CN114717212B - 谷胱甘肽巯基转移酶作为防治afb1致鸭肝脏损伤解毒酶的应用 - Google Patents

谷胱甘肽巯基转移酶作为防治afb1致鸭肝脏损伤解毒酶的应用 Download PDF

Info

Publication number
CN114717212B
CN114717212B CN202210349010.0A CN202210349010A CN114717212B CN 114717212 B CN114717212 B CN 114717212B CN 202210349010 A CN202210349010 A CN 202210349010A CN 114717212 B CN114717212 B CN 114717212B
Authority
CN
China
Prior art keywords
afb
gst
duck
gst3
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210349010.0A
Other languages
English (en)
Other versions
CN114717212A (zh
Inventor
孙铝辉
张宇
赵玲
邓江
曹可欣
晏依琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202210349010.0A priority Critical patent/CN114717212B/zh
Publication of CN114717212A publication Critical patent/CN114717212A/zh
Application granted granted Critical
Publication of CN114717212B publication Critical patent/CN114717212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • C12N9/1088Glutathione transferase (2.5.1.18)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • A23K50/75Feeding-stuffs specially adapted for particular animals for birds for poultry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01018Glutathione transferase (2.5.1.18)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Birds (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种谷胱甘肽巯基转移酶作为防治AFB1致鸭肝脏损伤解毒酶的应用,本发明对鸭GSTs酶家族中10种GST进行了试验,筛选出了有解毒效果的GST和GST3,提供了GST和GST3作为防治AFB1致动物肝脏损伤靶标酶的应用。本发明的谷胱甘肽巯基转移酶(GST或GST3)能有效抑制或缓解AFB1诱导的雏鸭肝脏毒性作用,主要与其能够催化AFBO生成无毒的AFBO‑GSH的代谢有关。本发明的GST和GST3可以作为治疗AFB1致鸭肝脏损伤药物及新型饲料添加剂开发提供新的的靶标基因。

Description

谷胱甘肽巯基转移酶作为防治AFB1致鸭肝脏损伤解毒酶的 应用
技术领域
本发明涉及AFB1解毒领域,具体涉及一种谷胱甘肽巯基转移酶作为防治AFB1致鸭肝脏损伤解毒酶的应用。
背景技术
据***粮食和农业组织的统计数据显示,全球大约1/4的农作物及农产品会受到霉菌毒素的污染(Mohajeri M et al.,2018;孙飞和方热军,2014)。其中黄曲霉毒素B1(aflatoxin B1,AFB1)污染分布范围极广,毒性极强,禽类对其尤为敏感,雏鸭是常见畜禽中对AFB1最敏感的物种之一(Rushing B R and Selim M I,2019)。畜禽采食黄曲霉毒素污染的饲料后,肝脏作为其的主要靶器官和重要的解毒器官,会出现严重的病理变化,并伴随着生产性能下降、生殖***损伤、免疫机能抑制等情况,甚至导致毒素残留于肉类产品中,长期食用被黄曲霉毒素污染的食物会导致癌症等疾病的发生(Williams et al,2004;黄志伟等,2015)。
当AFB1进入动物肝脏中时,在CYP450s(细胞色素酶P450家族)的作用下,AFB1被转化为高毒性的AFB1-外8,9-环氧化物(AFBO)和其余低毒性的代谢产物。之后AFBO在GSTs(谷胱甘肽巯基转移酶家族)、mEH(微粒体环氧化物水解酶)和AFAR(黄曲霉毒素B1醛还原酶)的作用下代谢为AFBO-GSH和AFB1-dialcohol达到解毒效果(Deng et al.,2018)。畜禽中,AFBO的代谢主要是依靠II相药物代谢酶系GSTs,它是具有多种生理功能的一组同工酶,广泛存在于生物体内,位于胞浆、线粒体及微粒体。值得注意的是,不同物种体内催化AFBO结合GSH生成AFBO-GSH而解毒的关键GSTs酶系存在差异性(Deng et al.,2018)。
鸭AFB1中毒造成的肝脏损伤尚无有效的治疗或缓解方法,GSTs作为其关键的解毒酶,目前在NCBI数据库中记录的十余种GSTs酶中哪些亚型能缓解AFB1诱导的鸭肝脏毒性尚不清楚。
发明内容
本发明针对现有技术对防治AFB1致家禽肝脏毒性的不足,提供了一种谷胱甘肽巯基转移酶作为防治AFB1致鸭肝脏损伤靶标酶的应用,本发明对鸭GSTs酶家族中10种GST进行了试验,筛选出了有解毒效果的GST和GST3,提供了GST和GST3作为防治AFB1致鸭肝脏损伤靶标酶的应用。
为实现上述目的,本发明所涉及一种谷胱甘肽巯基转移酶作为防治AFB1致鸭肝脏损伤靶标酶的应用;所述谷胱甘肽巯基转移酶为GST和GST3。
本发明还提供了一种谷胱甘肽巯基转移酶的基因在防治AFB1致鸭肝脏损伤的药物或饲料添加剂中的应用,所述谷胱甘肽巯基转移酶的基因为GST和GST3;其中,
所述GST的核苷酸序列为:
ATGTCAGGGAAGCCCAGGCTCACCTACATTAATGGAAGGGGACGAATGGAGCCGATCCGATGGCTGCTGGCAGCAGCCGGCGTGGAGTTTGAAGAAAACTTTGTGGAAACAAAAGAACAGTTAGAAAAGTTAATCAAAGGTGGAGACCTGCTGTTCCAGCAAGTGCCCATGGTGGAGATTGATGGGATGAAGATGGTGCAGACCAGAGCCATCCTCCGCTACATAGCGGGGAAATACAACCTCTATGGGAAGGACCTGAAGGAGAGAGCCCTGATCGACATGTATGTGGAAGGAATAACAGATCTGATGCAAATGATTATGATGTTTCCTTTCGCTCCAGCTGAGGCAAAGCCAAAAAATCTTGCCTCAATTGAAGAGAAGGCAACAAAGAGATACTTCCCAGTCTTTGAAAAGATTTTGAAACAACACGGCCAAGACTTTCTTGTGGGGAACCGACTCAGCTGGGCAGATGTTCAGCTATTGGAAGCCATTTTAGCAGTGGAGGAGAAAGTACCTGCTGTGCTTTCTGGGTTTCCTCAGCTGCAGGCCTTTAAAACAAAAATGAGCAACGTGCCTACAATTAAGAAGTTCCTGCAGCCTGGCAGCGCAAGGAAGCCCCCACCAGATGAGAATTATGTGGCACTTGTGATGTCGATTTTTAATCTAAGCTGA,其如SEQ ID No.1所示;
所述GST3的核苷酸序列为:
ATGGCTGGAAAACCCAAACTTTACTACTTTGATGGAAGAGGCAAAATGGAATCCATTCGCTGGTTGTTAGCTGCAGCCGGGGTTGAGTTTGAAGAGGAGTTTTTGGAAACACGAGAACAGTATGAGAAGCTCCTGCAAAGTGGATCCCTGCTGTTCCAGCAAGTTCCCCTGGTGGAGATCGATGGGATGAAGATGGTGCAGACCAGAGCCATCCTCAACTACATTGCAGCAAAGTACAACCTCTACGGAAAGGACCTGAAGGAGAGAGCCCTGATTGATATGTATGTTGGAGGAACTGAGGACCTTATGGGCTTTATTTTGATGTTCCCATTCTTATCGGCTGAGGATAAAGAGAAGCAACGTGCCTTTATAGTTCAGAAGGCCACCAGCAGGTACTTCCCAGTATATGAAAAGGTTCTGAAAGACCATGGGCAGGACTTCCTTGTTGGCAACAGTTTTAGCTGGGCAGACATTCATCTTCTTGAAGCCATTTTAATGGTAGAAGAGAAGAAGTCGGACGTTCTCTCGAGCTTTCCTCAGTTGCAGGCATTTAAAAGAAGGATAAGCAGCATCCCCACAATCAAGAAGTTTCTAGAGCCTGGAAGCCAGAGAAAACCTGTTCCTGATGATAAATATGTGGAGACTGTGAGGAAAGTTCTCCGCATGTATTATGATATAAAAGCGAATTAG,如SEQ ID No.2所示。
本发明GST和GST3是基于下表1中基因筛选得到。
表1 GSTs Accession Number
本发明还提供了一种重组表达载体,它含上述GST或GST3的表达载体,其中,所述表达载体为pcDNA3.1(+)。
本发明还提供了一种上述重组表达载体在防治AFB1致鸭肝脏损伤的药物或饲料添加剂中的应用。
本发明还提供了一种谷胱甘肽巯基转移酶防治AFB1致鸭肝脏损伤的药物或饲料添加剂中的应用;所述谷胱甘肽巯基转移酶为GST和GST3,所述GST的氨基酸序列为:
MSGKPRLTYINGRGRMEPIRWLLAAAGVEFEENFVETKEQLEKLIKGGDLLFQQVPMVEIDGMKMVQTRAILRYIAGKYNLYGKDLKERALIDMYVEGITDLMQMIMMFPFAPAEAKPKNLASIEEKATKRYFPVFEKILKQHGQDFLVGNRLSWADVQLLEAILAVEEKVPAVLSGFPQLQAFKTKMSNVPTIKKFLQPGSARKPPPDENYVALVMSIFNLS,其如SEQ ID No.3所示;
所述GST3的氨基酸序列为:
MAGKPKLYYFDGRGKMESIRWLLAAAGVEFEEEFLETREQYEKLLQSGSLLFQQVPLVEIDGMKMVQTRAILNYIAAKYNLYGKDLKERALIDMYVGGTEDLMGFILMFPFLSAEDKEKQRAFIVQKATSRYFPVYEKVLKDHGQDFLVGNSFSWADIHLLEAILMVEEKKSDVLSSFPQLQAFKRRISSIPTIKKFLEPGSQRKPVPDDKYVETVRKVLRMYYDIKAN,其如SEQ ID No.4所示。
本发明原理:
1.谷胱甘肽巯基转移酶(GST)被认为是参与亲电化合物代谢的最重要的酶(R.N.Armstrong,1991)。这些酶催化药物代谢途径中最重要的II期反应之一,该途径包括GSH与有害细胞亲电物质的结合,例如一些强致癌物(L.G.Higgins and J.D.Hayes,2011)以及内源性代谢物、激素和酚类微量营养素(F.Galli,2007)。作为药物代谢基因功能的一部分,GST介导的与GSH的结合使亲脂性亲电子试剂增加在水中的溶解度,从而促进其细胞转运和***。胞质中的GST的其他功能包括亲脂性小分子的结合、硫醇异构酶活性以及蛋白质硫醇的GSH依赖性保护和氧化还原调节参与信号转导(Z.Y.V.Adler et al.,1999;D.M.Townsend et al.,2009)。
2.本发明运用鸭原代肝细胞为模型,通过鸭原代肝细胞过表达GSTs,检测GSTs在缓解AFB1致鸭肝脏毒性作用中的功能。通过CCK-8试验、LDH试验以及AFBO代谢物AFBO-GSH液相色谱检测,结果表明在十种GSTs中,仅有GST和GST3均能够显著提高攻毒条件下鸭原代肝细胞活率,显著降低细胞培养液中的LDH含量,显著提高AFBO-GSH的产量,说明了GST和GST3在抑制AFB1毒性上的作用。
通过上述研究发现,鸭原代肝细胞中超表达GST和GST3可以显著缓解AFB1对其造成的细胞活率下降、LDH释放和提高AFBO-GSH的产量,而其他GSTs超表达无明显效果。因此确定GST和GST3为鸭肝中参与AFB1解毒的关键酶。
本发明的有益效果:
本发明的谷胱甘肽巯基转移酶(GST或GST3)能有效抑制或缓解AFB1诱导的雏鸭肝脏毒性作用,主要与其能够提高剧毒的AFBO的代谢效率有关。本发明的GST和GST3可以作为治疗AFB1致鸭肝脏损伤药物及新型饲料添加剂开发的靶标酶。
附图说明
图1为75ppbAFB1攻毒24h后,超表达GSTs后的鸭原代肝细胞活率图;
图2为150ppbAFB1攻毒24h后,超表达GSTs后的鸭原代肝的细胞活率图;
图3为75ppbAFB1攻毒24h后,细胞培养液中的LDH活性的变化图;
图4为150ppbAFB1攻毒24h后,细胞培养液中的LDH活性的变化图;
图5为75ppbAFB1攻毒24h后细胞中的AFBO-GSH含量的变化图。
具体实施方式
下面结合具体实施例对本发明作进一步的详细描述,以便本领域技术人员理解。
实施例1 AFB1处理空载质粒转染后的鸭原代肝细胞和GSTs过表达鸭原代肝细胞后的细胞活率变化
从鸭肝cDNA中克隆得到的下表1中GSTs的基因任意一种的CDs片段,构建pcDNA3.1(+)-GSTs重组表达载体,转染;并通过qPCR验证GST转染效率。对照组为鸭原代肝细胞pcDNA3.1(+)转染组,实验组则为不同pcDNA3.1(+)-GSTs转染组;以GST为例:
从鸭肝cDNA中克隆得到的GST CDs片段,胶回收后被同源重组到pcDNA3.1(+)上,测序比对成功后得到pcDNA3.1(+)-GST重组表达载体。通过原位灌注从鸭肝中分离得到鸭原代肝细胞,细胞贴壁培养24h后别转染分pcDNA3.1(+)和pcDNA3.1(+)-GST重组表达载体,并通过qPCR验证GST转染效率。对照组为鸭原代肝细胞pcDNA3.1(+)转染组,实验组则为pcDNA3.1(+)-GST转染组;
表1 GSTs Accession Number
在细胞转染表达24h后,根据之前的实验结果,选取75ppb和150ppb两个不同浓度的含AFB1的培养液进行攻毒试验。在攻毒24h后,按照同仁CCK-8试剂盒说明书对其进行细胞活率检测,在检测吸光值时,采取双波长检测(450nm和630nm)。
结果如图1和图2所示:在75ppb和150ppb的AFB1的作用下,鸭原代肝细胞的细胞活率均出现了显著下降,分别下降40%和50%。在所转染的十种GSTs中,过表达GST和GST3后的鸭原代肝细胞对AFB1的表现出了更强的耐受能力,其细胞活率显著高于对照攻毒组5%-10%,说明GST和GST3能够有效缓解AFB1的毒性。
实施例2 AFB1处理空载质粒转染后的鸭原代肝细胞和GSTs过表达鸭原代肝细胞后的细胞培养液中LDH活性的变化
对照组为鸭原代肝细胞空载质粒转染组(pcDNA3.1(+)),实验组为不同GSTs转染组。转染24h后,选取75ppb和150ppb两个不同浓度的AFB1的培养液进行攻毒试验。在攻毒24h后,取细胞培养皿中培养液上清进行LDH(乳酸脱氢酶)检测,检测方法严格按照南京检测LDH检测试剂盒说明书进行。
结果如图3和图4所示:在75ppb和150ppb的AFB1的作用下,细胞培养液中的LDH的活性显著上升,说明细胞受到显著损伤,在所转染的十种GSTs中,过表达GST和GST3后的鸭原代肝细胞对AFB1的表现出了更强的耐受能力,其LDH活性显著低于对照攻毒组12%-17%,说明GST和GST3能够有效缓解AFB1的毒性。
实施例3:AFB1处理空载质粒转染后的鸭原代肝细胞和GSTs过表达鸭原代肝细胞后的细胞中AFBO-GSH含量的变化
对照组为鸭原代肝细胞空载质粒转染组(pcDNA3.1(+)),实验组为不同GSTs转染组。转染24h后,用75ppb的AFB1的培养液进行攻毒试验。攻毒24h后,将细胞及培养液收集至2ml离心管中,放入-80℃中冷冻。将收集得到的样品进行冷冻干燥,萃取衍生,然后用液相色谱检测AFBO-GSH的含量。
液相色谱结果显示:在所转染的10种GSTs中,只有GST和GST3能够显著提高AFBO解毒代谢产物AFBO-GSH的含量(46%和13%),说明其能显著缓解AFB1对鸭原代肝细胞的毒性(图5)。
其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。
序列表
<110> 华中农业大学
<120> 谷胱甘肽巯基转移酶作为防治AFB1致鸭肝脏损伤解毒酶的应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 672
<212> DNA
<213> 绿头鸭(Anas platyrhynchos)
<400> 1
atgtcaggga agcccaggct cacctacatt aatggaaggg gacgaatgga gccgatccga 60
tggctgctgg cagcagccgg cgtggagttt gaagaaaact ttgtggaaac aaaagaacag 120
ttagaaaagt taatcaaagg tggagacctg ctgttccagc aagtgcccat ggtggagatt 180
gatgggatga agatggtgca gaccagagcc atcctccgct acatagcggg gaaatacaac 240
ctctatggga aggacctgaa ggagagagcc ctgatcgaca tgtatgtgga aggaataaca 300
gatctgatgc aaatgattat gatgtttcct ttcgctccag ctgaggcaaa gccaaaaaat 360
cttgcctcaa ttgaagagaa ggcaacaaag agatacttcc cagtctttga aaagattttg 420
aaacaacacg gccaagactt tcttgtgggg aaccgactca gctgggcaga tgttcagcta 480
ttggaagcca ttttagcagt ggaggagaaa gtacctgctg tgctttctgg gtttcctcag 540
ctgcaggcct ttaaaacaaa aatgagcaac gtgcctacaa ttaagaagtt cctgcagcct 600
ggcagcgcaa ggaagccccc accagatgag aattatgtgg cacttgtgat gtcgattttt 660
aatctaagct ga 672
<210> 2
<211> 690
<212> DNA
<213> 绿头鸭(Anas platyrhynchos)
<400> 2
atggctggaa aacccaaact ttactacttt gatggaagag gcaaaatgga atccattcgc 60
tggttgttag ctgcagccgg ggttgagttt gaagaggagt ttttggaaac acgagaacag 120
tatgagaagc tcctgcaaag tggatccctg ctgttccagc aagttcccct ggtggagatc 180
gatgggatga agatggtgca gaccagagcc atcctcaact acattgcagc aaagtacaac 240
ctctacggaa aggacctgaa ggagagagcc ctgattgata tgtatgttgg aggaactgag 300
gaccttatgg gctttatttt gatgttccca ttcttatcgg ctgaggataa agagaagcaa 360
cgtgccttta tagttcagaa ggccaccagc aggtacttcc cagtatatga aaaggttctg 420
aaagaccatg ggcaggactt ccttgttggc aacagtttta gctgggcaga cattcatctt 480
cttgaagcca ttttaatggt agaagagaag aagtcggacg ttctctcgag ctttcctcag 540
ttgcaggcat ttaaaagaag gataagcagc atccccacaa tcaagaagtt tctagagcct 600
ggaagccaga gaaaacctgt tcctgatgat aaatatgtgg agactgtgag gaaagttctc 660
cgcatgtatt atgatataaa agcgaattag 690
<210> 3
<211> 223
<212> PRT
<213> 绿头鸭(Anas platyrhynchos)
<400> 3
Met Ser Gly Lys Pro Arg Leu Thr Tyr Ile Asn Gly Arg Gly Arg Met
1 5 10 15
Glu Pro Ile Arg Trp Leu Leu Ala Ala Ala Gly Val Glu Phe Glu Glu
20 25 30
Asn Phe Val Glu Thr Lys Glu Gln Leu Glu Lys Leu Ile Lys Gly Gly
35 40 45
Asp Leu Leu Phe Gln Gln Val Pro Met Val Glu Ile Asp Gly Met Lys
50 55 60
Met Val Gln Thr Arg Ala Ile Leu Arg Tyr Ile Ala Gly Lys Tyr Asn
65 70 75 80
Leu Tyr Gly Lys Asp Leu Lys Glu Arg Ala Leu Ile Asp Met Tyr Val
85 90 95
Glu Gly Ile Thr Asp Leu Met Gln Met Ile Met Met Phe Pro Phe Ala
100 105 110
Pro Ala Glu Ala Lys Pro Lys Asn Leu Ala Ser Ile Glu Glu Lys Ala
115 120 125
Thr Lys Arg Tyr Phe Pro Val Phe Glu Lys Ile Leu Lys Gln His Gly
130 135 140
Gln Asp Phe Leu Val Gly Asn Arg Leu Ser Trp Ala Asp Val Gln Leu
145 150 155 160
Leu Glu Ala Ile Leu Ala Val Glu Glu Lys Val Pro Ala Val Leu Ser
165 170 175
Gly Phe Pro Gln Leu Gln Ala Phe Lys Thr Lys Met Ser Asn Val Pro
180 185 190
Thr Ile Lys Lys Phe Leu Gln Pro Gly Ser Ala Arg Lys Pro Pro Pro
195 200 205
Asp Glu Asn Tyr Val Ala Leu Val Met Ser Ile Phe Asn Leu Ser
210 215 220
<210> 4
<211> 229
<212> PRT
<213> 绿头鸭(Anas platyrhynchos)
<400> 4
Met Ala Gly Lys Pro Lys Leu Tyr Tyr Phe Asp Gly Arg Gly Lys Met
1 5 10 15
Glu Ser Ile Arg Trp Leu Leu Ala Ala Ala Gly Val Glu Phe Glu Glu
20 25 30
Glu Phe Leu Glu Thr Arg Glu Gln Tyr Glu Lys Leu Leu Gln Ser Gly
35 40 45
Ser Leu Leu Phe Gln Gln Val Pro Leu Val Glu Ile Asp Gly Met Lys
50 55 60
Met Val Gln Thr Arg Ala Ile Leu Asn Tyr Ile Ala Ala Lys Tyr Asn
65 70 75 80
Leu Tyr Gly Lys Asp Leu Lys Glu Arg Ala Leu Ile Asp Met Tyr Val
85 90 95
Gly Gly Thr Glu Asp Leu Met Gly Phe Ile Leu Met Phe Pro Phe Leu
100 105 110
Ser Ala Glu Asp Lys Glu Lys Gln Arg Ala Phe Ile Val Gln Lys Ala
115 120 125
Thr Ser Arg Tyr Phe Pro Val Tyr Glu Lys Val Leu Lys Asp His Gly
130 135 140
Gln Asp Phe Leu Val Gly Asn Ser Phe Ser Trp Ala Asp Ile His Leu
145 150 155 160
Leu Glu Ala Ile Leu Met Val Glu Glu Lys Lys Ser Asp Val Leu Ser
165 170 175
Ser Phe Pro Gln Leu Gln Ala Phe Lys Arg Arg Ile Ser Ser Ile Pro
180 185 190
Thr Ile Lys Lys Phe Leu Glu Pro Gly Ser Gln Arg Lys Pro Val Pro
195 200 205
Asp Asp Lys Tyr Val Glu Thr Val Arg Lys Val Leu Arg Met Tyr Tyr
210 215 220
Asp Ile Lys Ala Asn
225

Claims (1)

1.谷胱甘肽巯基转移酶在制备防治AFB1致鸭肝脏损伤的药物或饲料添加剂中的应用;其特征在于:所述谷胱甘肽巯基转移酶为GST和GST3,其中,所述GST的氨基酸序列如SEQ IDNo.3所示,所述GST3的氨基酸序列如SEQ ID No.4所示。
CN202210349010.0A 2022-04-01 2022-04-01 谷胱甘肽巯基转移酶作为防治afb1致鸭肝脏损伤解毒酶的应用 Active CN114717212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210349010.0A CN114717212B (zh) 2022-04-01 2022-04-01 谷胱甘肽巯基转移酶作为防治afb1致鸭肝脏损伤解毒酶的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210349010.0A CN114717212B (zh) 2022-04-01 2022-04-01 谷胱甘肽巯基转移酶作为防治afb1致鸭肝脏损伤解毒酶的应用

Publications (2)

Publication Number Publication Date
CN114717212A CN114717212A (zh) 2022-07-08
CN114717212B true CN114717212B (zh) 2023-08-01

Family

ID=82242092

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210349010.0A Active CN114717212B (zh) 2022-04-01 2022-04-01 谷胱甘肽巯基转移酶作为防治afb1致鸭肝脏损伤解毒酶的应用

Country Status (1)

Country Link
CN (1) CN114717212B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136605A (en) * 1994-08-26 2000-10-24 Wisconsin Alumni Research Foundation Glutathione S-transferase isoforms
CN104099251A (zh) * 2014-04-11 2014-10-15 江南大学 一种新型黑曲霉菌株及其在多种真菌毒素降解中的应用
CN106860878A (zh) * 2017-01-13 2017-06-20 华中农业大学 Mt基因作为防治afb1致鸭肝脏损伤靶标基因的应用
CN113755440A (zh) * 2021-09-10 2021-12-07 广东海洋大学 一种afb1诱导鸡肝脏损伤的细胞模型建立方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136605A (en) * 1994-08-26 2000-10-24 Wisconsin Alumni Research Foundation Glutathione S-transferase isoforms
CN104099251A (zh) * 2014-04-11 2014-10-15 江南大学 一种新型黑曲霉菌株及其在多种真菌毒素降解中的应用
CN106860878A (zh) * 2017-01-13 2017-06-20 华中农业大学 Mt基因作为防治afb1致鸭肝脏损伤靶标基因的应用
CN113755440A (zh) * 2021-09-10 2021-12-07 广东海洋大学 一种afb1诱导鸡肝脏损伤的细胞模型建立方法

Also Published As

Publication number Publication date
CN114717212A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
Rastogi et al. The cyanotoxin-microcystins: current overview
Zhang et al. The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: cloning, distribution and expression
Hou et al. Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress
Udawat et al. Heterologous expression of an uncharacterized universal stress protein gene (SbUSP) from the extreme halophyte, Salicornia brachiata, which confers salt and osmotic tolerance to E. coli
Wang et al. Structural and functional characterization of microcystin detoxification-related liver genes in a phytoplanktivorous fish, Nile tilapia (Oreochromis niloticus)
Senthil Kumar et al. Isolation and purification of high efficiency L-asparaginase by quantitative preparative continuous-elution SDS PAGE electrophoresis
Wu et al. Molecular cloning, characterization and mRNA expression of selenium-dependent glutathione peroxidase from abalone Haliotis discus hannai Ino in response to dietary selenium, zinc and iron
Hu et al. Cloning, identification and functional characterization of a pi-class glutathione-S-transferase from the freshwater mussel Cristaria plicata
Zheng et al. A manganese superoxide dismutase (MnSOD) from ark shell, Scapharca broughtonii: Molecular characterization, expression and immune activity analysis
Cheng et al. Characterization and expression analysis of a thioredoxin-like protein gene in the sea cucumber Apostichopus japonicus
Ren et al. Gene structure, immune response and evolution: comparative analysis of three 2-Cys peroxiredoxin members of miiuy croaker, Miichthys miiuy
Arner et al. Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney
Wu et al. Effect of microcystin on the expression of Nrf2 and its downstream antioxidant genes from Cristaria plicata
Ren et al. A thioredoxin response to the WSSV challenge on the Chinese white shrimp, Fenneropenaeus chinensis
Frommeyer et al. Guanidination of soluble lysine-rich cyanophycin yields a homoarginine-containing polyamide
Ataya et al. Genomics, phylogeny and in silico analysis of mitochondrial glutathione S-transferase-kappa from the camel Camelus dromedarius
Liu et al. Cloning and analysis of three glutathione S-transferases in Eriocheir hepuensis and their expression in response to azadirachtin stress
Minami et al. Molecular characterization of adenosine 5′-monophosphate deaminase—the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta)
CN114717212B (zh) 谷胱甘肽巯基转移酶作为防治afb1致鸭肝脏损伤解毒酶的应用
Hong et al. Expression of polyphenol oxidase of Litopenaeus vannamei and its characterization
Chen et al. Analysis of the proteins related to browning in leaf culture of Phalaenopsis
Wang et al. Cloning and expression analysis of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene of grass carp (Ctenopharyngodon idellus) and the dietary effect of Eucommia ulmoides on gene expression
Dai et al. cDNA cloning, prokaryotic expression, and functional analysis of squalene synthase (SQS) in Camellia vietnamensis Huang
Elvitigala et al. Marine teleost ortholog of catalase from rock bream (Oplegnathus fasciatus): Molecular perspectives from genomic organization to enzymatic behavior with respect to its potent antioxidant properties
Mirmazloum et al. Identification of a novel UDP-glycosyltransferase gene from Rhodiola rosea and its expression during biotransformation of upstream precursors in callus culture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant