CN114703427A - 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件 - Google Patents

热冲压成形用钢材、热冲压成形工艺及热冲压成形构件 Download PDF

Info

Publication number
CN114703427A
CN114703427A CN202210380045.0A CN202210380045A CN114703427A CN 114703427 A CN114703427 A CN 114703427A CN 202210380045 A CN202210380045 A CN 202210380045A CN 114703427 A CN114703427 A CN 114703427A
Authority
CN
China
Prior art keywords
content
steel
hot press
percent
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210380045.0A
Other languages
English (en)
Inventor
易红亮
杨达朋
熊小川
王国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ironovation Materials Technology Co Ltd
Original Assignee
Ironovation Materials Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ironovation Materials Technology Co Ltd filed Critical Ironovation Materials Technology Co Ltd
Priority to CN202210380045.0A priority Critical patent/CN114703427A/zh
Publication of CN114703427A publication Critical patent/CN114703427A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

本申请提供一种热冲压成形用钢材、热冲压成形工艺及热冲压成形构件。热冲压成形用钢材以重量百分比计包括C:0.2‑0.4%,Si:0‑0.8%,Al:0‑1.0%,B:0‑0.005%,Mn:0.5‑3.0%,Mo:0‑1%,Cr:0‑2%,Ni:0‑5%,V:0‑0.4%,Nb:0‑0.2%,Ti:≤0.01%,以及冶炼时不可避免的P、S、N等杂质元素,并且其中当B≤0.0005%时,满足29*Mo+16*Mn+14*Cr+5.3*Ni≥30%;当0.0005%<B≤0.005%时,含有0.4‑1.0%的Al。

Description

热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
本申请是申请号为201810401260.8、申请日为2018年4月28日、发明名称为“热冲压成形用钢材、热冲压成形工艺及热冲压成形构件”的发明专利申请的分案申请。
技术领域
本发明涉及一种热冲压成形用钢材、热冲压成形工艺及热冲压成形构件。
背景技术
轻量化是实现汽车行业节能减排的重要途径,汽车车身质量每减少10%,能够减少油耗5~10%。汽车车身材料中钢铁材料一般占60%以上,先进高强钢的使用能够在保证汽车安全的前提下实现零件的减薄,减少材料的使用,实现车身的减重。但是,室温下随着钢铁材料强度的提高,成形性能下降,且高强钢室温成形面临回弹、磨具磨损等问题,因此室温下的冷冲压成形一般只能用于强度在1000MPa以下的钢铁材料。
另一方面,热冲压成形是将板料加热至高温奥氏体化状态,此时钢板具有低的强度(通常低于200MPa)和高的延伸率(高达50%),板料在奥氏体化状态高温成形为构件,因此具有高的成形性能并几乎没有回弹。而且,在模具中通过固体热传导对已成形的构件进行淬火,相变为马氏体并硬化,因此可达到1500MPa以上的强度,是解决高强度和成形性能之间矛盾的最有效手段。与冷冲压相比,热冲压具有零件强度高、成形性好、冲压所需吨位小、零件尺寸精度高等优点。
热冲压成形由瑞典企业于20世纪80年代提出,近年来,世界各国汽车业投入大量的精力来开展超高强度钢板开发及热冲压成形技术的研究,并且在欧美、日本以及国内的主要汽车制造企业已开始尝试使用采用热冲压成形技术生产的超高强度钢板构件,如车门防撞杆、保险杠加强梁、A柱、B柱、C柱、门框加强梁等。
专利CN105518173A(以下称作专利文献1)公开了一种热冲压成形体及其制造方法。在专利文献1记载的热冲压成形体中,B(硼)的含量为0.0003-0.002%,优选在0.0005%以上。其中,B的作用为提高热冲压用钢板的淬透性,使钢板易于在热冲压成形体的组织中得到马氏体。
B元素以固溶原子状态在钢板奥氏体化时在晶界偏聚来阻止铁素体的形核,从而保证奥氏体化的钢板在冲压变形及磨具内冷却时具有足够的淬透性,抑制铁素体的生成,冷却后得到以马氏体为主的最终组织,从而能够达到1500MPa以上的抗拉强度。同时,B作为有效的铁素体抑制剂,可大幅减少Mn、Cr等合金元素的加入,有利于降低合金成本。
但是,钢液中不可避免地会含有来源于原料和空气的N,受冶炼水平的影响,钢液中N含量一般在20~60ppm,若出现异常,甚至会高于100ppm。由于B扩散性高,钢中固溶的N能够和B形成BN夹杂物,且BN在奥氏体中稳定存在。热冲压时奥氏体化温度在900℃左右,该温度下BN不能溶解,故而减弱甚至消除了B在奥氏体晶界处偏聚从而抑制铁素体生成的作用。
为了有效发挥B的作用,在专利文献1中,加入了强氮化物形成元素Ti。由于Ti与N的结合力高于B,所以能够形成TiN达到固N保B的目的,使B以固溶原子的形式存在,从而能够发挥B抑制铁素体生成、增加钢板淬透性的作用。
但是,当用Ti固氮时,可能会形成粗大TiN颗粒(粒径≥1μm)。而且,TiN溶解温度高,在900℃左右的奥氏体化过程中不溶解,保留在最终的成形件组织中。粗大的TiN硬质颗粒或者密度较高的TiN颗粒会在材料变形时成为裂纹源,导致热冲压马氏体钢解理断裂,严重降低钢板的冲击韧性。
此外,CN102906291A(以下称作专利文献2)公开了一种高强度冲压部件及其制造方法。在专利文献2中,将含有0.12-0.69%的C、0.7%以上的Si+Al、0.5-3.0%的Mn的钢材加热到奥氏体化温度(专利文献2中为750-1000℃)并保温后,冷却到Ms和Mf温度之间(专利文献2中为50-350℃),然后升温到贝氏体相变区域(专利文献2中为350-490℃),残余奥氏体分解生成贝氏体铁素体和富碳的残余奥氏体,利用残余奥氏体的TRIP效应提高钢板的延伸率。
但是,专利文献2需要将钢材冷却至Ms和Mf之间,按照专利文献2的钢材成分,该温度要高于室温,在钢板热冲压后磨具内冷却时该温度难以精确控制,并且需要立即升温到贝氏体转变温度区间,用现有的工业热冲压工艺设备难以实现。
发明内容
本发明是鉴于现有技术中存在的上述问题做出的,一个目的在于提供一种热冲压成形用钢材,该热冲压成形用钢材不含有粒径≥1μm的大颗粒TiN夹杂物,同时,该钢材具有足够的淬透性。
本发明的另一目的在于提供一种热冲压成形工艺,该热冲压成形工艺简单,利用现有的热冲压成形设备即可完成。
本发明的再一目的在于提供一种成形构件,其不含有粒径≥1μm的大颗粒TiN夹杂物,能够避免由此导致的韧性异常降低问题。
根据本发明的第一方面,提供一种热冲压成形用钢材,该热冲压成形用钢材以重量百分比计包括C:0.2-0.4%,Si:0-0.8%,Al:0-1.0%,B:0-0.005%,Mn:0.5-3.0%,Mo:0-1%,Cr:0-2%,Ni:0-5%,V:0-0.4%,Nb:0-0.2%,Ti:≤0.01%,以及冶炼时不可避免的P、S、N等杂质元素,并且其中当B≤0.0005%时,满足29*Mo+16*Mn+14*Cr+5.3*Ni ≥ 30%;当0.0005%<B≤0.005%时,含有0.4-1.0%的Al。
根据本发明的热冲压成形用钢材不含Ti或仅含微量Ti,避免了大尺寸硬质TiN夹杂物(粒径≥1μm)的生成、以及由此引起的热冲压成形构件韧性异常降低的问题。同时,保证了钢板的淬透性,能够保证在热冲压成形后得到以马氏体为主的微观组织。具体而言,当B≤0.0005%时,为了保证钢板的淬透性,加入一定量合金元素Mn、Mo、Cr、Ni,并且满足关系式29*Mo+16*Mn+14*Cr+5.3*Ni ≥ 30%。另一方面,当0.0005%<B≤0.005%时,加入0.4-1.0%的Al来固N,避免BN的生成,发挥B抑制铁素体生成的作用。
而且,根据本发明的热冲压成形用钢材,生成全马氏体的临界冷却速率小于30℃/s,能够满足常规热冲压设备对淬透性的要求,从而能够使用常规热冲压设备进行热冲压成形。并且,热冲压成形回火后可达到1200~1800MPa的屈服强度、1500~2150MPa的抗拉强度以及7~10%的延伸率,99.5%置信度-40℃冲击韧性≥45J∙cm-2
作为一个优选方案,该热冲压成形用钢材以重量百分比计,C含量为0.20-0.38%,Si含量为0.1-0.5%,Mn含量为0.8-2.2%,Cr含量为0.1-0.5%,Mo含量为0.2-0.6%,Ti含量为0-0.01%。
作为另一优选方案,该热冲压成形用钢材以重量百分比计,C含量为0.24-0.4%,Si含量为0.1-0.5%,Mn含量为0.8-2.2%,Cr含量为0.1-0.5%,B含量为0.0005-0.004%,Ti含量为0-0.01%,Al含量为0.4-0.8%。
作为又一优选方案,该热冲压成形用钢材以重量百分比计,C含量为0.3-0.4%,Si含量为0.1-0.8%,Mn含量为0.8-2.2%,Cr含量为0-0.5%,B含量为0.0005-0.004%,Ti含量为0-0.01%,Al含量为0.4-0.9%。
所述热冲压成形用钢材可以是热轧钢板、热轧酸洗板、冷轧钢板或带有涂镀层的钢板。
其中,所述带有涂镀层的钢板可以是锌涂镀钢板,所述锌涂镀钢板是形成有金属锌层的热轧钢板或冷轧钢板,其中金属锌层可通过热浸镀锌、镀锌退火、锌电镀和锌-铁电镀中的至少一种形成。
其中,所述带有涂镀层的钢板是形成有铝硅层的热轧钢板或冷轧钢板,或者形成有有机镀层的钢板。
根据本发明的第二方面,提供一种热冲压成形工艺,其包括以下步骤:钢材奥氏体化步骤,提供第一方面的热冲压成形用钢材或所述热冲压成形用钢材的预成形构件,加热至800~950℃后保温1~10000s;钢材移送步骤,将经过上述钢材奥氏体化步骤的上述钢材或其预成形构件移送至热冲压成形模具,移送过程中钢材温度保持在550℃以上;热冲压成形步骤,冲压成形并保压冷却,使钢材在模具中以大于等于10℃/s的平均冷速冷却至250℃以下,确保开模时的构件温度低于250℃。
例如,1.2mm厚的板料保压时间可以设定为5~15s,1.8mm厚的板料保压时间可以设定为7~20s。
根据本发明的热冲压成形工艺控制简单,用现有的工业热冲压设备即可完成。
在所述钢材奥氏体化步骤中,加热方式可选自辊道式加热炉、箱式加热炉、感应加热、电阻加热中的任意一种。
优选地,在所述热冲压成形步骤后包括回火步骤,将成形构件加热至150~200℃,保温10~40min,或者将上述成形构件以任意方式加热至150~280℃后保温0.5~120min,然后以任意方式冷却。
其中,所述回火步骤可以通过涂装工艺进行。
由此,可在汽车总装过程的涂装步骤中进行回火,无需额外添加热处理工序。
根据本发明的第三方面,提供一种热冲压成形构件,该冲压成形构件以重量百分比计包括C:0.2-0.4%,Si:0-0.8%,Al:0-1.0%,B:0-0.005%,Mn:0.5-3.0%,Mo:0-1%,Cr:0-2%,Ni:0-5%,V:0-0.4%,Nb:0-0.2%,Ti:≤0.01%,以及冶炼时不可避免的P、S、N等杂质元素,并且其中当B≤0.0005%时,满足29*Mo+16*Mn+14*Cr+5.3*Ni ≥ 30%;当0.0005%<B≤0.005%时,含有0.4-1.0%的Al。
根据本发明的热冲压成形构件不含粒径≥1μm的TiN颗粒,从而能避免由此导致的韧性异常降低问题,而且能够使用常规热冲压设备制备。与此同时,根据本发明的热冲压成形构件还能获得良好的力学性能,具体而言回火后可达到1200~1800MPa的屈服强度,1500~2150MPa的抗拉强度以及7~10%的延伸率,-40℃冲击韧性≥45J∙cm-2,该力学性能与现有的含Ti热冲压成形用钢材相当,甚至略有提高。
优选地,在该热冲压成形构件中,以重量百分比计,C含量为0.20-0.38%,Si含量为0.1-0.5%,Mn含量为0.8-2.2%,Cr含量为0.1-0.5%,Mo含量为0.2-0.6%,Ti含量为0-0.01%。
作为另一优选方案,在该热冲压成形构件中,以重量百分比计,C含量为0.24-0.4%,Si含量为0.1-0.5%,Mn含量为0.8-2.2%,Cr含量为0.1-0.5%,B含量为0.0005-0.004%,Ti含量为0-0.01%,Al含量为0.4-0.8%。
作为又一优选方案,在该热冲压成形构件中,以重量百分比计,C含量为0.3-0.4%,Si含量为0.1-0.8%,Mn含量为0.8-2.2%,Cr含量为0-0.5%,B含量为0.0005-0.004%,Ti含量为0-0.01%,Al含量为0.4-0.9%。根据这一方案,能够在昂贵合金成分配比较低的条件下,达到高的强度,其力学性能为:抗拉强度≥1800MPa,延伸率≥7.5%,-40oC夏比冲击韧性(CVN)≥50J.cm-2
本发明的热冲压成形构件可利用第二方面的热冲压成形工艺制备。
附图说明
图1表示本发明示例钢NT1钢的20℃冲击断口形貌。
图2表示本发明示例钢NT1钢的-40℃冲击断口形貌。
图3表示对比钢CS1钢冲击数据正常时的冲击断口形貌。
图4表示对比钢CS1钢冲击数据异常时的冲击断口形貌。
图5表示对比钢CS2钢冲击数据异常时的冲击断口形貌。
具体实施方式
下面结合具体实施例对本发明的技术方案进行说明。
本发明的热冲压成形用钢材以重量百分比计包括C:0.2-0.4%,Si:0-0.8%,Al:0-1.0%,B:0-0.005%,Mn:0.5-3.0%,Mo:0-1%,Cr:0-2%,Ni:0-5%,V:0-0.4%,Nb:0-0.2%,Ti:≤0.01%,以及冶炼时不可避免的P、S、N等杂质元素,并且当B≤0.0005%时,满足29*Mo+16*Mn+14*Cr+5.3*Ni ≥ 30%;当0.0005%<B≤0.005%时,含有0.4-1.0%的Al。本发明各元素的作用及配比依据如下所述。
C:碳可稳定奥氏体相,降低Ac3温度,从而降低热成形温度。碳是间隙固溶元素,其强化效果远大于置换固溶元素。随着钢中碳含量的增加,淬火后马氏体中的碳含量也会增加,进而提高马氏体的强度。因此在淬透性有保证的条件下,提高碳含量可有效提高强度。提高碳含量是提高热成形钢强度的最有效手段,但随着碳含量升高,钢板韧性降低,焊接性能恶化,一般碳含量不宜过高,本发明钢材的碳含量在0.2-0.4%之间。
Si:硅是有效的脱氧剂,并且具有较强的固溶强化作用,还能抑制回火过程中渗碳体的析出,提高钢的回火稳定性。硅含量过高会导致表面质量问题,本发明钢材硅含量在0-0.8%之间。
Al:为了防止大尺寸TiN夹杂物的生成,本发明采用无Ti或微量Ti的成分设计。铝是强脱氧元素,且与N具有较强的结合力。本发明中B含量大于0.0005%时,为了防止BN的生成,发挥B在奥氏体晶界偏聚从而增加淬透性的作用,需加入较高含量的Al与N结合。发明人经过潜心研究发现,0.4%及以上的Al加入可避免BN的生成。过多Al的加入会提高钢的Ac3温度,且会造成连铸结晶器口阻力增大的问题。因此B含量大于0.0005%时,本发明钢材Al含量需在0.4-1.0%之间;B含量低于0.0005%时,无需以Al保B,Al含量可低于0.4%,或者不添加。
B:热冲压时B能够偏聚在奥氏体晶界,抑制铁素体的生成,提高钢的淬透性。高于0.0005%的B即可起到抑制铁素体生成的作用,B含量过高会导致硼脆,因此本发明钢材B含量可在0-0.005%之间;当29*Mo+16*Mn+14*Cr+5.3*Ni ≥ 30%时,可保证钢的淬透性,B含量可低于0.0005%,或者不添加。
Mn:锰是提高淬透性最常用的合金元素,且能够扩大奥氏体区,降低Ac3温度,有利于降低热冲压温度从而细化原奥氏体晶粒。Mn与O、S具有较强的结合力,是良好的脱氧剂和脱硫剂,能够减弱或消除硫引起的钢的热脆性,改善钢的热加工性能。Mn含量过高会降低钢的抗氧化性,同时恶化焊接和成形性能。本发明钢材锰含量在0.5-3.0%之间。
Mo:钼可显著提高钢的淬透性,0.2%及以上的钼可有效抑制铁素体的生成,显著提高钢的淬透性。钼还能提高钢的焊接性和耐蚀性。限于成本,Mo含量不宜过高。本发明钢材中Mo含量可在0-1.0%之间。
Cr、Ni等合金元素:铬、镍等元素均能提高钢的淬透性,并提高钢的强度和硬度,Cr、Ni混合添加可显著提高钢的淬透性,但出于成本考虑,总含量不宜过高,Cr含量可在0-2%之间,Ni含量可在0-5%之间。
当B含量低于0.0005%时,为了提高钢板淬透性,可添加一定量Mn、Mo、Cr、Ni等元素。上述四种元素对钢板淬透性的影响不同,根据其对淬透性的影响,乘以相应的系数。发明人通过锐意研究发现,当29*Mo+16*Mn+14*Cr+5.3*Ni ≥ 30%时,可保证钢板在正常热冲压成形过程中的淬透性。
V、Nb:少量钒、铌即可形成弥散的碳化物、氮化物和碳氮化物细化晶粒,提高钢的强度和韧性,同时消耗了马氏体基体的碳含量,可进一步提高韧性;又由于这些细小的化合物在相间弥散分布,从而可产生析出强化。过高的V、Nb加入量效果不明显,且增加成本,本发明钢材中V含量0-0.4%,Nb含量0-0.2%。
Ti:Ti与N具有很强的结合力。当用Ti固N时,为保证固氮完全,需满足Ti与N的重量比w(Ti)/w(N)≥3.4,其中w(Ti)、w(N)分别表示钢中Ti、N的重量百分数,Ti、N化学计量比等于1时,w(Ti)/w(N)约等于3.4。满足这一条件时,钢中的N可以完全被Ti反应析出TiN,而不会导致钢中残留固溶态的N与B结合形成BN。若N含量升高,则需加入更高含量的Ti。但是,本申请发明人发现,钢中粗大TiN颗粒(粒径≥1μm)体积分数和w(Ti)*w(N)呈正比,其中w(Ti)*w(N)表示钢中Ti、N质量百分数的乘积。若w(Ti)*w(N)超过其固溶度积,则在钢液凝固前会导致钢水中液态析出TiN颗粒夹杂物,尺寸可达10微米以上。TiN溶解温度高,在900℃左右的奥氏体化过程中不溶解,保留在最终的成形件组织中。粗大的TiN硬质颗粒或者密度较高的TiN颗粒会在材料变形时成为裂纹源,导致热冲压马氏体钢解理断裂,严重降低钢板的冲击韧性。因此,本发明要求钢中Ti含量低于0.01%,或者不添加。
N:氮是间隙固溶元素,能够显著提高钢的强度,且是奥氏体稳定元素,扩大奥氏体区,降低Ac3温度。N易与Ti、Al等强氮化物形成元素结合形成氮化物。TiN是液析氮化物,容易形成大尺寸颗粒,恶化钢的冲击韧性,本发明中无Ti或者微量Ti的加入,避免了大尺寸TiN的形成。本发明采用Al固N,由于AlN是固析氮化物,受形成动力学的影响,能够形成细小弥散的AlN夹杂物,不会对韧性产生严重影响。因此,本发明要求钢中N含量低于0.01%即可。
P:在一般情况下,磷是钢中的有害元素,会增加钢的冷脆性,使焊接性变坏,降低塑性,使冷弯性能变坏,本发明钢材中要求P低于0.02%。
S:硫通常情况下也是有害元素,使钢产生热脆性,降低钢的延性和焊接性能。本发明钢材中要求P低于0.015%。
作为本发明钢的一个优选实施例,C含量为0.20-0.38%,Si含量为0.1-0.5%,Mn含量为0.8-2.2%,Cr含量为0.1-0.5%,Mo含量为0.2-0.6%,Ti含量为0-0.01%。
作为本发明钢的另一个优选实施例,C含量为0.24-0.4%,Si含量为0.1-0.5%,Mn含量为0.8-2.2%,Cr含量为0.1-0.5%,B含量为0.0005-0.004%,Ti含量为0-0.01%,Al含量为0.4-0.8%。
将本发明钢材按照设计成分冶炼成钢锭,并经1200℃均质5h处理,5~8道次热轧至3mm厚,终轧温度高于800℃,空冷至650℃并炉冷,模拟卷取,冷却至室温后酸洗,冷轧至1.5mm,并进行热冲压实验。
表1为本发明示例钢NT1-NT14和对比钢CS1、CS2的成分。本发明所有示例钢中Ti含量均小于0.01%,其中NT1-NT10无B或B含量低于0.0005%,添加Mn、Mo、Cr、Ni等元素保证钢的淬透性;NT11-NT14中B含量大于0.0005%,添加一定量Al和N结合,以避免BN的生成。对比钢CS1、CS2为目前工业生产热冲压钢成分,CS1钢B含量为0.002%,N含量为0.0045%,添加0.039%的Ti和N结合;CS2含有0.0025%的B,加入0.03%的Ti和N结合,N含量为0.0044%。临界冷却速率通过相变仪加热到奥氏体化温度然后以10、15、20、25、30℃/s的速率冷却,以全马氏体组织为临界冷却速率的判据。
常规热冲压设备用于生产22MnB5,22MnB5的临界冷却速率在30℃/s左右。对比钢CS1、CS2临界冷却速率介于25-30℃/s之间,本发明示例钢NT1-NT14的临界冷却速率均小于或者等于该值,说明本发明的钢成分能够满足常规热冲压设备对淬透性的要求,并且所有示例钢在按照表2所示工艺热冲压后均能得到全马氏体组织。
表1 本发明示例钢和对比钢成分(质量百分数)及临界冷却速度(℃/s)
Figure DEST_PATH_IMAGE001
本发明的热冲压成形工艺包括以下步骤:
钢材奥氏体化:提供具有上述合金成分的热冲压成形用钢材或其预成形构件,将其加热至800~950℃保温1~10000s,其中该工序的加热方式可以但不局限于辊道式加热炉、箱式加热炉、感应加热、电阻加热;
钢材移送:将加热的上述钢材移送至热冲压成形模具上,保证移送至模具时钢材温度在550℃以上;
热冲压成形:根据上述钢材板料尺寸制定合理的压机吨位,冲压压强值例如为1~40MPa,根据板厚度确定保压时间,例如控制在4~40s。比如1.2mm厚的板料保压时间为5~15s,1.8mm厚的板料保压时间为7~20s。例如通过模具的冷却***控制模面温度在200℃以下,使钢材在模具中以不小于10℃/s的平均冷速冷却至250℃以下,确保开模时构件温度低于250℃。
热冲压成形后还可进行回火,例如在涂装工艺过程中,将所述成形构件加热至150~200℃,保温10~40min;或者将上述成形构件以任意方式加热至150~280℃保温0.5~120min,然后以任意方式冷却。
表2示出了例示的本发明示例钢NT1~NT14和对比钢CS1、CS2的热冲压工艺参数。所有钢材均在870-900℃保温5min,然后取出料片放在热冲压磨具上,合模温度在700℃左右,冲压压强为10MPa,保压6s,出模温度在100℃左右,然后空冷至室温,并在170℃回火20min。该工艺可以利用常规的热冲压设备实现。
表2 本发明示例钢的热冲压工艺参数
钢号 奥氏体化温度/℃ 奥氏体化时间/min 冲压压强/MPa 合模温度/℃ 保压时间/s 出模温度/℃ 回火温度/℃ 回火时间/min
NT1 900 5 10 690 6 92 170 20
NT2 900 5 10 702 6 103 170 20
NT3 910 5 10 695 6 108 170 20
NT4 910 5 10 710 6 95 170 20
NT5 900 5 10 691 6 97 170 20
NT6 890 5 10 699 6 102 170 20
NT7 900 5 10 702 6 105 170 20
NT8 880 5 10 706 6 98 170 20
NT9 870 5 10 685 6 94 170 20
NT10 910 5 10 703 6 105 170 20
NT11 900 5 10 698 6 103 170 20
NT12 910 5 10 707 6 94 170 20
NT13 900 5 10 690 6 101 170 20
NT14 910 5 10 709 6 107 170 20
CS1 900 5 10 693 6 102 170 20
CS2 900 5 10 703 6 104 170 20
表3为本发明示例钢NT1~NT14和对比钢CS1、CS2热冲压后的力学性能。拉伸试样为标距50mm的ASTM标准试样,拉伸力学性能测试的应变速率为2mm/min。屈服强度取产生0.2%残余变形的应力值。冲击试样为3层叠层冲击试样,冲击测试每种钢不小于30次,取样位置随机。
实验结果显示,本发明所有示例钢屈服强度≥1200MPa,抗拉强度≥1500MPa,延伸率≥7%,和对比钢性能相当,有些示例钢性能与对比钢性能相比甚至略有提高。
对比钢CS1在20℃时大部分数据集中在60 J∙cm-2以上,-40℃冲击韧性大部分高于55 J∙cm-2,但是出现比例约为10%的异常数据,该异常数据显示,20℃冲击韧性在29 J∙cm-2左右,-40℃冲击韧性约为26 J∙cm-2。经冲击断口分析,如图4所示,在冲击数值异常的断口处发现了大量TiN夹杂,粒径都在1μm以上,有的甚至高达10μm,说明大尺寸TiN的存在成为了裂纹源,严重降低了冲击韧性。
对比钢CS2在-40℃和20℃冲击韧性大部分数据集中在60 J∙cm-2左右,但是出现比例约为5%的异常数据,异常数据显示,冲击韧性只有40 J∙cm-2左右。如图5所示,在CS2异常断口同样发现了大量TiN存在,粒径在5μm以上,说明N含量较高使大颗粒TiN生成是CS2韧性异常降低的原因。
从对比钢CS1、CS2分析可以看出,TiN的生成会恶化钢的韧性,因TiN的尺寸及分布按概率正态分布,因此包含粗大TiN夹杂物的CS1和CS2均会出现异常情况,韧性降低至40 J∙cm-2左右或以下。
为了减少TiN的生成,可降低钢中N或者Ti含量。而钢中N含量受冶炼水平限制,降低N含量必将导致炼钢成本的大幅上升。本发明钢材中Ti含量在0.01%以下,可将TiN含量控制在很低水平,不产生大尺寸TiN颗粒,因此可避免由此导致的韧性不足问题。本发明示例钢NT1-NT14,20℃冲击韧性值均在60 J∙cm-2以上,-40℃冲击韧性均在50 J∙cm-2以上,并且没有任何异常数值出现。图1为NT1钢的20℃冲击断口形貌,图2为NT1钢的-40℃冲击断口形貌,断口处均未发现夹杂物存在。该形貌代表了本发明所有示例钢冲击断口形貌,说明本发明钢材中的夹杂物不会对冲击韧性产生明显影响。
表3 本发明示例钢的力学性能
钢号 屈服强度MPa 抗拉强度MPa 延伸率% 20℃冲击韧性J∙cm<sup>-2</sup> -40℃冲击韧性J∙cm<sup>-2</sup>
NT1 1380±16 1851±15 8.0±0.2 65.4±3.0 56.6±4.5
NT2 1610±19 1973±12 7.9±0.3 64.1±1.7 55.2±3.5
NT3 1426±11 1860±18 8.7±0.3 63.5±3.2 56.3±1.4
NT4 1518±17 1880±20 7.2±0.2 63.4±1.5 55.8±0.5
NT5 1218±19 1560±14 7.9±0.3 66.4±2.8 56.4±2.7
NT6 1288±16 1651±16 8.1±0.3 63.1±1.9 55.2±3.8
NT7 1426±11 1885±19 8.5±0.1 63.5±3.0 54.7±1.9
NT8 1242±23 1665±11 7.5±0.2 63.9±1.7 55.5±0.9
NT9 1334±20 1801±20 8.2±0.3 63.8±2.9 56.9±4.2
NT10 1472±13 1884±17 7.6±0.3 66.1±2.0 54.8±3.8
NT11 1380±9 1743±13 7.7±0.3 65.2±1.4 54.8±0.8
NT12 1521±19 1965±23 8.7±0.3 63.2±1.4 53.8±0.8
NT13 1471±15 1887±22 7.9±0.2 66.9±1.9 56.7±3.6
NT14 1429±18 1847±12 7.8±0.3 60.1±2.5 55.2±3.4
CS1正常 1574±12 1905±13 8.5±0.3 64.0±3.2 55.1±1.4
CS1异常 1568±11 1901±14 8.2±0.2 29.0±1.5 26.4±2.1
CS2正常 1156±17 1541±23 7.5±0.3 61.0±4.6 58.0±2.2
CS2异常 1144±16 1504±8 7.2±0.3 42.1±1.3 41.6±5.9
如表3所示,本发明的热冲压成形构件在确保良好的冲击韧性的同时,还能够获得良好的力学性能。具体而言,可达到1200~1800MPa的屈服强度,1500~2150MPa的抗拉强度以及7~10%的延伸率,-40℃冲击韧性≥45J∙cm-2,该力学性能与现有的含Ti热冲压成形用钢材相当,甚至略有提高。其中特别是NT12和NT14,能够在昂贵合金成分配比较低的条件下,达到高的强度,其力学性能为:抗拉强度≥1847±12MPa,延伸率≥7.8±0.3%,-40oC夏比冲击韧性(CVN)≥53.8±0.8J.cm-2
本发明的热冲压成形构件可用于汽车高强度构件,其包括但不限于汽车的A柱、B柱、保险杠、车顶构架、车底框架以及车门防撞杆。
以上实施例和实验数据旨在示例性地说明本发明,本领域的技术人员应该清楚的是本发明不仅限于这些实施例,在不脱离本发明保护范围的情况下,可以进行各种变更。

Claims (10)

1.一种热冲压成形用钢材,其特征在于,该热冲压成形用钢材以重量百分比计包括C:0.2-0.4%,Si:0-0.8%,Al:0.6%≤Al≤1.0%,B:0.0005%<B≤0.005%,Mn:0.5-3.0%,Mo:0-1%,Cr:0-2%,Ni:0-5%,V:0-0.4%,Nb:0-0.2%,Ti:<0.01%,N: 0.0035%≤N<0.01%,以及冶炼时不可避免的P、S等杂质元素,所述热冲压成形用钢材不含粒径大于等于1μm的TiN夹杂物。
2.如权利要求1所述的热冲压成形用钢材,其特征在于,以重量百分比计,C含量为0.2-0.4%,Si含量为0.1-0.5%,Mn含量为0.8-2.2%,Cr含量为0.1-0.5%,B含量为0.0005-0.004%,Ti含量为Ti:<0.01%,Al含量为0.6%≤Al≤1.0%。
3.如权利要求1所述的热冲压成形用钢材,其特征在于,以重量百分比计,C含量为0.3-0.4%,Si含量为0.1-0.8%,Mn含量为0.8-2.2%,Cr含量为0-0.5%,B含量为0.0005-0.004%,Ti含量为Ti:<0.01%,Al含量为0.6%≤Al≤0.9%。
4.如权利要求1至3中任一项所述的热冲压成形用钢材,其特征在于,所述热冲压成形用钢材是热轧钢板、热轧酸洗板、冷轧钢板或带有涂镀层的钢板。
5.一种热冲压成形工艺,其特征在于,包括以下步骤:
钢材奥氏体化步骤,提供权利要求1至4中任一项所述的热冲压成形用钢材或所述热冲压成形用钢材的预成形构件,加热至800~950℃后保温1~10000s;
钢材移送步骤,将经过上述钢材奥氏体化步骤的上述钢材或其预成形构件移送至热冲压成形模具,移送过程中钢材温度保持在550℃以上;
热冲压成形步骤,冲压成形并保压冷却,使钢材在模具中以大于等于10℃/s的平均冷速冷却至250℃以下,确保开模时的构件温度低于250℃。
6.如权利要求5所述的热冲压成形工艺,其特征在于,在所述热冲压成形步骤后包括回火步骤,将成形构件加热至150~200℃,保温10~40min,或者将上述成形构件以任意方式加热至150~280℃后保温0.5~120min,然后以任意方式冷却。
7.如权利要求6所述的热冲压成形工艺,其特征在于,所述回火步骤通过涂装工艺进行。
8.一种热冲压成形构件,其特征在于,该热冲压成形构件以重量百分比计包括C:0.2-0.4%,Si:0-0.8%,Al:0.6%≤Al≤1.0%,B:0.0005%<B≤0.005%,Mn:0.5-3.0%,Mo:0-1%,Cr:0-2%,Ni:0-5%,V:0-0.4%,Nb:0-0.2%,Ti:<0.01%,N: 0.0035%≤N<0.01%,以及冶炼时不可避免的P、S等杂质元素,所述热冲压成形构件不含粒径大于等于1μm的TiN夹杂物。
9.如权利要求8所述的热冲压成形构件,其特征在于,以重量百分比计,C含量为0.24-0.4%,Si含量为0.1-0.5%,Mn含量为0.8-2.2%,Cr含量为0.1-0.5%,B含量为0.0005-0.004%,Ti含量为Ti:<0.01%,Al含量为0.6%≤Al≤1.0%。
10.如权利要求8所述的热冲压成形构件,其特征在于,以重量百分比计,C含量为0.3-0.4%,Si含量为0.1-0.8%,Mn含量为0.8-2.2%,Cr含量为0-0.5%,B含量为0.0005-0.004%,Ti含量为Ti:<0.01%,Al含量为0.6%≤Al≤0.9%。
CN202210380045.0A 2018-04-28 2018-04-28 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件 Pending CN114703427A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210380045.0A CN114703427A (zh) 2018-04-28 2018-04-28 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210380045.0A CN114703427A (zh) 2018-04-28 2018-04-28 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
CN201810401260.8A CN108374127A (zh) 2018-04-28 2018-04-28 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201810401260.8A Division CN108374127A (zh) 2018-04-28 2018-04-28 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件

Publications (1)

Publication Number Publication Date
CN114703427A true CN114703427A (zh) 2022-07-05

Family

ID=63032970

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210380045.0A Pending CN114703427A (zh) 2018-04-28 2018-04-28 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
CN201810401260.8A Pending CN108374127A (zh) 2018-04-28 2018-04-28 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810401260.8A Pending CN108374127A (zh) 2018-04-28 2018-04-28 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件

Country Status (7)

Country Link
US (1) US20210214818A1 (zh)
EP (1) EP3789509B1 (zh)
JP (1) JP7336144B2 (zh)
KR (1) KR20210003236A (zh)
CN (2) CN114703427A (zh)
ES (1) ES2972661T3 (zh)
WO (1) WO2019205699A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478227A (zh) * 2022-11-14 2022-12-16 育材堂(苏州)材料科技有限公司 热冲压成形用钢板、热冲压成形构件及钢板制造方法
CN115612927A (zh) * 2022-09-27 2023-01-17 联峰钢铁(张家港)有限公司 一种含矾合金工具钢及其生产工艺
CN115652218A (zh) * 2022-11-17 2023-01-31 育材堂(苏州)材料科技有限公司 一种低碳的高韧性热冲压成形构件及钢板

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703427A (zh) * 2018-04-28 2022-07-05 育材堂(苏州)材料科技有限公司 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
CN109433959A (zh) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 抗疲劳汽车零件及其制造方法
US20220105553A1 (en) * 2019-02-13 2022-04-07 Magna International Inc. Method and system for using air gaps in hot-stamping tools to form tailor tempered properties
CN111636037B (zh) * 2019-03-01 2022-06-28 育材堂(苏州)材料科技有限公司 热作模具钢、其热处理方法及热作模具
CN109706377A (zh) * 2019-03-01 2019-05-03 本钢板材股份有限公司 一种适合热成形加工的厚规格phs1500钢及其生产工艺
CN112063816B (zh) * 2019-06-10 2021-11-19 育材堂(苏州)材料科技有限公司 一种高强度钢的热处理方法和由此获得的产品
CN111041373B (zh) * 2020-01-02 2021-10-22 中煤张家口煤矿机械有限责任公司 一种链轮用中Mn钢及其制备方法和应用
KR102372480B1 (ko) * 2020-03-27 2022-03-08 현대제철 주식회사 테일러 롤드 블랭크, 테일러 롤드 블랭크를 이용한 핫스탬핑 부품 제조방법 및 이에 의해 제조된 핫스탬핑 부품
CN111534760B (zh) * 2020-06-08 2021-12-21 首钢集团有限公司 一种热轧热成形钢及其制备方法
CN111961985B (zh) * 2020-08-19 2022-03-15 合肥工业大学 一种低成本且高温下具有高热导率的模具钢及其制备方法
CN114196870B (zh) * 2020-09-02 2022-07-15 宝武特种冶金有限公司 一种铝型材挤压模具钢及其制备方法
CN112779474A (zh) * 2020-11-23 2021-05-11 唐山钢铁集团有限责任公司 一种锌基镀层2000MPa级热成形带钢及其生产方法
EP4388141A1 (de) * 2021-08-19 2024-06-26 ThyssenKrupp Steel Europe AG Stahl mit verbesserten verarbeitungseigenschaften zur umformung bei erhöhten temperaturen
EP4388140A1 (de) * 2021-08-19 2024-06-26 ThyssenKrupp Steel Europe AG Stahl mit verbesserten verarbeitungseigenschaften zur umformung bei erhöhten temperaturen
CN114075617B (zh) * 2021-09-30 2023-05-16 山东钢铁股份有限公司 一种降低钢材中TiN夹杂危害性的方法
CN114045440B (zh) * 2021-11-19 2023-03-03 鞍钢股份有限公司 汽车用具有抗氧化性的高强高塑热成形钢及热成形工艺
CN114457285B (zh) * 2021-12-28 2023-03-21 河钢股份有限公司 一种乘用车b柱用高强钢板及其制备方法
CN114635024B (zh) * 2022-02-14 2023-08-15 苏州大学 一种基于塑性成形与热处理相结合的中锰钢零件处理方法
CN115627423B (zh) * 2022-11-01 2024-02-02 本钢板材股份有限公司 一种1600MPa级的热轧卷板及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211276A (ja) * 2006-02-08 2007-08-23 Sumitomo Metal Ind Ltd 熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法
JP2013151708A (ja) * 2010-12-27 2013-08-08 Nippon Steel & Sumitomo Metal Corp 硬度バラつきの小さいホットスタンプ成形体の製造方法およびその成形体
CN105658822A (zh) * 2013-09-19 2016-06-08 塔塔钢铁艾默伊登有限责任公司 用于热成形的钢
CN106399837A (zh) * 2016-07-08 2017-02-15 东北大学 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238640A (ja) 2003-02-03 2004-08-26 Nippon Steel Corp 形状凍結性に優れた高強度部品の製造方法
JP4325277B2 (ja) * 2003-05-28 2009-09-02 住友金属工業株式会社 熱間成形法と熱間成形部材
US20090242086A1 (en) * 2008-03-31 2009-10-01 Honda Motor Co., Ltd. Microstructural optimization of automotive structures
JP5327106B2 (ja) 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
EP2374910A1 (de) 2010-04-01 2011-10-12 ThyssenKrupp Steel Europe AG Stahl, Stahlflachprodukt, Stahlbauteil und Verfahren zur Herstellung eines Stahlbauteils
JP5598157B2 (ja) 2010-08-20 2014-10-01 新日鐵住金株式会社 耐遅れ破壊特性及び衝突安全性に優れたホットプレス用鋼板及びその製造方法
ES2662381T3 (es) 2013-09-18 2018-04-06 Nippon Steel & Sumitomo Metal Corporation Pieza estampada en caliente y método de fabricación de la misma
WO2016079565A1 (en) 2014-11-18 2016-05-26 Arcelormittal Method for manufacturing a high strength steel product and steel product thereby obtained
CN106811678B (zh) * 2015-12-02 2018-11-06 鞍钢股份有限公司 一种淬火合金化镀锌钢板及其制造方法
CN106906420A (zh) * 2015-12-29 2017-06-30 宝山钢铁股份有限公司 一种低温热冲压汽车零部件、其热冲压工艺及其制造方法
KR20190065351A (ko) * 2016-10-03 2019-06-11 에이케이 스틸 프로퍼티즈 인코포레이티드 고 연신의 프레스 경화 강 및 그 제조
CN107829037B (zh) * 2017-09-15 2020-07-24 东北大学 热冲压成形用钢板、热冲压成形构件及梯度力学性能控制方法
CN114703427A (zh) * 2018-04-28 2022-07-05 育材堂(苏州)材料科技有限公司 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211276A (ja) * 2006-02-08 2007-08-23 Sumitomo Metal Ind Ltd 熱間プレス用めっき鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法
JP2013151708A (ja) * 2010-12-27 2013-08-08 Nippon Steel & Sumitomo Metal Corp 硬度バラつきの小さいホットスタンプ成形体の製造方法およびその成形体
CN105658822A (zh) * 2013-09-19 2016-06-08 塔塔钢铁艾默伊登有限责任公司 用于热成形的钢
CN106399837A (zh) * 2016-07-08 2017-02-15 东北大学 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
[苏联]M•Π•卡拉廖夫: "《钢的合金元素-氮》", 30 June 1966, 中国工业出版社 *
冶金部钢铁研究总院: "《硼钢研究文集》", 31 March 1981, 冶金工业出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612927A (zh) * 2022-09-27 2023-01-17 联峰钢铁(张家港)有限公司 一种含矾合金工具钢及其生产工艺
CN115612927B (zh) * 2022-09-27 2023-07-14 联峰钢铁(张家港)有限公司 一种含钒合金工具钢及其生产工艺
CN115478227A (zh) * 2022-11-14 2022-12-16 育材堂(苏州)材料科技有限公司 热冲压成形用钢板、热冲压成形构件及钢板制造方法
CN115652218A (zh) * 2022-11-17 2023-01-31 育材堂(苏州)材料科技有限公司 一种低碳的高韧性热冲压成形构件及钢板

Also Published As

Publication number Publication date
EP3789509A4 (en) 2021-11-10
EP3789509A1 (en) 2021-03-10
EP3789509C0 (en) 2024-02-07
JP2021522417A (ja) 2021-08-30
CN108374127A (zh) 2018-08-07
KR20210003236A (ko) 2021-01-11
JP7336144B2 (ja) 2023-08-31
EP3789509B1 (en) 2024-02-07
US20210214818A1 (en) 2021-07-15
WO2019205699A1 (zh) 2019-10-31
ES2972661T3 (es) 2024-06-13

Similar Documents

Publication Publication Date Title
CN114703427A (zh) 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
CN110100032B (zh) 屈服比低且均匀延伸率优异的回火马氏体钢及其制造方法
JP2022023165A (ja) 熱間スタンプ成形用鋼材、熱間スタンプ成形方法、および熱間スタンプ成形部材
JP5598157B2 (ja) 耐遅れ破壊特性及び衝突安全性に優れたホットプレス用鋼板及びその製造方法
CN101918606B (zh) 加工性和冲击吸收特性优良的结构部件用铁素体·奥氏体系不锈钢板及其制造方法
WO2017092104A1 (zh) 用于冲压成形的钢材及其成形构件与热处理方法
CN108431280B (zh) 高屈服比型高强度冷轧钢板及其制造方法
CN110863138B (zh) 一种1800MPa级热成形钢及其制造方法
CN109207849B (zh) 高强高塑性1000MPa级热轧钢板及制备方法
CN113316650B (zh) 高强度钢带材
KR100928795B1 (ko) 가공성 및 강도가 우수한 고망간 용융아연도금 강판 및 그제조 방법
CN109023055B (zh) 一种高强度高成形性汽车钢板及其生产工艺
US20110209800A1 (en) High strength steel sheet with good wettability and manufacturing method thereof
CN102676926A (zh) 一种复相钢板及其制造方法
US8652273B2 (en) High tensile steel for deep drawing and manufacturing method thereof and high-pressure container produced thereof
CN113430456A (zh) 一种2000MPa级抗延迟开裂热成形钢及其生产方法
CN108474089B (zh) 具有优异的低温韧性和抗氢致开裂性的厚钢板及其制造方法
KR20150075297A (ko) 저온 인성 및 sscc 저항성이 우수한 고압용기용 강재, 이의 제조방법 및 딥 드로잉 제품의 제조방법
CN109097681B (zh) 一种高强度低夹杂汽车钢板及其连铸过程电磁搅拌工艺
CN110172636A (zh) 一种低碳热成形钢及其制备方法
JP5228963B2 (ja) 冷延鋼板およびその製造方法
CN111465710B (zh) 高屈强比型高强度钢板及其制造方法
CN114807737A (zh) 一种热镀锌钢及其制造方法
KR101382854B1 (ko) 용접성 및 굽힘가공성이 우수한 고항복비형 초고강도 냉연강판 및 그 제조방법
CN108359897B (zh) 一种屈服强度为1000MPa级的沉淀强化型铁素体钢及生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination