PB中的一个通过电压移位偏移(即,对于三个平面,RRC_VPASS+2*DRRC_VPASS_PB)。此外,如果程序操作涉及四个平面中仅一个平面,则所使用的通过电压斜坡率是多个默认通过电压斜坡率RRC_VPASS中的一个默认通过电压斜坡率加上二乘以多个通过电压移位偏移DRRC_VPASS_PB中的一个通过电压移位偏移(即,对于三个平面,RRC_VPASS+3*DRRC_VPASS_PB)。
因此,如果针对涉及全部四个平面的编程验证操作,在默认通过电压斜坡率查找表中,装置的多个默认通过电压斜坡率中的一个默认通过电压斜坡率被选择为RRC禁用(意味着不使用斜坡率控制),并且为装置选择的多个通过电压移位偏移中的一个通过电压移位偏移是-1DAC,则涉及四个平面中仅三个平面的程序操作将使用Y3通过电压斜坡率。涉及四个平面中仅两个平面的程序操作将使用Y2通过电压斜坡率,并且涉及四个平面中仅一个平面的程序操作将使用Y1通过电压斜坡率。这里,Y1斜坡率小于Y2和Y3斜坡率。
此外,每当基于默认通过电压斜坡率查找表和移位通过电压斜坡率查找表确定的通过电压斜坡率超过多个默认通过电压斜坡率RRC_VPASS中的最小一个默认通过电压斜坡率(即,DAC)时,控制电路被配置为使用多个默认通过电压斜坡率RRC_VPASS中的最小一个默认通过电压斜坡率(例如,Y4通过电压斜坡率或小于Y1的另一个值)。
此外,至少一个字线电压包括在程序操作的验证部分期间施加到多个选择和未选择的字线的读取电压Vread。这种到读取电压Vread的斜坡变化发生在编程验证之前,并且也称为“Vread尖峰”操作。Vread尖峰的目的是在接下来的感测操作之前使沟道中的残余电子耗尽。如果不使用Vread尖峰操作,则可以在虚设字线(例如,图9的WLDS和WLDD)中发生热载流子注入。在若干擦除/编程循环之后,与虚设字线相关联的存储器单元的阈值电压VTH将被干扰并且将影响数据字线(即,不是虚设字线的字线)的读取。
因此,类似于通过电压Vpass,为了调整施加到多个选择和未选择的字线的读取电压Vread的字线斜坡率,装置包括具有多个默认读取电压斜坡率RRC_VREAD_PVFY的默认读取通过电压斜坡率查找表。装置还包括具有多个读取电压移位偏移DRRC_VREAD_PVFY_PB的移位读取电压斜坡率查找表。图18A和图18B示出了示例默认读取电压斜坡率查找表和示例移位读取电压斜坡率查找表。在所示的示例中,数字越大,斜坡率越慢。因此,控制电路进一步被配置为根据多个读取电压移位偏移DRRC_VREAD_PVFY_PB中的一个读取电压移位偏移并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,使在程序操作中使用的多个默认读取电压斜坡率RRC_VREAD_PVFY中的一个默认读取电压斜坡率移位。
因此,例如,如果多个平面包括总共四个平面,则当至少一个字线电压是读取电压时,涉及全部四个平面的程序操作使用多个默认读取电压斜坡率RRC_VREAD_PVFY中的一个默认读取电压斜坡率。提前选择多个默认读取电压斜坡率中的一个默认读取电压斜坡率用于装置(例如,在产品开发期间确定并且在生产期间使用)。类似地,提前选择多个读取电压移位偏移中的一个读取电压移位偏移用于装置(例如,在产品开发期间确定并且在生产期间使用)。如果程序操作涉及少于全部四个平面,则参考移位读取电压斜坡率查找表的多个读取电压移位偏移中的一个读取电压移位偏移来选择所使用的读取电压斜坡率。例如,用于三个平面的读取电压斜坡率是多个默认读取电压斜坡率RRC_VREAD_PVFY中的一个默认读取电压斜坡率加上多个读取电压移位偏移DRRC_VREAD_PVFY_PB中的一个读取电压移位偏移(即,对于三个平面,RRC_VREAD_PVFY+DRRC_VREAD_PVFY_PB)。类似地,如果程序操作涉及四个平面中仅两个平面,则所使用的读取电压斜坡率是多个默认读取电压斜坡率RRC_VREAD_PVFY中的一个默认读取电压斜坡率加上二乘以多个读取电压移位偏移DRRC_VREAD_PVFY_PB中的一个读取电压移位偏移(即,对于三个平面,RRC_VREAD_PVFY+2*DRRC_VREAD_PVFY_PB)。此外,如果程序操作涉及四个平面中仅一个平面,则所使用的读取电压斜坡率为默认读取电压斜坡率RRC_VREAD_PVFY加上二乘以多个读取电压移位偏移DRRC_VPASS_PB中的一个读取电压移位偏移(即,对于三个平面,RRC_VREAD_PVFY+3*DRRC_VREAD_PVFY_PB)。
因此,如果针对涉及全部四个平面的编程验证操作,在默认读取电压斜坡率查找表中,装置的多个默认读取电压斜坡率中的一个默认读取电压斜坡率选择为Z6,并且为装置选择的多个读取电压移位偏移DRRC_VREAD_PVFY_PB中的一个读取电压移位偏移是-1DAC,则涉及四个平面中仅三个平面的程序操作将使用Z5读取电压斜坡率。涉及四个平面中仅两个平面的程序操作将使用Z4读取电压斜坡率,并且涉及四个平面中仅一个平面的程序操作将使用Z3读取电压斜坡率。然而,如果选择用于装置的多个位线移位偏移DRRC_VREAD_PVFY_PB中的一个位线移位偏移替代为-2DAC,则涉及四个平面中仅三个平面的程序操作将使用Z4读取电压斜坡率。涉及四个平面中仅两个平面的程序操作将使用Z2读取电压斜坡率,而涉及四个平面中仅一个平面的程序操作将使用禁用读取电压斜坡率。这里,Z2斜坡率小于Z3和Z4斜坡率。
另外,每当基于默认读取电压斜坡率查找表和移位读取电压斜坡率查找表确定的读取电压斜坡率超过多个默认读取电压斜坡率RRC_VREAD_PVFY中的最小一个默认读取电压斜坡率(即,DAC),控制电路被配置为使用多个默认读取电压斜坡率RRC_VREAD_PVFY中的最小一个默认读取电压斜坡率(例如,禁用斜坡率)。虽然至少一个字线电压被论述为通过电压Vpass和读取电压Vread,但应当理解,可改为调整施加到字线的其他电压的斜坡变化。
上面将位线斜坡变化的定时讨论为根据默认位线电压斜坡率查找表和移位位线电压斜坡率查找表并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,基于位线电压斜坡变化的定时自动调整。相比之下,根据一个方面,至少一个字线电压(例如,Vpass或Vread)的斜坡变化不是自动的,而是基于附加查找表确定的。换句话讲,与用于位线斜坡变化的定时的反馈控制不同,字线斜坡变化不具有反馈控制,相反,对应的定时参数被手动优化。更具体地讲,程序操作的通过电压斜坡率RRC_VPASS时钟或通过电压斜坡变化时间段(例如,P13,与程序操作相关联的P时钟周期的第十三时间段)以及程序操作的读取电压斜坡率RRC_VREAD_PVFY时钟或读取电压斜坡变化时间段(例如,R2_PVFY,编程验证期间R时钟周期的第二时间段)取决于所涉及的平面数量,如下文更详细地讨论。因此,本文所公开的装置可以使用更积极的位线斜坡率和更积极的字线斜坡率以及用于程序操作的对应定时,这进一步提高了装置的性能。
如所讨论的,在程序操作的通过电压斜坡变化时间段期间,根据默认通过电压斜坡率查找表和移位通过电压斜坡率查找表并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,使通过电压Vpass斜坡变化。因此,装置进一步包括具有多个默认通过电压斜坡变化时间P13的默认通过电压斜坡变化时间段查找表。此外,装置还包括移位通过电压斜坡变化时间段查找表,其具有多个通过电压斜坡变化时间段偏移DP13_PB。图19A和图19B示出了示例默认通过电压斜坡变化时间段查找表和示例移位通过电压斜坡变化时间段查找表。控制电路进一步被配置为根据多个通过电压斜坡变化时间段偏移DP13_PB中的一个通过电压斜坡变化时间段偏移并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,使在程序操作中使用的多个默认通过电压斜坡变化时间P13中的一个默认通过电压斜坡变化时间移位。
因此,例如,如果多个平面包括总共四个平面,则涉及全部四个平面的程序操作在确定读取电压斜坡变化的相应定时(即,通过电压斜坡变化时间段)时使用多个默认通过电压斜坡变化时间P13中的一个默认通过电压斜坡变化时间。提前选择多个默认通过电压斜坡变化时间P13中的一个默认通过电压斜坡变化时间用于装置(例如,在产品开发期间确定并且在生产期间使用)。相似地,提前选择多个通过电压斜坡变化时间段偏移DP13_PB中的一个通过电压斜坡变化时间段偏移用于装置(例如,在产品开发期间确定以及在生产期间使用)。如果程序操作涉及少于全部四个平面,则参考移位通过电压斜坡变化时间段查找表的多个通过电压斜坡变化时间段偏移DP13_PB中的一个通过电压斜坡变化时间段偏移来选择所用的通过电压斜坡变化时间段。例如,用于三个平面的通过电压斜坡变化时间段为多个默认通过电压斜坡变化时间P13中的一个默认通过电压斜坡变化时间加上多个通过电压斜坡变化时间段偏移DP13_PB中的一个通过电压斜坡变化时间段偏移(即,对于三个平面,P13+DP13_PB)。相似地,如果程序操作涉及四个平面中仅两个平面,则所用的通过电压斜坡变化时间段为多个默认通过电压斜坡变化时间P13中的一个默认通过电压斜坡变化时间加上二乘以多个通过电压斜坡变化时间段偏移DP13_PB中的一个通过电压斜坡变化时间段偏移(即,对于两个平面,P13+2*DP13_PB)。此外,如果程序操作涉及四个平面中仅一个平面,则所用的通过电压斜坡变化时间段为多个默认通过电压斜坡变化时间P13中的一个默认通过电压斜坡变化时间加上二乘以多个通过电压斜坡变化时间段偏移DP13_PB中的一个通过电压斜坡变化时间段偏移(即,对于一个平面,P13+3*DP13_PB)。
因此,如果针对涉及全部四个平面的编程验证操作,在默认通过电压斜坡变化时间段查找表中,装置的多个默认通过电压斜坡变化时间P13中的一个默认通过电压斜坡变化时间选择为T7,并且为装置选择的通过电压斜坡变化时间段偏移DP13_PB中的一个通过电压斜坡变化时间段偏移是-1DAC,则涉及四个平面中仅三个平面的程序操作将使用T6通过电压斜坡变化时间。涉及四个平面中仅两个平面的程序操作将使用T5通过电压斜坡变化时间,并且涉及四个平面中仅一个平面的程序操作将使用T4通过电压斜坡变化时间。
此外,每当基于默认通过电压斜坡变化时间段查找表和移位通过电压斜坡变化时间段查找表确定的通过电压斜坡变化时间段超过默认通过电压斜坡变化时间P13中的最小一个默认通过电压斜坡变化时间(即,DAC),控制电路被配置为使用多个默认通过电压斜坡变化时间P13中的最小一个默认通过电压斜坡变化时间(例如,T1默认通过电压斜坡变化时间P13)。
相似地,如所讨论的,在程序操作的读取电压斜坡变化时间段期间,读取电压Vread根据默认读取电压斜坡率查找表和移位读取电压斜坡率查找表斜坡变化。因此,装置进一步包括具有多个默认读取电压斜坡变化时间R2_PVFY的默认读取电压斜坡变化时间段查找表。装置还包括移位读取电压斜坡变化时间段查找表,其具有多个读取电压斜坡变化时间段偏移DR2_PVFY。图20A和图20B示出了示例默认读取电压斜坡变化时间段查找表和示例移位读取电压斜坡变化时间段查找表。控制电路进一步被配置为根据多个读取电压斜坡变化时间段偏移DR2_PVFY中的一个读取电压斜坡变化时间段偏移并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,使在程序操作中使用的多个默认读取电压斜坡变化时间R2_PVFY中的一个默认读取电压斜坡变化时间移位。
因此,例如,如果多个平面包括总共四个平面,则涉及全部四个平面的程序操作在确定读取电压Vread的斜坡变化的相应定时(即,通过电压斜坡变化时间段)时使用多个默认读取电压斜坡变化时间R2_PVFY中的一个默认读取电压斜坡变化时间。提前选择多个默认读取电压斜坡变化时间R2_PVFY中的一个默认读取电压斜坡变化时间用于装置(例如,在产品开发期间确定并在生产期间使用)。类似地,提前选择多个读取电压斜坡变化时间段偏移DR2_PVFY中的一个读取电压斜坡变化时间段偏移用于装置(例如,在产品开发期间确定以及在生产期间使用)。如果程序操作涉及少于全部四个平面,则参考移位读取电压斜坡变化时间段查找表的多个读取电压斜坡变化时间段偏移DR2_PVFY中的一个读取电压斜坡变化时间段偏移来选择所用的读取电压斜坡变化时间段。例如,用于三个平面的读取电压斜坡变化时间段为多个默认读取电压斜坡变化时间R2_PVFY中的一个默认读取电压斜坡变化时间加上多个读取电压斜坡变化时间段偏移DR2_PVFY中的一个读取电压斜坡变化时间段偏移(即,对于三个平面,R2_PVFY+DR2_PVFY)。相似地,如果程序操作涉及四个平面中仅两个平面,则所用的读取电压斜坡变化时间段为多个默认读取电压斜坡变化时间R2_PVFY中的一个默认读取电压斜坡变化时间加上二乘以多个读取电压斜坡变化时间段偏移DR2_PVFY中的一个读取电压斜坡变化时间段偏移(即,对于两个平面,R2_PVFY+2*DR2_PVFY)。此外,如果程序操作涉及四个平面中仅一个平面,则所用的读取电压斜坡变化时间段为多个默认读取电压斜坡变化时间R2_PVFY中的一个默认读取电压斜坡变化时间加上二乘以多个读取电压斜坡变化时间段偏移DR2_PVFY中的一个读取电压斜坡变化时间段偏移(即,对于一个平面,R2_PVFY+3*DR2_PVFY)。
因此,如果针对涉及全部四个平面的编程验证操作,在默认通过电压斜坡变化时间段查找表中,装置的多个默认读取电压斜坡变化时间R2_PVFY中的一个默认读取电压斜坡变化时间被选择为T22,并且为装置选择的通过电压斜坡变化时间段偏移DR2_PVFY中的一个通过电压斜坡变化时间段偏移为-1DAC,则涉及四个平面中仅三个平面的程序操作将使用T21通过电压斜坡变化时间。涉及四个平面中仅两个平面的程序操作将使用T20通过电压斜坡变化时间,并且涉及四个平面中仅一个平面的程序操作将使用T19通过电压斜坡变化时间。
此外,每当基于默认读取电压斜坡变化时间段查找表和移位读取电压斜坡变化时间段查找表确定的读取电压斜坡变化时间段超过默认读取电压斜坡变化时间R2_PVFY中的最小一个默认读取电压斜坡变化时间(即,DAC)时,控制电路被配置为使用多个默认读取电压斜坡变化时间R2_PVFY中的最小一个默认读取电压斜坡变化时间(例如,T17默认通过电压斜坡变化时间R2_PVFY)。
图21示出了如何参考电压(例如,通过电压或读取电压)相对于时间的曲线图来确定斜坡率。示出了电压步长VS1和VS2,其中VS1小于VS2。根据一个方面,斜坡率可通过将总时间段(例如,通过电压斜坡变化时间段或读取电压斜坡变化时间段)的多个时间步长中的一个时间步长除以电压(例如,通过电压或读取电压)的总变化的多个电压步长VS1、VS2中的一个电压步长来确定。
重新参见图14A和图14B,所示仿真结果表明,由于斜坡变化参数IBLRR_P(禁止位线斜坡变化)确定了程序操作上的峰值电流,因此可以禁用较少平面(仿真中的一个平面)的字线斜坡变化,这表明与使用两个平面的操作相比,没有字线的斜坡率控制,但仍然不超过峰值电流。因此,虽然在程序操作期间施加到字线的至少一个字线电压(例如,Vpass或Vread)的字线斜坡率已在上文中被讨论为当多个存储器单元不跨越全部多个平面时被调整,相反,可以不基于所涉及的平面数量来调整至少一个字线电压的字线斜坡率。因此,根据一个方面,控制电路进一步被配置为响应于多个存储器单元的程序操作不涉及多个平面中的全部平面,在多个存储器单元的程序操作期间不调整(即,禁用)施加到字线的至少一个字线电压的字线斜坡率控制。然而,应当理解,对于具有许多字线(例如,162条字线)的装置,由于字线导致的峰值电流的分量预期会改变(增加)。
现在参见图22,示出了一种操作存储器装置(例如,图1A至图2B的存储器***100)的方法。如上所述,存储器装置包括连接到字线(例如,图6的WL0至WLM-1)和位线(例如,图6的BL0至BLP-1)并布置在多个平面(例如,图5B的平面0、平面1)中的多个存储器单元(例如,图2B的存储器单元142、图3的浮栅晶体管300、图6的FGT 604)。方法包括步骤2200,接收用于开始程序操作的程序命令。方法的下一个步骤是2202,确定多个存储器单元的程序操作是否涉及全部多个平面。方法前进到2204,响应于多个存储器单元的程序操作不涉及全部多个平面,在多个存储器的程序操作期间,基于与在程序操作中被编程验证多个存储器单元相关联的多个平面的量,调整施加到位线的位线电压的位线斜坡率和施加到字线的至少一个字线电压的字线斜坡率中的至少一者。方法还包括步骤2206,响应于多个存储器单元的程序操作涉及全部多个平面,在多个存储器单元的程序操作期间,以预先确定的默认修剪位线斜坡率将位线电压施加到位线,并且以预先确定的默认修剪字线斜坡率将至少一个字线电压施加到字线。
如上所讨论,存储器装置进一步包括默认位线电压斜坡率查找表,其具有位线电压的多个默认位线电压斜坡率IBLRR_P。存储器装置还包括移位位线电压斜坡率查找表,其具有多个位线移位偏移DIBLRR_P_PB。因此,方法进一步包括以下步骤:参考默认位线电压斜坡率查找表和移位位线电压斜坡率查找表,并且根据多个位线移位偏移DIBLRR_P_PB中所选择的一个位线移位偏移并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,确定多个默认位线电压斜坡率IBLRR_P中的哪个默认位线电压斜坡率用于程序操作。
因此,在程序操作的位线电压斜坡变化时间段期间,位线电压根据默认位线电压斜坡率查找表和移位位线电压斜坡率查找表并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量而斜坡变化。因此,方法进一步包括以下步骤:根据默认位线电压斜坡率查找表和移位位线电压斜坡率查找表并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,基于位线电压的斜坡变化,自动确定在程序操作中使用的位线电压斜坡变化时间段。
如前所讨论,至少一个字线电压包括在程序操作的编程部分期间施加到多个选择的和未选择的字线的通过电压Vpass。因此,存储器装置进一步包括具有多个默认通过电压斜坡率RRC_VPASS的默认通过电压斜坡率查找表和具有多个通过电压移位偏移DRRC_VPASS_PB的移位通过电压斜坡率查找表。因此,方法进一步包括以下步骤:根据多个通过电压移位偏移DRRC_VPASS_PB中的一个通过电压移位偏移并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,使在程序操作中使用的多个默认通过电压斜坡率RRC_VPASS中的一个默认通过电压斜坡率移位。
此外,如所讨论的,存储器装置进一步包括具有多个默认通过电压斜坡变化时间P13的默认通过电压斜坡变化时间段查找表。存储器装置还包括移位通过电压斜坡变化时间段查找表,其具有多个通过电压斜坡变化时间段偏移DP13_PB。因此,方法进一步包括以下步骤:根据多个通过电压斜坡变化时间段偏移DP13_PB中的一个通过电压斜坡变化时间段偏移并基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,使在程序操作中使用的多个默认通过电压斜坡变化时间P13中的一个默认通过电压斜坡变化时间移位。
如上所述,至少一个字线电压包括在程序操作的验证部分(即,编程验证)期间施加到多个选择的和未选择的字线的读取电压Vread。因此,存储器装置进一步包括具有多个默认读取电压斜坡率RRC_VREAD_PVFY的默认读取电压斜坡率查找表。存储器装置还包括具有多个读取电压移位偏移DRRC_VREAD_PVFY_PB的移位读取电压斜坡率查找表。方法进一步包括以下步骤:根据多个读取电压移位偏移DRRC_VREAD_PVFY_PB中的一个读取电压移位偏移并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,使在程序操作中使用的多个默认读取电压斜坡率RRC_VREAD_PVFY中的一个默认读取电压斜坡率移位。
另外,如所讨论的,存储器装置进一步包括具有多个默认读取电压斜坡变化时间R2_PVFY的默认读取电压斜坡变化时间段查找表。存储器装置还包括具有多个读取电压斜坡变化时间段偏移DR2_PVFY的移位读取电压斜坡变化时间段查找表。因此,方法进一步包括以下步骤:根据多个读取电压斜坡变化时间段偏移DR2_PVFY中的一个读取电压斜坡变化时间段偏移并且基于与在程序操作中被编程验证的多个存储器单元相关联的多个平面的量,使在程序操作中使用的多个默认读取电压斜坡变化时间R2_PVFY中的一个默认读取电压斜坡变化时间移位。
尽管在程序操作期间施加到字线的至少一个字线电压的字线斜坡率在上文中已经被讨论为当多个存储器单元不跨越全部多个平面时被调整,但是相反,可以不基于所涉及的平面数量来调整至少一个字线电压的字线斜坡率。因此,根据一个方面,方法进一步包括以下步骤:响应于多个存储器单元的程序操作不涉及多个平面中的全部平面,在多个存储器单元的程序操作期间不调整施加到字线的至少一个字线电压的字线斜坡率。
虽然本文主要参考查找表讨论了对斜坡率和对应时间段的调整,但应当理解,所公开的装置和方法可替代地利用替代技术来执行调整。例如,可将一个或多个附加公式或算法存储在ROM中,并用于基于所涉及的平面数量确定何时调整斜坡率和对应时间段以及调整多少。
显然,在不脱离所附权利要求中限定的范围的情况下,可对本文所述和示出的内容进行改变。已出于说明和描述的目的提供了实施方案的前述描述。它并不旨在穷举或限制本公开。特定实施方案的各个元件或特征部通常不限于该特定实施方案,但在适用的情况下为可互换的,并且可用于选定的实施方案中,即使没有具体示出或描述。同样的情况也可在许多方面有所不同。此类变型不应视为脱离本公开,并且所有此类修改均旨在包括在本公开的范围内。
本文所用的术语仅出于描述特定示例实施方案的目的,而非旨在进行限制。如本文所用,除非上下文另外清楚地指明,否则单数形式“一个”、“一种”和“所述”可旨在也包括复数形式。术语“包括(comprises)”、“包括(comprising)”、“包括(including)”和“具有(having)”为包括性的,并且因此指定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整数、步骤、操作、元件、部件和/或其组的存在或添加。除非特别标识为执行顺序,否则本文所述的方法步骤、过程和操作不应理解为必须要求它们以所论述或所示的特定顺序执行。还应当理解,可采用附加的或另选的步骤。
当元件或层被称为“在另一元件或层上”、“接合到另一元件或层”、“连接到另一元件或层”或“耦合到另一元件或层”时,该元件或层可直接在另一元件或层上、接合到另一元件或层、连接或耦合到另一元件或层,或者可存在居间元件或层。相比之下,当元件被称为“直接在另一元件或层上”、“直接接合到另一元件或层”、“直接连接到另一元件或层”或“直接耦合到另一元件或层”时,可不存在居间元件或层。用于描述元件之间的关系的其他词语应当以类似的方式解释(例如,“在......之间”与“直接在......之间”、“相邻”与“直接相邻”等)。如本文所用,术语“和/或”包括相关联的列出项目中的一个或多个的任何和所有组合。
虽然术语“第一”、“第二”、“第三”等在本文中可用于描述各种元件、部件、区域、层和/或区段,但这些元件、部件、区域、层和/或区段不应受这些术语的限制。这些术语可仅用于将一个元件、部件、区域、层或区段与另一个区域、层或区段区分开。除非上下文明确指出,否则诸如“第一”、“第二”和其他数字术语的术语在用于本文时并不暗指顺序或次序。因此,在不脱离示例实施方案的教导内容的情况下,下文论述的第一元件、部件、区域、层或区段可被称为第二元件、部件、区域、层或区段。
为了便于描述,本文可使用空间相对术语诸如“内(inner)”、“外(outer)”、“下面(beneath)”、“下方(below)”、“下部(lower)”、“上方(above)”、“上部(upper)”、“顶部(top)”、“底部(bottom)”等来描述一个元件或特征部与另一个元件(一个或多个)或特征部(一个或多个)的关系,如图所示。除了图中描绘的取向之外,空间相对术语可旨在涵盖使用或操作中的设备的不同取向。例如,如果图中的设备被翻转,则被描述为在其他元件或特征部“下方(below)”或“下面(beneath)”的元件将被取向为在其他元件或特征部“上方(above)”。因此,示例术语“下方(below)”可涵盖上方和下方的取向。该设备可以其他方式取向(旋转90度或处于其他取向),并且相应地解释本文所用的空间相对描述。

Claims (20)

1.一种装置,所述装置包括:
多个存储器单元,所述多个存储器单元连接到字线和位线并且布置在多个平面中;和
控制电路,所述控制电路耦接到所述字线和所述位线并被配置为:
确定所述多个存储器单元的程序操作是否涉及所述多个平面中的全部平面,以及
响应于所述多个存储器单元的程序操作不涉及所述多个平面中的全部平面,在所述多个存储器单元的程序操作期间基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量调整施加到所述位线的位线电压的位线斜坡率和施加到所述字线的至少一个字线电压的字线斜坡率中的至少一者。
2.根据权利要求1所述的装置,所述装置进一步包括:
默认位线电压斜坡率查找表,所述默认位线电压斜坡率查找表具有所述位线电压的多个默认位线电压斜坡率,以及
移位位线电压斜坡率查找表,所述移位位线电压斜坡率查找表具有多个位线移位偏移;
并且其中所述控制电路进一步被配置为参考所述默认位线电压斜坡率查找表和所述移位位线电压斜坡率查找表,并且根据所述多个位线移位偏移中的一个位线移位偏移并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,确定所述多个默认位线电压斜坡率中的哪个默认位线电压斜坡率在所述程序操作中使用。
3.根据权利要求2所述的装置,其中在所述编程操作的位线电压斜坡变化时间段期间,根据所述默认位线电压斜坡率查找表和所述移位位线电压斜坡率查找表并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使所述位线电压斜坡变化,并且所述控制电路进一步被配置为根据所述默认位线电压斜坡率查找表和所述移位位线电压斜坡率查找表并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,基于所述位线电压的所述斜坡变化自动确定所述程序操作中使用的所述位线电压斜坡变化时间段。
4.根据权利要求1所述的装置,其中所述字线包括在所述程序操作期间的某一时间被编程验证的选择的字线以及在所述时间未被编程验证的多条未选择的字线,并且所述至少一个字线电压包括在所述程序操作的编程部分期间施加到多条选择的字线和所述多条未选择的字线的通过电压,所述装置进一步包括:
默认通过电压斜坡率查找表,所述默认通过电压斜坡率查找表具有多个默认通过电压斜坡率,
移位通过电压斜坡率查找表,所述移位通过电压斜坡率查找表具有多个通过电压移位偏移,
并且其中所述控制电路进一步被配置为根据所述多个通过电压移位偏移中的一个通过电压移位偏移并基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认通过电压斜坡率中的一个默认通过电压斜坡率移位。
5.根据权利要求4所述的装置,其中在所述程序操作的通过电压斜坡变化时间段期间,根据所述默认通过电压斜坡率查找表和所述移位通过电压斜坡率查找表并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使所述通过电压斜坡变化,并且所述装置进一步包括:
默认通过电压斜坡变化时间段查找表,所述默认通过电压斜坡变化时间段查找表具有多个默认通过电压斜坡变化时间,
移位通过电压斜坡变化时间段查找表,所述移位通过电压斜坡变化时间段查找表具有多个通过电压斜坡变化时间段偏移;
并且其中所述控制电路进一步被配置为根据所述多个通过电压斜坡变化时间段偏移中的一个通过电压斜坡变化时间段偏移并基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认通过电压斜坡变化时间中的一个默认通过电压斜坡变化时间移位。
6.根据权利要求1所述的装置,其中所述字线包括在所述程序操作期间的某一时间被编程验证的选择的字线以及在所述时间未被编程验证的多条未选择的字线,并且所述至少一个字线电压包括在所述程序操作的验证部分期间施加到所述多条选择的字线和所述多条未选择的字线的读取电压,所述装置进一步包括:
默认读取电压斜坡率查找表,所述默认读取电压斜坡率查找表具有多个默认读取电压斜坡率,以及
移位读取电压斜坡率查找表,所述移位读取电压斜坡率查找表具有多个读取电压移位偏移;
并且其中所述控制电路进一步被配置为根据所述多个读取电压移位偏移中的一个读取电压移位偏移并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认读取电压斜坡率中的一个默认读取电压斜坡率移位。
7.根据权利要求6所述的装置,其中在所述程序操作的读取电压斜坡变化时间段期间,根据所述默认读取电压斜坡率查找表和所述移位读取电压斜坡率查找表,使所述读取电压斜坡变化,并且所述装置进一步包括:
默认读取电压斜坡变化时间段查找表,所述默认读取电压斜坡变化时间段查找表具有多个默认读取电压斜坡变化时间,
移位读取电压斜坡变化时间段查找表,所述移位读取电压斜坡变化时间段查找表具有多个读取电压斜坡变化时间段偏移;
并且其中所述控制电路进一步被配置为根据所述多个读取电压斜坡变化时间段偏移中的一个读取电压斜坡变化时间段偏移并基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认读取电压斜坡变化时间中的一个默认读取电压斜坡变化时间移位。
8.根据权利要求1所述的装置,其中所述控制电路进一步被配置为响应于所述多个存储器单元的程序操作不涉及所述多个平面中的全部平面,在所述多个存储器单元的程序操作期间不调整施加到所述字线的所述至少一个字线电压的所述字线斜坡率。
9.一种控制器,所述控制器与存储器装置通信,所述存储器装置包括连接到字线和位线并布置在多个平面中的多个存储器单元,所述控制器被配置为:
确定所述多个存储器单元的程序操作是否涉及所述多个平面中的全部平面;以及
响应于所述多个存储器单元的程序操作不涉及所述多个平面中的全部平面,指示所述存储器装置在所述多个存储器单元的程序操作期间基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量调整施加到所述位线的位线电压的位线斜坡率和施加到所述字线的至少一个字线电压的字线斜坡率中的至少一者。
10.根据权利要求9所述的控制器,所述控制器进一步包括:
默认位线电压斜坡率查找表,所述默认位线电压斜坡率查找表具有所述位线电压的多个默认位线电压斜坡率,以及
移位位线电压斜坡率查找表,所述移位位线电压斜坡率查找表具有多个位线移位偏移;
并且其中所述控制器进一步被配置为参考所述默认位线电压斜坡率查找表和所述移位位线电压斜坡率查找表,并且根据所选择的所述多个位线移位偏移中的一个位线移位偏移并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,确定所述多个默认位线电压斜坡率中的哪个默认位线电压斜坡率在所述程序操作中使用。
11.根据权利要求9所述的控制器,其中所述字线包括在所述程序操作期间的某一时间被编程验证的选择的字线以及在所述时间未被编程验证的多条未选择的字线,并且所述至少一个字线电压包括在所述程序操作的编程部分期间施加到所述多条选择的字线和所述多条未选择的字线的通过电压,所述控制器进一步包括:
默认通过电压斜坡率查找表,所述默认通过电压斜坡率查找表具有多个默认通过电压斜坡率,
移位通过电压斜坡率查找表,所述移位通过电压斜坡率查找表具有多个通过电压移位偏移,
并且其中所述控制器进一步被配置为根据所述多个通过电压移位偏移中的一个通过电压移位偏移并基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认通过电压斜坡率中的一个默认通过电压斜坡率移位。
12.根据权利要求9所述的控制器,其中所述字线包括在所述程序操作期间的某一时间被编程验证的选择的字线以及在所述时间未被编程验证的多条未选择的字线,并且所述至少一个字线电压包括在所述程序操作的验证部分期间施加到所述多条选择的字线和所述多条未选择的字线的读取电压,所述控制器进一步包括:
默认读取电压斜坡率查找表,所述默认读取电压斜坡率查找表具有多个默认读取电压斜坡率,以及
移位读取电压斜坡率查找表,所述移位读取电压斜坡率查找表具有多个读取电压移位偏移;
并且其中所述控制器进一步被配置为根据所述多个读取电压移位偏移中的一个读取电压移位偏移并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认读取电压斜坡率中的一个默认读取电压斜坡率移位。
13.一种操作存储器装置的方法,所述存储器装置包括连接到字线和位线并布置在多个平面中的多个存储器单元,所述方法包括以下步骤:
确定所述多个存储器单元的程序操作是否涉及所述多个平面中的全部平面;以及
响应于所述多个存储器单元的程序操作不涉及所述多个平面中的全部平面,在所述多个存储器单元的程序操作期间基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量调整施加到所述位线的位线电压的位线斜坡率和施加到所述字线的至少一个字线电压的字线斜坡率中的至少一者。
14.根据权利要求13所述的方法,其中所述存储器装置进一步包括具有所述位线电压的多个默认位线电压斜坡率的默认位线电压斜坡率查找表,以及具有多个位线移位偏移的移位位线电压斜坡率查找表,并且所述方法进一步包括以下步骤:参考所述默认位线电压斜坡率查找表和所述移位位线电压斜坡率查找表,以及根据所述多个位线移位偏移中的一个位线移位偏移并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,确定所述多个默认位线电压斜坡率中的哪个默认位线电压斜坡率在所述程序操作中使用。
15.根据权利要求14所述的方法,其中在所述编程操作的位线电压斜坡变化时间段期间,根据所述默认位线电压斜坡率查找表和所述移位位线电压斜坡率查找表并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使所述位线电压斜坡变化,并且所述方法进一步包括以下步骤:根据所述默认位线电压斜坡率查找表和所述移位位线电压斜坡率查找表并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,基于所述位线电压的斜坡变化自动确定在所述程序操作中使用的所述位线电压斜坡变化时间段。
16.根据权利要求13所述的方法,其中所述字线包括在所述程序操作期间的某一时间被编程验证的选择的字线以及在所述时间未被编程验证的多条未选择的字线,并且所述至少一个字线电压包括在所述程序操作的编程部分期间施加到所述多条选择的字线和所述多条未选择的字线的通过电压,所述存储器装置进一步包括具有多个默认通过电压斜坡率的默认通过电压斜坡率查找表和具有多个通过电压移位偏移的移位通过电压斜坡率查找表,所述方法进一步包括以下步骤:根据所述多个通过电压移位偏移中的一个通过电压移位偏移并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认通过电压斜坡率中的一个默认通过电压斜坡率移位。
17.根据权利要求16所述的方法,其中在所述程序操作的通过电压斜坡变化时间段期间,根据所述默认通过电压斜坡率查找表和所述移位通过电压斜坡率查找表并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使所述通过电压斜坡变化,并且所述存储器装置进一步包括具有多个默认通过电压斜坡变化时间的默认通过电压斜坡变化时间段查找表和具有多个通过电压斜坡变化时间段偏移的移位通过电压斜坡变化时间段查找表,所述方法进一步包括以下步骤:根据所述多个通过电压斜坡变化时间段偏移中的一个通过电压斜坡变化时间段偏移并基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认通过电压斜坡变化时间中的一个默认通过电压斜坡变化时间移位。
18.根据权利要求13所述的方法,其中所述字线包括在所述程序操作期间的某一时间被编程验证的选择的字线和在所述时间未被编程验证的多条未选择的字线,并且所述至少一个字线电压包括在所述程序操作的验证部分期间施加到所述多条选择的字线和所述多条未选择的字线的读取电压,并且所述存储器装置进一步包括具有多个默认读取电压斜坡率的默认读取电压斜坡率查找表和具有多个读取电压移位偏移的移位读取电压斜坡率查找表,所述方法进一步包括以下步骤:根据所述多个读取电压移位偏移中的一个读取电压移位偏移并且基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认读取电压斜坡率中的一个默认读取电压斜坡率移位。
19.根据权利要求18所述的方法,其中在所述程序操作的读取电压斜坡变化时间段期间,根据所述默认读取电压斜坡率查找表和所述移位读取电压斜坡率查找表,使所述读取电压斜坡变化,并且所述存储器装置进一步包括具有多个默认读取电压斜坡变化时间的默认读取电压斜坡变化时间段查找表和具有多个读取电压斜坡变化时间段偏移的移位读取电压斜坡变化时间段查找表,所述方法进一步包括以下步骤:根据所述多个读取电压斜坡变化时间段偏移中的一个读取电压斜坡变化时间段偏移并基于与在所述程序操作中被编程验证的所述多个存储器单元相关联的所述多个平面的量,使在所述程序操作中使用的所述多个默认读取电压斜坡变化时间中的一个默认读取电压斜坡变化时间移位。
20.根据权利要求13所述的方法,所述方法进一步包括以下步骤:响应于所述多个存储器单元的程序操作不涉及所述多个平面中的全部平面,在所述多个存储器单元的程序操作期间不调整施加到所述字线的所述至少一个字线电压的字线斜坡率。
CN202110681588.1A 2021-01-14 2021-06-18 使用平面相关斜坡率和定时控制用于程序操作的存储器装置和操作方法 Pending CN114765046A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/149,136 2021-01-14
US17/149,136 US11386968B1 (en) 2021-01-14 2021-01-14 Memory apparatus and method of operation using plane dependent ramp rate and timing control for program operation

Publications (1)

Publication Number Publication Date
CN114765046A true CN114765046A (zh) 2022-07-19

Family

ID=82321989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110681588.1A Pending CN114765046A (zh) 2021-01-14 2021-06-18 使用平面相关斜坡率和定时控制用于程序操作的存储器装置和操作方法

Country Status (3)

Country Link
US (1) US11386968B1 (zh)
KR (1) KR102510872B1 (zh)
CN (1) CN114765046A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11961563B2 (en) * 2022-05-26 2024-04-16 Sandisk Technologies Llc Balancing peak power with programming speed in non-volatile memory
US20240071493A1 (en) * 2022-08-29 2024-02-29 Sandisk Technologies Llc Word line dependent pass voltage ramp rate to improve performance of nand memory

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717851B2 (en) * 2000-10-31 2004-04-06 Sandisk Corporation Method of reducing disturbs in non-volatile memory
US7813181B2 (en) * 2008-12-31 2010-10-12 Sandisk Corporation Non-volatile memory and method for sensing with pipelined corrections for neighboring perturbations
US8526233B2 (en) 2011-05-23 2013-09-03 Sandisk Technologies Inc. Ramping pass voltage to enhance channel boost in memory device, with optional temperature compensation
US8988945B1 (en) 2013-10-10 2015-03-24 Sandisk Technologies Inc. Programming time improvement for non-volatile memory
US9286994B1 (en) 2015-01-26 2016-03-15 Sandisk Technologies Inc. Method of reducing hot electron injection type of read disturb in dummy memory cells
US9536617B2 (en) * 2015-04-03 2017-01-03 Sandisk Technologies Llc Ad hoc digital multi-die polling for peak ICC management
US9466369B1 (en) 2015-12-21 2016-10-11 Sandisk Technologies Llc Word line-dependent ramping of pass voltage and program voltage for three-dimensional memory
US10026487B2 (en) 2016-06-03 2018-07-17 Sandisk Technologies Llc Non-volatile memory with customized control of injection type of disturb during program verify for improved program performance
US10366739B2 (en) 2017-06-20 2019-07-30 Sandisk Technologies Llc State dependent sense circuits and sense operations for storage devices
US10468111B1 (en) 2018-04-30 2019-11-05 Sandisk Technologies Llc Asymmetric voltage ramp rate control
US10566059B2 (en) 2018-04-30 2020-02-18 Sandisk Technologies Llc Three dimensional NAND memory device with drain select gate electrode shared between multiple strings
US10910064B2 (en) * 2018-11-06 2021-02-02 Sandisk Technologies Llc Location dependent impedance mitigation in non-volatile memory
US10636500B1 (en) * 2018-12-20 2020-04-28 Sandisk Technologies Llc Reducing read disturb in two-tier memory device by modifying ramp up rate of word line voltages during channel discharge
US10741253B1 (en) 2019-02-20 2020-08-11 Sandisk Technologies Llc Memory device with compensation for erase speed variations due to blocking oxide layer thinning
US11335413B2 (en) * 2020-05-29 2022-05-17 Western Digital Technologies, Inc. Ramp rate control for peak and average current reduction of open blocks
US11250892B2 (en) 2020-05-29 2022-02-15 Western Digital Technologies, Inc. Pre-charge ramp rate control for peak current based on data latch count

Also Published As

Publication number Publication date
KR102510872B1 (ko) 2023-03-17
US20220223214A1 (en) 2022-07-14
US11386968B1 (en) 2022-07-12
KR20220103004A (ko) 2022-07-21

Similar Documents

Publication Publication Date Title
US10885994B2 (en) Interleaved program and verify in non-volatile memory
US10559370B2 (en) System and method for in-situ programming and read operation adjustments in a non-volatile memory
US10510383B2 (en) State dependent sense circuits and pre-charge operations for storage devices
US11081197B2 (en) Wordline voltage overdrive methods and systems
US10541031B2 (en) Single pulse SLC programming scheme
US10930355B2 (en) Row dependent sensing in nonvolatile memory
US10636498B1 (en) Managing bit-line settling time in non-volatile memory
CN109102829B (zh) 用于储存装置的状态相关的感测电路和感测操作
US10832778B1 (en) Negative voltage wordline methods and systems
US10636494B2 (en) Apparatus and method for reducing noise generated from locked out sense circuits in a non-volatile memory system
US20190006021A1 (en) Leakage detection for inter-block sgd-wl shorts in storage devices
US20190006019A1 (en) Word line leakage detection using source and sink currents
US20210383879A1 (en) Coupling capacitance reduction during program verify for performance improvement
US10825513B2 (en) Parasitic noise control during sense operations
KR102510872B1 (ko) 프로그램 동작을 위해 평면 종속 램프 레이트 및 타이밍 제어를 사용하는 메모리 장치 및 동작 방법
US10839923B1 (en) Predictive boosting for 3D NAND
US11521686B2 (en) Memory apparatus and method of operation using state bit-scan dependent ramp rate for peak current reduction during program operation
US20230326530A1 (en) Memory apparatus and method of operation using state dependent strobe tier scan to reduce peak icc
US11887674B2 (en) Utilizing data pattern effect to control read clock timing and bit line kick for read time reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination