CN114686409B - 增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的方法 - Google Patents

增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的方法 Download PDF

Info

Publication number
CN114686409B
CN114686409B CN202011565728.0A CN202011565728A CN114686409B CN 114686409 B CN114686409 B CN 114686409B CN 202011565728 A CN202011565728 A CN 202011565728A CN 114686409 B CN114686409 B CN 114686409B
Authority
CN
China
Prior art keywords
gene
smds
streptomyces mobaraensis
display
tgs101
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011565728.0A
Other languages
English (en)
Other versions
CN114686409A (zh
Inventor
步国建
武立清
白林泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taixing Dongsheng Bio Tech Co ltd
Original Assignee
Taixing Dongsheng Bio Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taixing Dongsheng Bio Tech Co ltd filed Critical Taixing Dongsheng Bio Tech Co ltd
Priority to CN202011565728.0A priority Critical patent/CN114686409B/zh
Publication of CN114686409A publication Critical patent/CN114686409A/zh
Application granted granted Critical
Publication of CN114686409B publication Critical patent/CN114686409B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/104Aminoacyltransferases (2.3.2)
    • C12N9/1044Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/02Aminoacyltransferases (2.3.2)
    • C12Y203/02013Protein-glutamine gamma-glutamyltransferase (2.3.2.13), i.e. transglutaminase or factor XIII
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/34Vector systems having a special element relevant for transcription being a transcription initiation element

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种增强超氧化物歧化酶(Superoxide dismutase.Ni)基因SMDS_2075的转录水平的谷氨酰胺转氨酶高产菌株TGS101及其制备与发酵方法,基于基因组学,通过在茂原链霉菌C2中,利用人工强启动子kasOp*过量表达内源Superoxide dismutase.Ni基因SMDS_2075,得到高产谷氨酰胺转氨酶的突变株TGS101,可明显提高谷氨酰胺转氨酶产量。本发明所得的工程菌株TGS101的谷氨酰胺转氨酶发酵终产量在实验室摇瓶水平下较对照菌株提高31.30%,同时使发酵成本大幅降低。

Description

增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的 方法
技术领域
本发明属于生物工程技术领域,涉及一种增强超氧化物歧化酶(Superoxidedismutase.Ni) 基因SMDS_2075的表达提高谷氨酰胺转氨酶产量的方法。
背景技术
谷氨酰胺转氨酶(Transglutaminase,EC 2.3.2.13,TGase)是由茂原链霉菌(Streptomyces mobaraensis)产生的,一种催化酰基转移反应的酶,能催化蛋白质分子内或分子间的交联、蛋白质和氨基酸之间的连接以及蛋白质分子内谷氨酰胺基的水解,从而改善蛋白质的结构和功能特性。微生物来源的TGase属于胞外酶,可由发酵微生物直接分泌到培养基中,分子量为37.9kD,由331个氨基酸组成,在胞内以pre-pro-TGase的形式存在,通过跨膜运输,识别信号肽,以pro-TGase的前体蛋白的形式转运到胞外。Pro-TGase不具有催化活性,经过金属蛋白酶TAMEP切割信号肽成为FRAP-TGase,再经丝氨酸蛋白酶SM-TAP切割成为最终成熟的TGase。
TGase作为一种蛋白交联剂,因其稳定性好、使用安全等优点而被广泛应用,在食品领域用于肉类加工能显著改善低肉产品的质地,如TGase催化的酰基转移反应产生的共价交联可以增强肉制品的质地、凝胶强度、弹性和保水性,而无不良影响;乳品中所含的酪蛋白、乳球蛋白等是TGase的良好底物,这是因为酪蛋白低程度的三级结构、随机的螺旋排列及二硫键使得TGase易于和酪蛋白结合,TGase能在不改变酪蛋白功能特性的情况下改善酪蛋白流变性能,同时催化酪蛋白形成胶束结构;采用TGase为交联剂,通过复凝聚法制备黑胡椒精油胶囊,发现使用交联剂对黑胡椒精油胶囊具有良好的核保护作用,可用于运输活性成分萜烯,或用于其他生物活性成分的***递送等等。由于TGase的反应特性,在纺织工业、生物技术领域及医药领域同样有很大的应用前景。
发明内容
为了解决现有技术存在的不足,本发明的目的是提供一种增强超氧化物歧化酶(Superoxide dismutase.Ni)基因SMDS_2075转录水平的谷氨酰胺转氨酶高产菌株TGS101及其制备与发酵方法,基于基因组学,通过在茂原链霉菌C2中利用人工强启动子kasOp*过量表达内源的Superoxide dismutase.Ni基因SMDS_2075,可以提高谷氨酰胺转氨酶产量。
本发明中提到的Superoxidedismutase.Ni基因SMDS_2075过量表达突变株和谷氨酰胺转氨酶高产菌株均指TGS101。
为实现上述目的,本发明提供了以下技术方案:
本发明提供了一种茂原链霉菌C2,由泰兴东圣生物科技有限公司经菌种诱变获得,所述菌株的分类名为茂原链霉菌Streptomyces mobaraensis C2,保藏于中国典型培养物保藏中心 (CCTCC),保藏编号为CCTCC NO:M 2020194,保藏日期为2020年6月10日。
本发明还提供了一种高产TGase的菌株TGS101,所述菌株通过增强Superoxidedismutase. Ni基因SMDS_2075的转录水平而获得的。
进一步的,该类菌株由茂原链霉菌C2过量表达来源于茂原链霉菌C2的Superoxidedismutase.Ni基因SMDS_2075后获得。
进一步的,该类菌株通过在茂原链霉菌C2中利用人工强启动子kasOp*过量表达内源的 Superoxide dismutase.Ni基因SMDS_2075后获得。
所述菌株的Superoxide dismutase.Ni基因SMDS_2075过量表达。
“过量表达”指在受体菌茂原链霉菌C2染色体上***一个拷贝的来源于茂原链霉菌C2 的Superoxide dismutase.Ni基因SMDS_2075,增强Superoxide dismutase.Ni基因SMDS_2075 的转录水平。
所述菌株含有人工强启动子kasOp*过量表达来源于茂原链霉菌C2的Superoxidedismutase.Ni基因SMDS_2075的表达盒。
所述表达盒含有人工强启动子kasOp*、Superoxide dismutase.Ni基因SMDS_2075、转录终止序列。
所述Superoxide dismutase.Ni基因SMDS_2075的序列如SEQ ID No.1所示。
本发明还提供了一种表达盒,所述表达盒含有:人工强启动子kasOp*、Superoxidedismutase.Ni基因SMDS_2075、转录终止序列。
本发明还提供了所述表达盒在在高效筛选菌株TGS101中的应用。
本发明还提供了一种增强Superoxide dismutase.Ni基因SMDS_2075的转录水平以提高谷氨酰胺转氨酶发酵水平的方法,所述制备方法包括如下步骤:
步骤一:设计并构建用于过量表达Superoxide dismutase.Ni基因SMDS_2075的整合型质粒载体pTDS101;所述Superoxide dismutase.Ni基因SMDS_2075的序列如SEQ IDNo.1所示;
步骤二:利用整合型质粒载体pTDS101(ΦC31整合位点,pSET152衍生,带有kasOp*启动子),在受体菌茂原链霉菌C2染色体上***一个拷贝的来源于茂原链霉菌C2的Superoxide dismutase.Ni基因SMDS_2075,并通过抗性和PCR验证筛选得到基因过量表达的重组突变株TGS101;
步骤三:将活化后的Superoxide dismutase.Ni基因SMDS_2075过量表达得到的谷氨酰胺转氨酶高产菌株TGS101的孢子接种于种子培养基中,25-35℃、180-220rpm(优选地,30℃、 200rpm)的条件下培养20-24h(优选地,24h),以8-15%(优选地,10%)的接种量转接至发酵培养基中,25-35℃、180-220rpm(优选地,30℃、200rpm)的条件下发酵28-32h(优选地,28h),收集发酵液并进行酶活测定。
步骤一中,所述整合型质粒载体pTDS101的构建方法是:通过PCR扩增得到396bp的Superoxide dismutase.Ni基因SMDS_2075序列的PCR片段,通过酶切连接的方法连入整合型质粒pDR3-K*的NdeI/EcoRI位点,获得整合型质粒载体pTDS101。
步骤三中,所述种子培养基包括甘油1-3w/v%,酵母提取物0.5-1w/v%,鱼粉蛋白胨2-3 w/v%,MgSO4·7H2O 0.1-0.5w/v%,K2HPO4·3H2O 0.1-0.5w/v%,pH 7.4;优选地,为甘油2w/v%,酵母提取物0.6w/v%,鱼粉蛋白胨2.5w/v%,MgSO4·7H2O 0.2w/v%,K2HPO4·3H2O 0.2w/v%, pH 7.4。
步骤三中,所述发酵培养基包括甘油1-3w/v%,酵母提取物0.5-1w/v%,鱼粉蛋白胨2-3 w/v%,MgSO4·7H2O 0.1-0.5w/v%,K2HPO4·3H2O 0.1-0.5w/v%,发酵促进剂0.1-0.3w/v%, pH 7.4;优选地,为甘油2w/v%,酵母提取物0.6w/v%,鱼粉蛋白胨2.5w/v%,MgSO4·7H2O 0.2w/v%,K2HPO4·3H2O 0.2w/v%,发酵促进剂0.1w/v%,pH 7.4。
本发明还提供了一种谷氨酰胺转氨酶高产菌株TGS101的制备方法,所述制备方法包括以下步骤:
步骤一:设计并构建用于过量表达内源Superoxide dismutase.Ni基因SMDS_2075的整合型质粒载体pTDS101;所述Superoxide dismutase.Ni基因SMDS_2075的序列如SEQID No.1 所示;
步骤二:利用整合型质粒载体pTDS101(ΦC31整合位点,pSET152衍生,带有kasOp*启动子),在受体菌茂原链霉菌C2染色体上***一个拷贝的Superoxide dismutase.Ni基因SMDS_2075(来源于茂原链霉菌C2),并通过抗性和PCR验证筛选得到基因过量表达的重组突变株TGS101。
步骤一中,所述整合型质粒载体pTDS101的构建方法是:通过PCR扩增得到396bp的Superoxide dismutase.Ni基因SMDS_2075序列的PCR片段,通过酶切连接的方法连入整合型质粒pDR3-K*的NdeI/EcoRI位点,获得整合型质粒载体pTDS101。
本发明还提供了一种Superoxide dismutase.Ni基因SMDS_2075,所述Superoxidedismutase. Ni基因SMDS_2075的序列如SEQ ID No.1所示。
本发明还提供了一种用于表达Superoxide dismutase.Ni基因SMDS_2075的基因序列,所述基因序列为人工强启动子kasOp*的核苷酸序列或者与启动子kasOp*具有90%以上的同源性的核苷酸序列,所述启动子kasOp*的核苷酸序列如SEQ ID NO.2所示。
本发明还提供了一种质粒载体pTDS101的构建方法,通过PCR扩增得到396bp的Superoxide dismutase.Ni基因SMDS_2075序列的PCR片段,通过酶切连接的方法连入整合型质粒pDR3-K*的NdeI/EcoRI位点,获得整合型质粒载体pTDS101。
本发明还提供了所述茂原链霉菌C2在筛选谷氨酰胺转氨酶高产菌株TGS101中的应用。
本发明还提供了所述谷氨酰胺转氨酶高产菌株TGS101在提高谷氨酰胺转氨酶发酵产量中的应用。
本发明所涉及的质粒pDR3-K*已经在SCI数据库文献《Xinjuan Ning,XinranWang, Yuanting Wu,Qianjin Kang*and Linquan Bai*:Identification andEngineering of Post-PKS Modification Bottlenecks for Ansamitocin P-3TiterImprovement in Actinosynnema pretiosum subsp.pretiosumATCC31280.BiotechnologyJournal 2017,12,1700484》中记载。
本发明所涉及的菌株茂原链霉菌C2由泰兴东圣生物科技有限公司经菌种诱变获得,保藏于中国典型培养物保藏中心(CCTCC),保藏编号为CCTCC NO:M 2020194,保藏日期为 2020.6.10。
本发明的有益效果包括:通过在茂原链霉菌C2中,利用整合型载体pDR3-K*,在茂原链霉菌C2染色体上分别***一个拷贝、来源于茂原链霉菌C2的Superoxidedismutase.Ni基因SMDS_2075,实验室摇瓶水平下较对照菌株酶活提高31.30%。通过本发明可显著提高TGase 的发酵产量,使发酵成本大幅降低。
附图说明
图1为SMDS_2075基因过量表达质粒构建示意图;
图2为Superoxide dismutase.Ni基因SMDS_2075增强表达突变株与对照菌株TGase发酵产量示意图;
图3为Superoxide dismutase.Ni基因SMDS_2075增强表达突变株与对照菌株SDS-PAGE 结果示意图。其中,M代表蛋白Marker;泳道1代表茂原链霉菌C2的SDS-PAGE结果;泳道2代表Superoxide dismutase.Ni基因SMDS_2075增强表达突变株SDS-PAGE结果。
具体实施方式
结合以下具体实施例和附图,对发明作进一步的详细说明。实施本发明的过程、条件、实验方法等,除以下专门提及的内容之外,均为本领域的普遍知识和公知常识,本发明没有特别限制内容。
实施例1
本实施例为制备Superoxide dismutase.Ni基因SMDS_2075过量表达的突变株TGS101的具体过程,具体包括以下步骤:
第一步:构建质粒pTDS101:以茂原链霉菌C2基因组DNA作为模板,使用在两端引入NdeI/EcoRI酶切位点的引物smds_2075-F/R,通过PCR扩增得到SMDS_2075(396bp)的基因片段。在质粒pDR3-K*的NdeI/EcoRI位点***酶切后的扩增片段,得到质粒pTDS101。
*第一步涉及的内切酶识别位点(酶切位点)如下:
NdeI识别位点: EcoRI识别位点:
5'...CA^TATG...3' 5'...G^AATTC...3'
3'...GTAT^AC...5' 3'...CTTAA^G...5'
*第一步所用到的引物序列为:
*第一步中基因片段制备所采用的PCR体系及条件:
PCR反应体系:DNA模板30ng,引物F/R 20pmol,50%DMSO 5μL,dNTP 10nmol,缓冲液25μL,Taq DNA聚合酶1个单位,加纯水补齐至30μL;
PCR条件:95℃5min;95℃15s,60℃15s,72℃30s,循环30次;72℃10min。
第二步:利用整合型质粒载体pTDS101(ΦC31整合位点,pSET152衍生,带有kasOp*启动子),在受体菌茂原链霉菌C2染色体上***一个拷贝的Superoxide dismutase.Ni基因SMDS_2075(来源于茂原链霉菌C2),并通过抗性及PCR验证筛选正确的接合子,从而得到SMDS_2075基因过量表达的突变株,具体包括以下步骤:
1)将基因过量表达的质粒pTDS101转化进入宿主ET12567(pUZ8002)中,将对应ET12567(pUZ8002)接种于含有Apr、Kan和Chl三种抗生素的LB中,37℃培养20h,然后用新鲜的LB溶液漂洗菌体以除去培养物中的抗生素;同时制备C2孢子预萌发液,收集生长7天的C2的孢子,50℃热激10min后加2×YT培养基于37℃预萌发2h,然后用新鲜的 LB培养基漂洗2次;
所述LB培养基的组分为:胰蛋白胨1w/v%、酵母提取物0.5w/v%、NaCl 1w/v%,pH7.0;所述2×YT培养基的组分为:胰蛋白胨1.6w/v%、酵母提取物1w/v%、NaCl 0.5w/v%,pH 7.0。
2)将C2孢子预萌发液与之前制备的宿主菌ET12567(pUZ8002)混合(受体菌细胞C2和供体菌ET12567(pUZ8002)的比例约为1:10)均匀后涂布于含有10mM镁离子的ISP4 固体培养基上,于30℃培养箱倒置培养16h;
所述ISP4固体培养基的组分为:可溶性淀粉1w/v%、MgSO4·7H2O 0.1w/v%、(NH4)2SO4 0.2w/v%、FeSO4·7H2O 0.0001w/v%、K2HPO40.1 w/v%、NaCl 0.1w/v%、CaCO30.2 w/v%、MnCl2·4H2O 0.0001w/v%、ZnSO4·7H2O 0.0001w/v%、琼脂2w/v%,pH7.0-7.4。
3)16h后取出平板,分别将阿泊拉霉素(终浓度50μg/mL)和萘啶酮酸(终浓度25μg/mL) 两种抗生素加入1mL无菌水中混匀后覆盖在接合转移平板上,吹干后转移至30℃培养箱中倒置培养。一般3~5d后可见平板上有接合子长出,将其通过转接于含有阿泊拉霉素和萘啶酮酸两种抗生素的高氏I号固体培养基上扩大培养,通过菌丝体PCR验证筛选得到Superoxide dismutase.Ni基因SMDS_2075加倍的突变株;
所述高氏I号固体培养基的组分为:可溶性淀粉2w/v%、MgSO4·7H2O 0.05w/v%、KNO3 0.1w/v%、FeSO4·7H2O 0.001w/v%、K2HPO40.05 w/v%、NaCl 0.05w/v%、琼脂2w/v%,pH 7.2-7.4。
*第二步中以接合子菌丝体作为DNA模板,使用在两端引入NdeI/EcoRI酶切位点的引物smds_2075-F/R,通过PCR验证筛选突变株时所采用的PCR体系及条件:
PCR体系:DNA模板10~100ng,引物F/R 10pmol,50%DMSO 2μL,2×Mix缓冲液 10μL,加纯水补齐至20μL;
所述2×Mix缓冲液的组分为:Taq DNA Polymerase(recombinant)0.05units/μL、MgCl24 mM、dNTPs(dATP、dCTP、dGTP、dTTP)0.4mM;
PCR条件:95℃10min;95℃15s,60℃15s,72℃30s,循环30次;72℃10min。
实施例2
本实施例为利用Superoxide dismutase.Ni基因SMDS_2075过量表达的突变株TGS101发酵产生TGase的过程,具体步骤如下:将Superoxide dismutase.Ni过量表达的菌株TGS101 分别涂布于高氏I号培养基上活化,30℃培养7d后,刮取一平板孢子接种至种子培养基中, 30℃、200rpm的条件下培养24h,以10%的接种量转接至发酵培养基中,30℃、200rpm 的条件下发酵28h后收集发酵液进行酶活测定及SDS-PAGE检测。
实施例3
本实施例为利用比色法检测TGase的酶活的方法,具体为:
1)取200μL稀释20倍的发酵液上清于两支试管中,其中一管加入200μL水作为对照,另一管加入2mL 37℃预热好的A液,37℃反应10min后,加入2mLB液终止反应。
2)用1cm的石英比色皿,在分光光度计525nm处测定发酵液的吸光度。最终将OD525带入由标准曲线换算得到的公式,计算出TGase的酶活。
其中,溶液配制方法如下:
A液:称取9.688g三羟甲基氨基甲烷,2.780g盐酸羟胺,1.229g还原型谷胱甘肽,4.048 g底物Na-CBZ-GLN-GLY于烧杯中,加350mL水,调节pH为6.0,加水定容至400mL。
B液:3mol/L盐酸,12%三氯乙酸,5%FeCl3溶于0.1mol/LHCl中,将三种溶液等量混合均匀。
图2为Superoxide dismutase.Ni基因SMDS_2075增强表达突变株与对照菌株TGase相对发酵产量示意图。结果表明,在实验室摇瓶水平下突变株的产量对比野生型菌株提高31.30%。
图3为Superoxide dismutase.Ni基因SMDS_2075增强表达突变株与对照菌株C2的SDS-PAGE检测结果示意图。其中,M代表蛋白Marker;泳道1代表茂原链霉菌C2的SDS-PAGE结果;泳道2代表Superoxide dismutase.Ni基因SMDS_2075增强表达突变株 SDS-PAGE结果。结果表明,突变株成熟TGase的含量较对照菌株增加。
本发明的保护内容不局限于以上实施例。在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。
SEQUENCE LISTING
<110> 江苏东汇生物科技有限公司
<120> 增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的方法
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 396
<212> DNA
<213> 人工序列
<400> 1
atgctttccc gcctgttcgc ccccaaggtg aaggtcagcg cccactgcga cctgccctgc 60
ggcgtgtacg acccggccca ggcccgcatc gaggcggaat cggtcaaggc cgtccaggag 120
aagtaccagg ccaacgagga cccccacttc cgtgcccgcg ccacgatcat caaggagcag 180
cgcgcggagc tcgccaagca ccacgtctcg gtgctgtgga gcgactactt caaggcgccg 240
cacttcgaga agtaccccca gttgcaccag ctggtcaatg acaccctgaa ggcgctgagc 300
gccgccaagg cgtcgaccga cccgaagacg ggcgagaagg cgctggagct catcgccgag 360
atcgaccgta tcttctggga gaccaagaag gcgtaa 396
<210> 2
<211> 97
<212> DNA
<213> 人工序列
<400> 2
tgttcacatt cgaacggtct ctgctttgac aacatgctgt gcggtgttgt aaagtcgtgg 60
ccaggagaat acgacagcgt gcaggactgg gggagtt 97
<210> 3
<211> 30
<212> DNA
<213> 人工序列
<400> 3
atatcatatg atgctttccc gcctgttcgc 30
<210> 4
<211> 30
<212> DNA
<213> 人工序列
<400> 4
atatgaattc ttacgccttc ttggtctccc 30

Claims (6)

1.一种谷氨酰胺转氨酶高产菌株TGS101,其特征在于,所述菌株TGS101通过增强Superoxide dismutase.Ni基因SMDS_2075的转录水平而获得的;
所述菌株TGS101通过在茂原链霉菌C2中利用人工强启动子kasOp*过量表达来源于茂原链霉菌C2的Superoxide dismutase.Ni基因SMDS_2075后获得;
所述茂原链霉菌C2的分类名为茂原链霉菌Streptomyces mobaraensis C2,保藏于中国典型培养物保藏中心CCTCC,保藏编号为CCTCC NO:M 2020194,保藏日期为2020年6月10日;
所述菌株TGS101的Superoxide dismutase.Ni基因SMDS_2075过量表达;所述Superoxide dismutase.Ni基因SMDS_2075的序列如SEQ ID NO.1所示;
所述菌株TGS101含有人工强启动子kasOp*过量表达来源于茂原链霉菌C2的Superoxide dismutase.Ni基因SMDS_2075的表达盒。
2.如权利要求1所述的谷氨酰胺转氨酶高产菌株TGS101,其特征在于,所述表达盒含有人工强启动子kasOp*、Superoxide dismutase.Ni基因SMDS_2075、转录终止序列。
3.一种增强Superoxide dismutase.Ni基因SMDS_2075的转录水平以提高谷氨酰胺转氨酶发酵水平的方法,其特征在于,所述方法包括如下步骤:
步骤一:设计并构建用于过量表达Superoxide dismutase.Ni基因SMDS_2075的整合型质粒载体pTDS101;所述Superoxide dismutase.Ni基因SMDS_2075的序列如SEQ ID No.1所示;其中,所述整合型质粒载体pTDS101的构建方法为:通过PCR扩增得到396bp的Superoxide dismutase.Ni基因SMDS_2075序列的PCR片段,通过酶切连接的方法连入整合型质粒pDR3-K*的NdeI/EcoRI位点,获得整合型质粒载体pTDS101;
步骤二:利用整合型质粒载体pTDS101,在受体菌茂原链霉菌C2染色体上***一个拷贝的来源于茂原链霉菌C2的Superoxide dismutase.Ni基因SMDS_2075,并通过抗性和PCR验证筛选得到基因过量表达的重组突变株TGS101;所述茂源链霉菌C2的分类名为茂原链霉菌Streptomyces mobaraensis,保藏于中国典型培养物保藏中心CCTCC,保藏编号为M2020194,保藏日期为2020年6月25日;所述菌株TGS101含有人工强启动子kasOp*过量表达来源于茂原链霉菌C2的Superoxide dismutase.Ni基因SMDS_2075的表达盒;
步骤三:将培养的Superoxide dismutase.Ni基因SMDS_2075过量表达的谷氨酰胺转氨酶高产菌株TGS101的孢子接种于种子培养基中,25-35℃、180-220rpm的条件下培养20-24h,以8-15%的接种量转接至发酵培养基中,25-35℃、180-220rpm的条件下发酵28-32h,收集发酵液并进行酶活检测。
4.如权利要求3所述的方法,其特征在于,所述种子培养基包括甘油1-3w/v%,酵母提取物0.5-1w/v%,鱼粉蛋白胨2-3w/v%,MgSO4·7H2O 0.1-0.5w/v%,K2HPO4·3H2O 0.1-0.5w/v%,pH 7.4;
所述发酵培养基包括甘油1-3w/v%,酵母提取物0.5-1w/v%,鱼粉蛋白胨2-3w/v%,MgSO4·7H2O 0.1-0.5w/v%,K2HPO4·3H2O 0.1-0.5w/v%,发酵促进剂0.1-0.3w/v%,pH7.4。
5.一种谷氨酰胺转氨酶高产菌株TGS101的制备方法,其特征在于,所述制备方法包括如下步骤:
步骤一:设计并构建用于过量表达Superoxide dismutase.Ni基因SMDS_2075的整合型质粒载体pTDS101;所述Superoxide dismutase.Ni基因SMDS_2075的序列如SEQ ID No.1所示;其中,步骤一中,所述整合型质粒载体pTDS101的构建方法为:通过PCR扩增得到396bp的Superoxide dismutase.Ni基因SMDS_2075序列的PCR片段,通过酶切连接的方法连入整合型质粒pDR3-K*的NdeI/EcoRI位点,获得整合型质粒载体pTDS101;
步骤二:利用整合型质粒载体pTDS101,在受体菌茂原链霉菌C2染色体上***一个拷贝的来源于茂原链霉菌C2的Superoxide dismutase.Ni基因SMDS_2075,并通过抗性和PCR验证筛选得到基因过量表达的重组突变株TGS101;其中,所述茂源链霉菌C2的分类名为茂原链霉菌Streptomyces mobaraensis,保藏于中国典型培养物保藏中心CCTCC,保藏编号为M2020194,保藏日期为2020年6月25日;所述Superoxide dismutase.Ni基因SMDS_2075过量表达;所述菌株TGS101含有人工强启动子kasOp*过量表达来源于茂原链霉菌C2的Superoxide dismutase.Ni基因SMDS_2075的表达盒。
6.如权利要求1或2所述的谷氨酰胺转氨酶高产菌株TGS101在提高谷氨酰胺转氨酶发酵产量中的应用。
CN202011565728.0A 2020-12-25 2020-12-25 增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的方法 Active CN114686409B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011565728.0A CN114686409B (zh) 2020-12-25 2020-12-25 增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011565728.0A CN114686409B (zh) 2020-12-25 2020-12-25 增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的方法

Publications (2)

Publication Number Publication Date
CN114686409A CN114686409A (zh) 2022-07-01
CN114686409B true CN114686409B (zh) 2023-12-26

Family

ID=82129865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011565728.0A Active CN114686409B (zh) 2020-12-25 2020-12-25 增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的方法

Country Status (1)

Country Link
CN (1) CN114686409B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107384820A (zh) * 2017-07-25 2017-11-24 华东理工大学 一株谷氨酰胺转氨酶高产诱变菌株及其应用
CN110358708A (zh) * 2019-07-15 2019-10-22 泰兴市东圣生物科技有限公司 一种高产谷氨酰胺转氨酶菌株及其应用
CN110563783A (zh) * 2019-08-16 2019-12-13 上海交通大学 一种高效低毒四霉素b衍生物及其定向高产代谢工程方法
CN111019965A (zh) * 2018-10-10 2020-04-17 中国科学院微生物研究所 新霉素生物合成基因簇遗传改造的工程菌及其应用
CN111690570A (zh) * 2020-07-13 2020-09-22 江苏东汇生物科技有限公司 一种谷氨酰胺转氨酶生产菌

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4323147B2 (ja) * 2002-09-10 2009-09-02 天野エンザイム株式会社 トランスグルタミナーゼ生産菌

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107384820A (zh) * 2017-07-25 2017-11-24 华东理工大学 一株谷氨酰胺转氨酶高产诱变菌株及其应用
CN111019965A (zh) * 2018-10-10 2020-04-17 中国科学院微生物研究所 新霉素生物合成基因簇遗传改造的工程菌及其应用
CN110358708A (zh) * 2019-07-15 2019-10-22 泰兴市东圣生物科技有限公司 一种高产谷氨酰胺转氨酶菌株及其应用
CN110563783A (zh) * 2019-08-16 2019-12-13 上海交通大学 一种高效低毒四霉素b衍生物及其定向高产代谢工程方法
CN111690570A (zh) * 2020-07-13 2020-09-22 江苏东汇生物科技有限公司 一种谷氨酰胺转氨酶生产菌

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Eitinger,T. et al..ACCESSION NO.WP_004937667,MULTISPECIES: superoxide dismutase, Ni [Streptomyces].《GenBank》.2020,FEATURES,ORIGIN. *
Identification and Engineering of Post-PKS Modification Bottlenecks for Ansamitocin P-3 Titer Improvement in Actinosynnema pretiosum subsp. pretiosum ATCC 31280;Xinjuan Ning et al;《Biotechnol J》;第12卷(第11期);第1700484(1-8)页 *
Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease;J Zotzel et al.;《Eur J Biochem》;第270卷(第15期);第3214-3222页 *
谷氨酰胺转胺酶菌株的诱变育种及发酵小试条件的探究;黄劲舸;《中国优秀硕士学位论文全文数据库基础科学辑》(第09期);A006-163 *

Also Published As

Publication number Publication date
CN114686409A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN112961845B (zh) 敲除cslA基因以提高谷氨酰胺转氨酶发酵水平的方法
WO2023236638A1 (zh) 热稳定性改善的葡萄糖氧化酶GoxM10突变体E361P及其衍生突变体和应用
CN113637660B (zh) 一种β-半乳糖苷酶GalNC3-89及其制备方法和应用
CN112980759B (zh) 增强Subtilisin基因转录水平以提高TG酶发酵水平的方法
CN113005071B (zh) 一种SsgA编码基因SMDS_1018的用途、重组菌株及其构建方法
JP7459509B2 (ja) トリコデルマ属糸状菌の変異株およびタンパク質の製造方法
CN113862233A (zh) 提高葡萄糖氧化酶的酸稳定性的方法及突变体q241e/r499e、基因和应用
CN114107146A (zh) 一种无抗性标记营养缺陷型枯草芽孢杆菌的构建方法与应用
CN111849848B (zh) 一种抗噬菌体的大肠杆菌底盘细胞的构建及应用
CN113493799B (zh) 一株高产酸性乳糖酶的黑曲霉菌株
CN114686409B (zh) 增强超氧化物歧化酶基因的表达提高谷氨酰胺转氨酶产量的方法
CN114736880B (zh) 酸稳定性提高葡萄糖氧化酶GoxM10的突变体D497N及其衍生突变体和应用
CN114736881B (zh) 酸稳定性提高的葡萄糖氧化酶GoxM10突变体A4D及其衍生突变体和应用
CN114686408B (zh) 增强VOC family protein基因的表达提高谷氨酰胺转氨酶产量的方法
CN114686410B (zh) 一种增强1-磷酸果糖激酶基因转录水平的谷氨酰胺转氨酶高产菌株及其制备与发酵方法
CN114686389B (zh) 一种增强vgbS基因转录水平的谷氨酰胺转氨酶高产菌株及其制备与发酵方法
CN114540397B (zh) 增强调控蛋白表达以提高谷氨酰胺转氨酶发酵水平的方法
CN113652424A (zh) 一种提高谷氨酰胺转氨酶表达水平的启动子
CN101942427A (zh) 一种烷基型硫酸酯酶及其制备方法
CN109749948A (zh) 一种利用tef1启动子调控黏玉米谷氨酰胺转氨酶表达的重组毕赤酵母菌株及构建方法
CN116144566A (zh) 敲低转肽酶基因以提高谷氨酰胺转氨酶产量的方法
CN111394331B (zh) 一种谷氨酰胺转氨酶及其编码基因、表达载体及重组菌
CN116396953B (zh) 木聚糖酶突变体及其应用和重组枯草芽孢杆菌
CN114457103B (zh) 利用CRISPR/dCas9敲低调控蛋白表达以提高TG酶产量的方法
CN114686388A (zh) 一种利用卡那霉素高效筛选高产谷氨酰胺转氨酶生产菌株的方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20231128

Address after: No. 91-92 Junmin Road, Huangqiao Town, Taixing City, Taizhou City, Jiangsu Province, 225411

Applicant after: TAIXING DONGSHENG BIO-TECH CO.,LTD.

Address before: No.91 Junmin Road, Huangqiao Town, Taixing City, Taizhou City, Jiangsu Province 225411

Applicant before: Jiangsu Donghui Biotechnology Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant