CN114686806A - 一种高吸收、宽光谱黑硅复合材料及其制备方法 - Google Patents

一种高吸收、宽光谱黑硅复合材料及其制备方法 Download PDF

Info

Publication number
CN114686806A
CN114686806A CN202210325722.9A CN202210325722A CN114686806A CN 114686806 A CN114686806 A CN 114686806A CN 202210325722 A CN202210325722 A CN 202210325722A CN 114686806 A CN114686806 A CN 114686806A
Authority
CN
China
Prior art keywords
black silicon
silicon
black
cleaning
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210325722.9A
Other languages
English (en)
Inventor
米冠宇
吕坚
阙隆成
周云
黄建
刘钟远
谭成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210325722.9A priority Critical patent/CN114686806A/zh
Publication of CN114686806A publication Critical patent/CN114686806A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高吸收、宽光谱黑硅复合材料及其制备方法。包括对硅衬底进行黑硅化处理,得到黑硅,所述黑硅表面具有尖锥阵列;向黑硅表面溅射沉积TiN纳米颗粒。本发明利用“黑硅化”在传统硅表面形成均匀、大面积尖锥状黑硅结构;再利用“黑硅表面沉积TiN纳米颗粒”,使得黑硅表面微结构更加复杂,增加了光在黑硅尖锥间的反射次数,材料吸收率获得提升;同时通过磁控溅射,在尖锥状黑硅表面沉积TiN纳米颗粒,利用等离激元共振效应实现可见到红外波段光谱的拓宽。

Description

一种高吸收、宽光谱黑硅复合材料及其制备方法
技术领域
本发明涉及光电探测技术领域,具体涉及一种高吸收、宽光谱黑硅复合材料及其制备方法。
背景技术
随着近红外增强探测技术的迅猛发展,及其在遥感、预警、制导、夜视和医疗诊断等领域展现出独特的应用优势,受到了人们广泛的关注。而具有高吸收、宽光谱特性的材料是制备近红外增强探测器的基础。其中硅材料具有资源丰富、成本低廉、易于掺杂并且基于硅材料的半导体加工技术尤为成熟这一些优点,所以在硅基材料上实现高吸收、宽光谱将具有重要意义。
然而,硅材料一直存在着两个主要的问题:第一,硅材料的表面比较光滑,对入射光有着较高的反射率,从而使得硅基光电探测器的光吸收率不高,以至于探测器的响应性能不佳;第二,硅材料是间接带隙材料,有比较大的禁带宽度,对禁带宽度以下的光基本不吸收,由于这个问题,传统的硅基光电探测器在1310nm和1550nm这两个光通信窗口很难被使用。减小硅材料表面的反射率,同时拓宽硅材料在近红外的光谱吸收范围是很有必要的。为解决硅材料以上两个问题,目前多采用黑硅化的方法,制备的黑硅光电探测器的光电性能得到大大的改善,在近红外波段也可以有实际应用。近些年,又涌现出表面等离激元黑硅宽光谱吸收材料。如有研究利用反应离子刻蚀结合Au等离激元实现,但是这种等离激元黑硅材料对光的吸收率相对较低、材料的均匀性能不足;同时Au和Si形成的肖特基势垒较大,在一定光照下,在Au中形成的热电子进入半导体Si中困难,导致材料的量子效率不高。
发明内容
本发明所要解决的技术问题现有的黑硅化材料在近红外光谱吸收率较低、量子效率低。目的在于提供一种高吸收、宽光谱黑硅复合材料及其制备方法,以解决以上问题。
本发明通过下述技术方案实现:
本发明的第一个目的在于提供一种高吸收、宽光谱黑硅复合材料的制备方法,包括:
对硅衬底进行黑硅化处理,得到黑硅,所述黑硅表面具有尖锥阵列;
向黑硅表面溅射沉积TiN纳米颗粒。
可选地,黑硅表面沉积的TiN纳米颗粒的尺寸为20nm-80nm。
可选地,所述硅衬底为电阻率为3000-6000Ωcm的本征硅。
可选地,采用飞秒激光法进行黑硅化处理。
可选地,所述硅衬底为进行处理的衬底,处理过程为:
采用RCA标准清洗法对硅衬底进行清洗;清洗完成后,
将清洗后的硅衬底置于氢氟酸溶液中浸泡清洗,超声冲洗,氮气气氛吹干。
可选地,所述黑硅化处理过程为:
将硅衬底放入真空腔内,抽真空,通入SF6气体,保持腔内气体压强为1×104Pa~10×104Pa;
飞秒激光扫描刻蚀,条件为:光通量1kJ/m2~10kJ/m2,扫描速度1mm/s~10mm/s,扫描间距0.01mm~0.04mm,光斑半径0.04mm。
可选地,在溅射沉积前对黑硅进行清洗,清洗过程为:将黑硅置于氢氟酸中清洗,超声清洗,氮气吹干,得到黑硅样品。
可选地,向黑硅表面溅射沉积TiN纳米颗粒的过程为:将黑硅样品置于热蒸发仪器中,真空蒸镀溅射TiN纳米颗粒,真空蒸镀的条件为:真空蒸镀室气压为10-3Pa,平均沉积速率为
Figure BDA0003573381170000021
沉积时间为400s~800s,在黑硅表面沉积形成20nm~80nm大小的TiN纳米颗粒。
本发明的第二个目的在于提供一种由上述制备方法制备得到的黑硅复合材料。
本发明具有如下的优点和有益效果:
本发明利用“黑硅化”在传统硅表面形成均匀、大面积尖锥状黑硅结构;再利用“黑硅表面沉积TiN纳米颗粒”,使得黑硅表面微结构更加复杂,增加了光在黑硅尖锥间的反射次数,材料吸收率获得提升;在一定光照射下,TiN纳米颗粒能够产生大量热电子越过TiN和黑硅接触形成肖特基势垒,提高热电子进入半导体黑硅的概率,从而增加了材料的量子效率。同时通过磁控溅射,在尖锥状黑硅表面沉积TiN纳米颗粒,利用等离激元共振效应实现可见到红外波段光谱的拓宽。另外,相较于金属Au的高成本,TiN的成本则明显降低。
附图说明
为了更清楚地说明本发明示例性实施方式的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。在附图中:
图1为本发明实施例制备得到的黑硅材料截面示意图。
图2为本发明实施例制备得到的黑硅复合等离子体材料的截面示意图。
图3为本发明实施例1得到的黑硅复合等离子体材料的仿真吸收率曲线图;
其中图3a、3b、3c、3d、3e分别代表普通黑硅、对比例1、实施例1、实施例2、实施例3的材料的仿真吸收率曲线。
图4为本发明实施例1得到的黑硅复合等离子体材料的在1550nm波长的入射光照射下仿真电场强度分布图;
其中图4a、4b、4c、4d、4e分别代表普通黑硅、对比例1、实施例1、实施例2、实施例3的材料的仿真电场强度分布图。
附图中,标记1代表硅衬底,标记2代表黑硅表面的尖锥阵列,标记3代表黑硅表面沉积的TiN纳米颗粒。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
在以下描述中,为了提供对本发明的透彻理解阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实施例中,为了避免混淆本发明,未具体描述公知的材料或方法。
一、材料制备
实施例1:
(1)衬底材料选择:选用111晶向、电阻率为3000Ωcm的本征硅作为衬底材料;
(2)硅衬底1清洗:采用RCA标准清洗法对硅衬底进行清洗;清洗完成后,将硅衬底置于5%的氢氟酸溶液中浸泡清洗1分钟,再用去离子水超声冲洗10分钟,最后在纯度为99.99%的氮气气氛下吹干,把硅片表面氧化物及污染物去除;
(3)飞秒激光扫描刻蚀:将清洗后的硅衬底1放入真空腔内,将腔内空气抽去后,通入SF6气体,保持腔内气体压强为2×104Pa。打开飞秒激光器,控制飞秒激光器光通量为2kJ/m2,扫描速度为1mm/s,扫描间距为0.01mm,光斑半径0.04mm。得到刻蚀后的硅衬底材料,即黑硅,黑硅表面具有微结构的尖锥阵列2。
(4)黑硅样品清洗:将制备好的黑硅置于浓度为5%的氢氟酸中清洗5分钟,再用去离子水超声清洗10分钟,最后用纯度为99.99%的氮气吹干,把黑硅片样品表面氧化物及污染物去除。
(5)溅射沉积纳米颗粒:将黑硅样品放置在热蒸发仪器中,真空蒸镀室气压为10- 3Pa,平均沉积速率为
Figure BDA0003573381170000031
沉积时间为800s,在黑硅表面沉积形成40nm左右大小的TiN纳米颗粒3,即得到黑硅复合等离子体。
实施例2:
(1)衬底材料选择:选用111晶向、电阻率为3000Ωcm的本征硅作为衬底材料;
(2)硅衬底1清洗:采用RCA标准清洗法对硅衬底进行清洗;清洗完成后,将硅衬底置于5%的氢氟酸溶液中浸泡清洗1分钟,再用去离子水超声冲洗10分钟,最后在纯度为99.99%的氮气气氛下吹干,把硅片表面氧化物及污染物去除;
(3)飞秒激光扫描刻蚀:将清洗后的硅衬底1放入真空腔内,将腔内空气抽去后,通入SF6气体,保持腔内气体压强为8.5×104Pa。打开飞秒激光器,控制飞秒激光器光通量为4.5kJ/m2,扫描速度为2mm/s,扫描间距为0.02mm,光斑半径0.04mm。得到刻蚀后的硅衬底材料,即黑硅,黑硅表面具有微结构的尖锥阵列2。
(4)黑硅样品清洗:将制备好的黑硅置于浓度为5%的氢氟酸中清洗5分钟,再用去离子水超声清洗10分钟,最后用纯度为99.99%的氮气吹干,把黑硅片样品表面氧化物及污染物去除。
(5)溅射沉积纳米颗粒:将黑硅样品放置在热蒸发仪器中,真空蒸镀室气压为10- 3Pa,平均沉积速率为
Figure BDA0003573381170000041
沉积时间为600s,在黑硅表面沉积形成60nm左右大小的TiN纳米颗粒3,即得到黑硅复合等离子体。
实施例3:
(1)衬底材料选择:选用111晶向、电阻率为3000Ωcm的本征硅作为衬底材料;
(2)硅衬底1清洗:采用RCA标准清洗法对硅衬底进行清洗;清洗完成后,将硅衬底置于5%的氢氟酸溶液中浸泡清洗1分钟,再用去离子水超声冲洗10分钟,最后在纯度为99.99%的氮气气氛下吹干,把硅片表面氧化物及污染物去除;
(3)飞秒激光扫描刻蚀:将清洗后的硅衬底1放入真空腔内,将腔内空气抽去后,通入SF6气体,保持腔内气体压强为9×104Pa。打开飞秒激光器,控制飞秒激光器光通量为9kJ/m2,扫描速度为5mm/s,扫描间距为0.04mm,光斑半径0.04mm。得到刻蚀后的硅衬底材料,即黑硅,黑硅表面具有微结构的尖锥阵列2。
(4)黑硅样品清洗:将制备好的黑硅置于浓度为5%的氢氟酸中清洗5分钟,再用去离子水超声清洗10分钟,最后用纯度为99.99%的氮气吹干,把黑硅片样品表面氧化物及污染物去除。
(5)溅射沉积纳米颗粒:将黑硅样品放置在热蒸发仪器中,真空蒸镀室气压为10- 3Pa,平均沉积速率为
Figure BDA0003573381170000042
沉积时间为800s,在黑硅表面沉积形成80nm左右大小的TiN纳米颗粒3,即得到黑硅复合等离子体。
对比例1:
(1)选取P型单晶硅片厚度为675微米,100晶向,电阻率10~15Ωcm,将硅片置入2%浓度稀氢氟酸溶液中处理1分钟,然后放入去离子水中清洗10分钟,把硅片表面氧化物及污染物去除,置入甩干机以1200转/分钟处理10分钟。
(2)将步骤(1)中处理好的硅片置于反应离子刻蚀机进片台上,在反应离子刻蚀仪的操作面板中设定,气体压力为800mTorr,射频功率为800w,氩气流量为100标准毫升/分钟,六氟化硫的流量为60标准毫升/分钟,氧气的流量为55标准毫升/分钟,通入的冷却气体氦气流量为10托来控制基片温度,为了防止持续工作导致射频电感温度过高,我们采用120秒开启射频进行等离子刻蚀,15秒停止射频进行间隙调整的循环刻蚀方法处理硅片共270秒。最终,通入过量氦气进行腔体冷却,在腔室恢复标准大气压强后,将硅片取出。
(3)将步骤(2)制备好的黑硅再次置入2%浓度稀氢氟酸溶液中处理1分钟,然后放入去离子水中清洗10分钟,把黑硅片表面氧化物及污染物去除,置入甩干机以1200转/分钟处理10分钟。将黑硅置入热蒸发仪器中,调整真空蒸镀室气压为10-3至10-4Pa,控制平均沉积速率为
Figure BDA0003573381170000051
沉积时间为400s,在黑硅表面沉积40nm金膜后取出,由于阴影效应,金会附着于反应离子刻蚀黑硅粗糙表面的纳米山丘上。
二、实验结果:
1、仿真吸收率研究
上述实施例1~3得到的黑硅如图1所示,利用飞秒激光烧蚀黑硅,在传统硅衬底的表面形成均匀的、大面积尖锥状黑硅结构,整体呈尖锥阵列。在黑硅表面溅射纳米颗粒后形成如图2所示的黑硅复合等离子体材料。由于阴影效应,在形成的黑硅粗糙表面尖锥上形成20nm-80nm大小的TiN纳米颗粒。
对实施例1~3、对比例1得到的表面等离激元黑硅材料进行仿真吸收率测试,结果如图3所示。具体的测试方法为利用仿真软件FDTD Solutions建立黑硅复合等离子体模型,仿真测试吸收率。研究不同波长下各实施例以及对比例1的材料对于光的吸收率。实施例1~3的材料分别对应仿真了TiN纳米颗粒数量Number为400、800、1200。对比例1的材料对应仿真了TiN纳米颗粒数量为400。同时对普通黑硅也进行了仿真吸收率测试,该普通黑硅即为实施例1得到的黑硅,在此黑硅表面未溅射沉积TiN纳米颗粒。
由图3中可以看出,实施例1~3(分别对应图3中的3a、3b、3c)的材料在入射光从400nm开始,吸收率明显提升,均有较高的吸收率,平均吸收率达到了81.1%,并且在红外波段出现了宽光谱吸收增强的现象。而对比例1的材料的吸收率明显低于各实施例,在红外波段的光谱吸收性能也明显较差。普通黑硅的吸收率及在红外波段的光谱吸收性能更差。因此实施例1~3的材料的性能较现有的方法如对比例1所制备的表面等离激元黑硅材料有较大进步。
2、仿真电场强度分布研究
对实施例1~3、对比例1得到的材料及普通黑硅进行1550nm波长入射光照射下、不同界面的仿真电场强度分布情况研究。
具体的测试方法为利用仿真软件FDTD Solutions建立黑硅复合等离子体模型,仿真测试电场强度分布。实施例1~3仿真的TiN纳米颗粒的数量Number分别为400,800,1200个,对比例1中仿真的TiN纳米颗粒的数量为400个,结果如图4所示。
由图4可知,通过1550nm波长的入射光照射TiN纳米颗粒覆盖尖锥黑硅的(X-Z)截面和(X-Y)截面,发现实施例1~3(分别对应图4中的4a、4b、4c)中,随着TiN的数量增多,在尖锥表面出现更多的热点分布,这些热点将入射光收集限制在黑硅侧壁表面,说明在1550nm波长的入射光被显著吸收。而对比例1得到的材料以及普通黑硅表面热点分布均较少。以上结果表明本发明实施例1~3的材料的TiN纳米颗粒能够产生大量热电子越过TiN和黑硅接触形成肖特基势垒,提高热电子进入半导体黑硅的概率,从而增加了材料的量子效率。
以上各实施例中所使用的各种试剂均可以通过市购或现有的技术获得,过程中涉及到的仪器、设备等均采用已知设备,过程中未提及到的方法等均是采用已知技术,在此不进行赘述。
本发明利用飞秒激光烧蚀黑硅,在传统硅表面形成均匀、大面积尖锥状黑硅结构;烧蚀过程中通入的SF6气体,在硅带隙中引入杂质能级,突破传统硅材料禁带宽度限制。通过磁控溅射,在尖锥状黑硅表面沉积TiN纳米颗粒,利用等离激元共振效应实现可见到红外波段光谱的拓宽。从而利用“飞秒激光烧蚀黑硅”、“黑硅表面沉积TiN纳米颗粒”的两步法工艺,使得黑硅表面微结构更加复杂,增加了光在黑硅尖锥间的反射次数,材料吸收率获得提升,达到了81.1%的平均吸收率;在一定光照射下,通过引入TiN纳米颗粒在黑硅尖锥附近电场分布出现更多的热点,产生更多的热电子,热电子越过TiN和黑硅接触形成的肖特基势垒,从而使热电子进入半导体黑硅的概率增加,从而导致材料量子效率增加。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高吸收、宽光谱黑硅复合材料的制备方法,其特征在于,包括:
对硅衬底进行黑硅化处理,得到黑硅,所述黑硅表面具有尖锥阵列;
向黑硅表面溅射沉积TiN纳米颗粒。
2.如权利要求1所述的一种高吸收、宽光谱黑硅复合材料的制备方法,其特征在于,黑硅表面沉积的TiN纳米颗粒的尺寸为20nm-80nm。
3.如权利要求1所述的一种高吸收、宽光谱黑硅复合材料的制备方法,其特征在于:
所述硅衬底为电阻率为3000-6000Ωcm的本征硅。
4.如权利要求1所述的一种高吸收、宽光谱黑硅复合材料的制备方法,其特征在于,采用飞秒激光法进行黑硅化处理。
5.如权利要求1所述的一种高吸收、宽光谱黑硅复合材料的制备方法,其特征在于,所述硅衬底为进行处理的衬底,处理过程为:
采用RCA标准清洗法对硅衬底进行清洗;清洗完成后,
将清洗后的硅衬底置于氢氟酸溶液中浸泡清洗,超声冲洗,氮气气氛吹干。
6.如权利要求1所述的一种高吸收、宽光谱黑硅复合材料的制备方法,其特征在于,所述黑硅化处理过程为:
将硅衬底放入真空腔内,抽真空,通入SF6气体,保持腔内气体压强为1×104Pa~10×104Pa;
飞秒激光扫描刻蚀,条件为:光通量1kJ/m2~10kJ/m2,扫描速度1mm/s~10mm/s,扫描间距0.01mm~0.04mm,光斑半径0.04mm。
7.如权利要求1所述的一种高吸收、宽光谱黑硅复合材料的制备方法,其特征在于,在溅射沉积前对黑硅进行清洗,清洗过程为:将黑硅置于氢氟酸中清洗,超声清洗,氮气吹干,得到黑硅样品。
8.如权利要求7所述的一种高吸收、宽光谱黑硅复合材料的制备方法,其特征在于,向黑硅表面溅射沉积TiN纳米颗粒的过程为:将黑硅样品置于热蒸发仪器中,真空蒸镀溅射TiN纳米颗粒,真空蒸镀的条件为:真空蒸镀室气压为10-3Pa,平均沉积速率为
Figure FDA0003573381160000011
沉积时间为400s~800s,在黑硅表面沉积形成20nm~80nm大小的TiN纳米颗粒。
9.如权利要求1~8任一项所述的制备方法得到的黑硅复合等离子体材料。
CN202210325722.9A 2022-03-30 2022-03-30 一种高吸收、宽光谱黑硅复合材料及其制备方法 Pending CN114686806A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210325722.9A CN114686806A (zh) 2022-03-30 2022-03-30 一种高吸收、宽光谱黑硅复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210325722.9A CN114686806A (zh) 2022-03-30 2022-03-30 一种高吸收、宽光谱黑硅复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114686806A true CN114686806A (zh) 2022-07-01

Family

ID=82140491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210325722.9A Pending CN114686806A (zh) 2022-03-30 2022-03-30 一种高吸收、宽光谱黑硅复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114686806A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287606A (zh) * 2022-07-29 2022-11-04 中国科学院西安光学精密机械研究所 一种基于黑硅的表面增强拉曼光谱基底制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969080A (zh) * 2010-08-10 2011-02-09 电子科技大学 一种黑硅msm结构光电探测器及其制备方法
CN102051618A (zh) * 2010-11-05 2011-05-11 云南师范大学 一种基于液相化学反应的黑硅制备方法
CN102534505A (zh) * 2012-02-22 2012-07-04 电子科技大学 一种黑硅材料表面金属电极的制备方法
US20120318342A1 (en) * 2011-06-15 2012-12-20 International Business Machines Corporation Uniformly distributed self-assembled cone-shaped pillars for high efficiency solar cells
US20150160377A1 (en) * 2012-07-04 2015-06-11 Canon Kabushiki Kaisha Fine structure, optical member, antireflection film, water-repellent film, substrate for mass spectrometry, phase plate, process for producing fine structure, and process for producing antireflection film
WO2019075215A1 (en) * 2017-10-12 2019-04-18 The Regents Of The University Of California NANO-CONE META-SURFACE FOR OMNIDIRECTIONAL PHOTOVOLTAIC DETECTORS AND PHOTOVOLTAIC SYSTEMS
US20190339418A1 (en) * 2017-01-23 2019-11-07 The Regents Of The University Of California Broadband absorbers via nanostructures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969080A (zh) * 2010-08-10 2011-02-09 电子科技大学 一种黑硅msm结构光电探测器及其制备方法
CN102051618A (zh) * 2010-11-05 2011-05-11 云南师范大学 一种基于液相化学反应的黑硅制备方法
US20120318342A1 (en) * 2011-06-15 2012-12-20 International Business Machines Corporation Uniformly distributed self-assembled cone-shaped pillars for high efficiency solar cells
CN102534505A (zh) * 2012-02-22 2012-07-04 电子科技大学 一种黑硅材料表面金属电极的制备方法
US20150160377A1 (en) * 2012-07-04 2015-06-11 Canon Kabushiki Kaisha Fine structure, optical member, antireflection film, water-repellent film, substrate for mass spectrometry, phase plate, process for producing fine structure, and process for producing antireflection film
US20190339418A1 (en) * 2017-01-23 2019-11-07 The Regents Of The University Of California Broadband absorbers via nanostructures
WO2019075215A1 (en) * 2017-10-12 2019-04-18 The Regents Of The University Of California NANO-CONE META-SURFACE FOR OMNIDIRECTIONAL PHOTOVOLTAIC DETECTORS AND PHOTOVOLTAIC SYSTEMS

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
唐菲: ""飞秒激光制备掺杂黑硅及其光电特性的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
宋轶佶: ""拓宽黑硅吸收光谱范围技术研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *
陶海岩等: "《飞秒激光固体材料表面微纳结构制备及其功能特性》", 29 February 2016, 国防工业出版社 *
陶海岩等: "飞秒激光脉冲能量累积优化对黑硅表面形貌的影响", 《物理学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115287606A (zh) * 2022-07-29 2022-11-04 中国科学院西安光学精密机械研究所 一种基于黑硅的表面增强拉曼光谱基底制备方法

Similar Documents

Publication Publication Date Title
CN106340551B (zh) 一种基于Mg:β-Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
CN102976326B (zh) 一种硫掺杂硅纳米颗粒的制备方法
CN114686806A (zh) 一种高吸收、宽光谱黑硅复合材料及其制备方法
CN104157720A (zh) 一种混合结构的石墨烯硅基雪崩光电探测器及制备方法
CN107064107A (zh) 一种利用硅纳米介电材料制备的超疏水表面增强拉曼基底及其制备方法
CN110323286A (zh) 一种表面等离激元黑硅宽光谱吸收材料的制备方法
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法
CN110148642A (zh) 凹面阵列的石墨烯-金属异质结光电探测器
CN112054086A (zh) 一种具有横向结硅基光电探测器的制备方法
CN105655419B (zh) 一种制备黑硅材料的方法
CN110246913A (zh) 一种InGaN纳米柱阵列基GSG型可调谐光电探测器及其制备方法
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
Imamura et al. Light trapping of crystalline Si solar cells by use of nanocrystalline Si layer plus pyramidal texture
CN113517372A (zh) 室温下光伏型黑硅肖特基结红外探测器及其制备方法
CN100477295C (zh) 碲镉汞薄膜材料表面氧化膜层的处理工艺
CN110718596A (zh) Pn结增强的黑硅肖特基结红外探测器及其制备方法
CN109950336B (zh) 一种黑硅材料及其制备方法
CN210956689U (zh) 非对称面积石墨烯金属异质结光电探测器
CN113410330B (zh) 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
Uddin et al. Effects of annealing temperature towards properties of black silicon fabricated by aluminium-assisted chemical etching
CN111403603B (zh) 一种含有bcp***层的8-羟基喹啉铝/金属异质结热电子光电探测器及其制作方法
CN109659392B (zh) 降低微结构硅材料上金半接触电阻的方法及微结构硅材料
CN110783465B (zh) 基于8-羟基喹啉铝/金属异质结的热电子光电探测器
CN210272383U (zh) 凹面阵列的石墨烯-金属异质结光电探测器
CN111254404A (zh) 一种择优生长的ito透明导电薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220701