CN114671984A - Oil-resistant acrylic acid adhesive and preparation method thereof - Google Patents

Oil-resistant acrylic acid adhesive and preparation method thereof Download PDF

Info

Publication number
CN114671984A
CN114671984A CN202210377305.9A CN202210377305A CN114671984A CN 114671984 A CN114671984 A CN 114671984A CN 202210377305 A CN202210377305 A CN 202210377305A CN 114671984 A CN114671984 A CN 114671984A
Authority
CN
China
Prior art keywords
monomer
layer
dibutyl itaconate
oil
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210377305.9A
Other languages
Chinese (zh)
Other versions
CN114671984B (en
Inventor
胡文虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHANGZHOU BAOLI ADHESIVE CO LTD
Original Assignee
CHANGZHOU BAOLI ADHESIVE CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHANGZHOU BAOLI ADHESIVE CO LTD filed Critical CHANGZHOU BAOLI ADHESIVE CO LTD
Priority to CN202210377305.9A priority Critical patent/CN114671984B/en
Publication of CN114671984A publication Critical patent/CN114671984A/en
Application granted granted Critical
Publication of CN114671984B publication Critical patent/CN114671984B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/14Esters having no free carboxylic acid groups, e.g. dialkyl maleates or fumarates
    • C08F222/145Esters having no free carboxylic acid groups, e.g. dialkyl maleates or fumarates the ester chains containing seven or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F267/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00
    • C08F267/06Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated polycarboxylic acids or derivatives thereof as defined in group C08F22/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/003Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The invention discloses an oil-resistant acrylic adhesive and a preparation method thereof, wherein the scheme is that an adhesive with a three-layer core-shell structure is synthesized by taking acrylic ester monomers, dibutyl itaconate copolymer, fluorine-containing vinyl silane and other monomers as main raw materials through emulsion polymerization; when the scheme is prepared, firstly, the core layer monomer, the middle layer monomer and the shell layer monomer are pre-emulsified respectively, and in the step, the component selection and the content of the core layer monomer, the middle layer monomer and the shell layer monomer are limited, so that the oil resistance and the water resistance of the adhesive are improved, and the high temperature resistance of the adhesive is improved. The invention discloses an oil-resistant acrylic adhesive and a preparation method thereof, and the prepared acrylic adhesive with a core layer-intermediate layer-shell layer composite structure has excellent high temperature resistance, excellent water resistance and oil resistance, good chemical corrosion resistance and high practicability.

Description

Oil-resistant acrylic acid adhesive and preparation method thereof
Technical Field
The invention relates to the technical field of adhesives, in particular to an oil-resistant acrylic acid adhesive and a preparation method thereof.
Background
The acrylic adhesive is an adhesive with unique performance and wide application range. According to the form and application characteristics of the adhesive, the adhesive can be divided into a solvent type, an emulsion type, a reaction type, a pressure-sensitive type, an instant drying type, an anaerobic type, a photosensitive type, a hot-melt type and the like. From the classification, the application range of the diacidic adhesive is very wide, so that all metal and nonmetal materials can be bonded by the diacidic adhesive, and the diacidic adhesive can be widely applied to life and factory processing.
The oil-resistant acrylic adhesive and the preparation method thereof are used for solving the problem that the existing acrylic adhesive is poor in oil resistance and water resistance and greatly influences the practical application effect of the acrylic adhesive, so that the application discloses the oil-resistant acrylic adhesive and the preparation method thereof for improving the comprehensive performance of the acrylic adhesive.
Disclosure of Invention
The invention aims to provide an oil-resistant acrylic acid adhesive and a preparation method thereof, and aims to solve the problems in the background technology.
In order to solve the technical problems, the invention provides the following technical scheme:
a preparation method of oil-resistant acrylic acid adhesive comprises the following steps:
(1) taking an emulsifier, deionized water and a core layer monomer, and pre-emulsifying to obtain a core layer pre-emulsion; the core layer monomer consists of an acrylate monomer and a dibutyl itaconate copolymer;
pre-emulsifying an emulsifier, deionized water and an intermediate layer monomer to obtain an intermediate layer pre-emulsion; the middle layer monomer consists of an acrylate monomer, a dibutyl itaconate copolymer and fluorine-containing vinyl silane;
pre-emulsifying an emulsifier, deionized water and a shell monomer to obtain a shell pre-emulsion; the shell layer monomer consists of an acrylate monomer, methacrylic acid, dibutyl itaconate copolymer and fluorine-containing vinyl silane;
(2) taking an emulsifier and deionized water, and uniformly mixing to obtain a pre-emulsion;
taking the pre-emulsion, dropwise adding the core layer pre-emulsion and 1/4 initiator at 80-85 ℃, reacting for 30-40 min under heat preservation, dropwise adding the middle layer pre-emulsion and 1/4 initiator, reacting for 30-40 min under heat preservation at 80-85 ℃, finally dropwise adding the shell layer pre-emulsion and the rest initiator, continuing reacting for 1-1.2 h under heat preservation, cooling, adding ammonia water, and adjusting the pH value to 7-8 to obtain the adhesive.
According to an optimized scheme, the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the core layer monomer is 9: 2; the mass ratio of the acrylate monomer, the dibutyl itaconate copolymer and the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1: 1; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 1: 2; the methacrylic acid accounts for 8-10 wt% of the monomer amount of the shell layer.
In an optimized scheme, in the step (1), the preparation step of the dibutyl itaconate copolymer is as follows:
s1: taking hydroxyethyl carbazole, p-toluenesulfonic acid and hydroquinone, mixing and stirring for 10-20 min, heating to 85-95 ℃, adding methacrylic acid, heating to 110-120 ℃, reacting for 10-11 h, washing after reaction, separating, and distilling under reduced pressure to obtain ethyl carbazole methacrylate;
s2: mixing and stirring ethyl carbazole methacrylate, dibutyl itaconate, N-vinyl carbazole and toluene uniformly, adding azobisisobutyronitrile, reacting for 20-24 hours in a nitrogen environment at the reaction temperature of 65-70 ℃, precipitating methanol after reaction, filtering and collecting a product, and drying in vacuum to obtain the dibutyl itaconate copolymer.
In an optimized scheme, in step S2, the mass ratio of the ethyl carbazole methacrylate to the dibutyl itaconate to the N-vinyl carbazole is 2: 3: 1; the amount of the azodiisobutyronitrile is 2-2.5 wt% of that of the dibutyl itaconate copolymer.
In a more optimized scheme, in the step (1), the preparation steps of the fluorine-containing vinyl silane are as follows: taking magnesium powder, methyltriethoxysilane, iodine and tetrahydrofuran, uniformly mixing, heating to 65-70 ℃ in a nitrogen environment, dropwise adding 4- (trifluorovinyl ether) bromobenzene, stirring for reacting for 20-24 h, cooling, removing tetrahydrofuran, and collecting a product to obtain the fluorine-containing vinyl silane.
In a more optimized scheme, the molar ratio of the methyltriethoxysilane to the 4- (trifluorovinyl ether) bromobenzene is 4: 3.
according to an optimized scheme, in the step (1), the mass ratio of the core layer monomer to the intermediate layer monomer to the shell layer monomer is 4: 3: 3; the acrylate monomer comprises methyl methacrylate, butyl acrylate and caprolactone acrylate, wherein the weight ratio of the methyl methacrylate to the butyl acrylate to the caprolactone acrylate is 5: 2: 2.
according to an optimized scheme, in the step (2), the amount of the emulsifier is 2-3 wt% of the total amount of shell monomers; the initiator accounts for 2-3 wt% of the total amount of the shell layer monomer, the core layer monomer and the middle layer monomer.
According to an optimized scheme, the emulsifier comprises sodium dodecyl benzene sulfonate and alkylphenol polyoxyethylene, and the mass ratio of the sodium dodecyl benzene sulfonate to the alkylphenol polyoxyethylene is 1: 2.
according to an optimized scheme, the adhesive is prepared by the preparation method of the oil-resistant acrylic adhesive.
Compared with the prior art, the invention has the following beneficial effects:
the invention discloses an oil-resistant acrylic adhesive and a preparation method thereof, wherein the scheme is that an adhesive with a three-layer core-shell structure is synthesized by taking acrylic ester monomers, dibutyl itaconate copolymer, fluorine-containing vinyl silane and other monomers as main raw materials through emulsion polymerization; when the scheme is prepared, firstly, the core layer monomer, the middle layer monomer and the shell layer monomer are pre-emulsified respectively, and in the step, the component selection and the content of the core layer monomer, the middle layer monomer and the shell layer monomer are limited, so that the oil resistance and the water resistance of the adhesive are improved, and the high temperature resistance of the adhesive is improved.
In this step, the present scheme defines the following conditions:
(1) dibutyl itaconate copolymer is introduced into the core layer monomer, the middle layer monomer and the shell layer monomer; the technical effect realized by the limiting condition is as follows: according to the preparation method, ethyl carbazole methacrylate, dibutyl itaconate and N-vinyl carbazole are used as raw materials, azobisisobutyronitrile is used as an initiator, and a copolymer is obtained through polymerization, on one hand, the oil resistance of the adhesive can be effectively improved due to the introduction of the middle diester group of dibutyl itaconate, and the cross-linking density of the acrylate adhesive is prevented from being influenced due to the introduction of dibutyl itaconate; on the other hand, substances such as N-vinyl carbazole, ethyl carbazole methacrylate and the like introduce a benzene ring structure, so that the high-temperature resistance of the acrylate adhesive can be effectively improved.
(2) Fluorine-containing vinyl silane is introduced into the intermediate layer monomer and the shell layer monomer; the technical effect realized by the limiting condition is as follows: according to the invention, components such as magnesium powder, methyl triethoxysilane, iodine and 4- (trifluorovinyl ether group) bromobenzene are used for synthesizing fluorine-containing vinyl silane monomer ([ 4-trifluorovinyl aryl ether group ] methyl diethoxysilane) through Grignard reaction, on one hand, fluorine element can be introduced into the monomer to improve the water resistance of the acrylate adhesive, the surface hydrophobicity and oleophobicity of the monomer are more excellent, and the oil resistance of the adhesive is improved; on the other hand, the introduction of the monomer can further improve the heat resistance of the acrylate, and the actual application effect is more excellent.
(3) The mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the core layer monomer is 9: 2; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1: 1; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 1: 2;
the addition amounts of dibutyl itaconate and fluorine-containing vinyl silane added in the core layer monomer, the intermediate layer monomer and the shell layer monomer are limited, fluorine-containing vinyl silane is not introduced in the core layer monomer, and the single dibutyl itaconate copolymer can ensure the crosslinking density of the inner core layer; in the intermediate layer, dibutyl itaconate copolymer and fluorine-containing vinyl silane are added, and the ratio is limited to 1: 1, increasing the amount of fluorine-containing vinyl silane in the shell layer to limit the ratio of dibutyl itaconate copolymer to fluorine-containing vinyl silane to 1: 2; the reason for this is that: introduce fluorine-containing vinyl silane in the intermediate layer and can regard as the transition layer, the content of fluorine-containing vinyl silane increases progressively from inside to outside in proper order moreover, can guarantee the hydrophobic property of fluorine element on the one hand, and on the other hand, the intermediate layer can regard as the transition layer for the bonding effect between nuclear layer, the shell layer is more excellent, and the monomer proportion that the gradient set up makes the holistic resistant oil performance of adhesive obtain improving.
The scheme also introduces an acrylate monomer which comprises caprolactone acrylate, the caprolactone acrylate and monomers such as methacrylic acid and butyl acrylate act together to form a comonomer, and the prepared acrylate adhesive has excellent flexibility, hydrolysis resistance, chemical corrosion resistance, good chemical compatibility and the like, and particularly has strong impact toughness, so that the molecular chain of a colloid is tighter, the cohesive force is larger, and the oil resistance is improved.
The invention discloses an oil-resistant acrylic adhesive and a preparation method thereof, and the prepared acrylic adhesive with a nuclear layer-intermediate layer-shell layer composite structure has excellent high temperature resistance, excellent water resistance and oil resistance, good chemical corrosion resistance and high practicability.
Detailed Description
The technical solutions in the embodiments of the present invention will be described clearly and completely below, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be obtained by a person skilled in the art without making any creative effort based on the embodiments in the present invention, belong to the protection scope of the present invention.
In the following examples, the preparation of the fluorovinylsilane was carried out by the following steps: taking magnesium powder, methyltriethoxysilane, iodine and tetrahydrofuran, uniformly mixing, heating to 65 ℃ in a nitrogen environment, dropwise adding 4- (trifluorovinyl ether group) bromobenzene, stirring for reacting for 24 hours, cooling, removing tetrahydrofuran, and collecting a product to obtain the fluorine-containing vinyl silane.
The molar ratio of the methyl triethoxysilane to the 4- (trifluorovinyl ether) bromobenzene is 4: 3; the amount of the magnesium powder is 12 wt% of that of the methyltriethoxysilane; the iodine is 0.3 wt% of the amount of methyltriethoxysilane.
In the following examples, dibutyl itaconate copolymers were prepared by the following steps:
s1: mixing hydroxyethyl carbazole, p-toluenesulfonic acid and hydroquinone, stirring for 20min, heating to 85 ℃, adding methacrylic acid, heating to 110 ℃, reacting for 11h, washing with 5% sodium hydroxide solution and saturated salt solution in sequence after reaction, separating, and distilling under reduced pressure to obtain ethyl carbazole methacrylate;
the amount of the p-toluenesulfonic acid is 3 wt% of the amount of the hydroxyethyl carbazole; the content of hydroquinone is 0.3 wt% of the content of hydroxyethyl carbazole; the dosage of the hydroxyethyl carbazole and the methacrylic acid is 4 g: 5 mL.
S2: taking ethyl carbazole methacrylate, dibutyl itaconate, N-vinyl carbazole and toluene, wherein the mass ratio of ethyl carbazole methacrylate to dibutyl itaconate to N-vinyl carbazole is 2: 3: 1; uniformly mixing and stirring, and then adding azobisisobutyronitrile, wherein the amount of the azobisisobutyronitrile is 2.5 wt% of the amount of the dibutyl itaconate copolymer; and (3) reacting for 20 hours in a nitrogen environment at the reaction temperature of 70 ℃, precipitating with methanol after the reaction, filtering and collecting the product, dissolving with tetrahydrofuran, filtering and collecting the product after the precipitation with the methanol, repeating the step for 3 times, and drying in vacuum to obtain the dibutyl itaconate copolymer.
Example 1:
the preparation method of the oil-resistant acrylic acid adhesive comprises the following steps:
(1) pre-emulsifying an emulsifier, deionized water and a core layer monomer to obtain a core layer pre-emulsion; the core layer monomer consists of an acrylate monomer and a dibutyl itaconate copolymer; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the core layer monomer is 9: 2; the emulsifier in the core layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
pre-emulsifying an emulsifier, deionized water and an intermediate layer monomer to obtain an intermediate layer pre-emulsion; the middle layer monomer consists of an acrylate monomer, a dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1: 1; the emulsifier in the middle layer pre-emulsion is 2 wt% of the core layer monomer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
pre-emulsifying an emulsifier, deionized water and a shell monomer to obtain a shell pre-emulsion; the shell layer monomer consists of an acrylate monomer, methacrylic acid, dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 1: 2; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer;
(2) taking an emulsifier and deionized water, and uniformly mixing to obtain a pre-emulsion; the emulsifier accounts for 1 wt% of the deionized amount; the amount of the emulsifier is 2 wt% of the total amount of shell monomers;
taking the pre-emulsion, dropwise adding the core layer pre-emulsion and 1/4 initiator at 80 ℃, carrying out heat preservation reaction for 40min, dropwise adding the intermediate layer pre-emulsion and 1/4 initiator, carrying out heat preservation reaction for 40min at 80 ℃, finally dropwise adding the shell layer pre-emulsion and the rest initiator, continuing carrying out heat preservation reaction for 1h, cooling, adding ammonia water, and adjusting the pH value to 7 to obtain the adhesive. The initiator accounts for 2.5 wt% of the total amount of the shell layer monomer, the core layer monomer and the middle layer monomer. The mass ratio of the core layer monomer to the intermediate layer monomer to the shell layer monomer is 4: 3: 3.
in this embodiment, the emulsifier includes sodium dodecylbenzene sulfonate and alkylphenol ethoxylate, and the mass ratio of the sodium dodecylbenzene sulfonate to the alkylphenol ethoxylate is 1: 2; the acrylate monomer comprises methyl methacrylate, butyl acrylate and caprolactone acrylate, wherein the weight ratio of the methyl methacrylate to the butyl acrylate to the caprolactone acrylate is 5: 2: 2.
example 2:
the preparation method of the oil-resistant acrylic acid adhesive comprises the following steps:
(1) pre-emulsifying an emulsifier, deionized water and a core layer monomer to obtain a core layer pre-emulsion; the core layer monomer consists of an acrylate monomer and a dibutyl itaconate copolymer; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the core layer monomer is 9: 2; the emulsifier in the core layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
pre-emulsifying an emulsifier, deionized water and an intermediate layer monomer to obtain an intermediate layer pre-emulsion; the middle layer monomer consists of an acrylate monomer, a dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1: 1; the emulsifier in the middle layer pre-emulsion is 2 wt% of the core layer monomer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
pre-emulsifying an emulsifier, deionized water and a shell monomer to obtain a shell pre-emulsion; the shell layer monomer consists of an acrylate monomer, methacrylic acid, dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 1: 2; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer;
(2) taking an emulsifier and deionized water, and uniformly mixing to obtain a pre-emulsion; the emulsifier accounts for 1 wt% of the deionized amount; the amount of the emulsifier is 2 wt% of the total amount of shell monomers;
taking the pre-emulsion, dropwise adding the nuclear layer pre-emulsion and 1/4 initiator at 85 ℃, carrying out heat preservation reaction for 30min, dropwise adding the intermediate layer pre-emulsion and 1/4 initiator, carrying out heat preservation reaction for 40min at 85 ℃, finally dropwise adding the shell layer pre-emulsion and the rest initiator, continuing carrying out heat preservation reaction for 1.2h, cooling, adding ammonia water, and adjusting the pH value to 7 to obtain the adhesive. The initiator accounts for 2.5 wt% of the total amount of the shell layer monomer, the core layer monomer and the middle layer monomer. The mass ratio of the core layer monomer to the intermediate layer monomer to the shell layer monomer is 4: 3: 3.
in this embodiment, the emulsifier includes sodium dodecyl benzene sulfonate and alkylphenol polyoxyethylene, and the mass ratio of the sodium dodecyl benzene sulfonate to the alkylphenol polyoxyethylene is 1: 2; the acrylate monomer comprises methyl methacrylate, butyl acrylate and caprolactone acrylate, wherein the weight ratio of the methyl methacrylate to the butyl acrylate to the caprolactone acrylate is 5: 2: 2.
example 3:
the preparation method of the oil-resistant acrylic acid adhesive comprises the following steps:
(1) pre-emulsifying an emulsifier, deionized water and a core layer monomer to obtain a core layer pre-emulsion; the core layer monomer consists of an acrylate monomer and a dibutyl itaconate copolymer; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the core layer monomer is 9: 2; the emulsifier in the core layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
taking an emulsifier, deionized water and an intermediate layer monomer, and pre-emulsifying to obtain an intermediate layer pre-emulsion; the middle layer monomer consists of an acrylate monomer, a dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1: 1; the emulsifier in the middle layer pre-emulsion is 2 wt% of the core layer monomer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
pre-emulsifying an emulsifier, deionized water and a shell monomer to obtain a shell pre-emulsion; the shell layer monomer consists of an acrylate monomer, methacrylic acid, a dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 1: 2; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer;
(2) taking an emulsifier and deionized water, and uniformly mixing to obtain a pre-emulsion; the emulsifier accounts for 1 wt% of the deionized amount; the amount of the emulsifier is 2 wt% of the total amount of shell monomers;
taking the pre-emulsion, dropwise adding the nuclear layer pre-emulsion and 1/4 initiator at 85 ℃, carrying out heat preservation reaction for 40min, dropwise adding the intermediate layer pre-emulsion and 1/4 initiator, carrying out heat preservation reaction for 40min at 85 ℃, finally dropwise adding the shell layer pre-emulsion and the rest initiator, continuing carrying out heat preservation reaction for 1.2h, cooling, adding ammonia water, and adjusting the pH value to 7 to obtain the adhesive. The initiator accounts for 2.5 wt% of the total amount of the shell layer monomer, the core layer monomer and the middle layer monomer. The mass ratio of the core layer monomer to the intermediate layer monomer to the shell layer monomer is 4: 3: 3.
in this embodiment, the emulsifier includes sodium dodecylbenzene sulfonate and alkylphenol ethoxylate, and the mass ratio of the sodium dodecylbenzene sulfonate to the alkylphenol ethoxylate is 1: 2; the acrylate monomer comprises methyl methacrylate, butyl acrylate and caprolactone acrylate, wherein the weight ratio of the methyl methacrylate to the butyl acrylate to the caprolactone acrylate is 5: 2: 2.
comparative example 1: comparative example 1 in comparison with example 2, in comparative example 1, the ratio of each monomer in the core layer monomer, the intermediate layer monomer and the shell layer monomer is adjusted, and the rest steps are consistent.
The specific variables are:
in the step (1): the middle layer monomer consists of an acrylate monomer, a dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 2: 1; the emulsifier in the middle layer pre-emulsion is 2 wt% of the core layer monomer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
the shell layer monomer consists of an acrylate monomer, methacrylic acid, dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 2: 1; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer.
Comparative example 2: comparative example 2 the comparative example 2 was used as a control, and in comparative example 2, the proportions of the monomers in the core layer monomer, the intermediate layer monomer and the shell layer monomer were adjusted, and the remaining steps were identical.
The specific variables are:
in the step (1): the middle layer monomer consists of an acrylate monomer, a dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer, the dibutyl itaconate copolymer and the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1: 2; the emulsifier in the middle layer pre-emulsion is 2 wt% of the core layer monomer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
the shell layer monomer consists of an acrylate monomer, methacrylic acid, dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 1: 2; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer.
Comparative example 3: comparative example 3 in comparison to example 2, comparative example 3 does not incorporate fluorovinylsilane into the shell monomer and the remaining steps are identical.
The specific variables are:
in the step (1): the shell layer monomer consists of acrylate monomer, methacrylic acid and dibutyl itaconate copolymer; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the shell layer monomer is 9: 1; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer.
Comparative example 4: comparative example 4 comparative example 3 was used as a control, and in comparative example 4, the fluorine-containing vinylsilane was not introduced into the shell layer monomer and the intermediate layer monomer, and the remaining steps were identical.
The specific variables are:
in the step (1): the middle layer monomer consists of an acrylate monomer and a dibutyl itaconate copolymer; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the intermediate layer monomer is 9: 1; the emulsifier in the middle layer pre-emulsion is 2 wt% of the core layer monomer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
the shell layer monomer consists of acrylate monomer, methacrylic acid and dibutyl itaconate copolymer; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the shell layer monomer is 9: 1; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer.
Comparative example 5: comparative example 5 example 2 was used as a control, and in comparative example 5, dibutyl itaconate copolymer was not introduced into the core layer monomer, the shell layer monomer, and the intermediate layer monomer, and the remaining steps were identical.
The specific variables are:
in the step (1): the core layer monomer consists of acrylate monomers; the emulsifier in the core layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water is 25 wt% of the amount of the core layer monomer.
The intermediate layer monomer consists of an acrylate monomer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1; the emulsifier in the middle layer pre-emulsion is 2 wt% of the core layer monomer; the deionized water is 25 wt% of the amount of the core layer monomer.
The shell layer monomer consists of an acrylate monomer, methacrylic acid and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 2; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer.
Comparative example 6: comparative example 6 comparative example 2 was used as a control, and comparative example 6 did not incorporate an interlayer, and the remaining steps were identical.
The specific variables are:
in the step (1): the core layer monomer consists of an acrylate monomer and a dibutyl itaconate copolymer; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the core layer monomer is 9: 2; the emulsifier in the core layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
the shell layer monomer consists of an acrylate monomer, methacrylic acid, dibutyl itaconate copolymer and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 1: 2; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer;
in the step (2): and (3) dropwise adding the nuclear layer pre-emulsion and 1/3-amount initiator into the pre-emulsion at 85 ℃, carrying out heat preservation reaction for 30min, dropwise adding the shell layer pre-emulsion and the rest initiator, continuing to carry out heat preservation reaction for 1.2h, cooling, and adding ammonia water to adjust the pH value to 7 to obtain the adhesive. The initiator accounts for 2.5 wt% of the total amount of the shell layer monomer and the core layer monomer. The mass ratio of the core layer monomer to the shell layer monomer is 4: 3.
comparative example 7: comparative example 7 example 2 was used as a control, and comparative example 7 was carried out in which dibutyl itaconate copolymer was replaced with dibutyl itaconate, and the remaining steps were identical.
The specific variables are:
in the step (1): the core layer monomer consists of an acrylate monomer and dibutyl itaconate; the mass ratio of the acrylate monomer to the dibutyl itaconate in the core layer monomer is 9: 2; the emulsifier in the core layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the amount of the core layer monomer;
the middle layer monomer consists of an acrylate monomer, dibutyl itaconate and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate to the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1: 1; the emulsifier in the middle layer pre-emulsion is 2 wt% of the core layer monomer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
the shell layer monomer consists of an acrylate monomer, methacrylic acid, dibutyl itaconate and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the dibutyl itaconate to the fluorine-containing vinyl silane in the shell layer monomer is 9: 1: 2; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the core layer monomer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer.
Comparative example 8: comparative example 8 example 2 was used as a control, and comparative example 8 was carried out in which dibutyl itaconate copolymer was replaced with N-vinylcarbazole, and the remaining steps were identical.
The specific variables are:
in the step (1): the core layer monomer consists of an acrylate monomer and N-vinyl carbazole; the mass ratio of the acrylate monomer to the N-vinyl carbazole in the core layer monomer is 9: 2; the emulsifier in the core layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
the intermediate layer monomer consists of an acrylate monomer, N-vinyl carbazole and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer, the N-vinyl carbazole and the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1: 1; the emulsifier in the middle layer pre-emulsion is 2 wt% of the core layer monomer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer;
the shell layer monomer consists of an acrylate monomer, methacrylic acid, N-vinyl carbazole and fluorine-containing vinyl silane; the mass ratio of the acrylate monomer to the N-vinyl carbazole to the fluorine-containing vinyl silane in the shell monomer is 9: 1: 2; the emulsifier in the shell layer pre-emulsion accounts for 2 wt% of the monomer amount of the core layer; the deionized water accounts for 25 wt% of the monomer amount of the nuclear layer; the methacrylic acid accounts for 8 wt% of the monomer amount of the shell layer;
detection experiment:
1. the adhesive prepared in the examples 1-3 and the comparative examples 1-8 is used for detecting 180-degree peel strength according to the GB/T2792-2014 standard, during the test, the adhesive is coated on the surface of a PI film with the width of 25mm and the length of 150mm to prepare a sample, the sample is placed in a 100 ℃ oven to be dried for 10min, the sample is taken out and cooled, the sample is adhered to a tinplate, the rolling is uniform, and the 180-degree peel strength (N/25mm) is tested at the test speed of 300 mm/min.
2. The adhesive prepared in the examples 1-3 and the comparative examples 1-8 is dried at room temperature to form a film, weighed and recorded, then soaked in deionized water for 48 hours, taken out, sucked by filter paper to remove water, weighed again, and the water absorption rate is calculated and recorded.
3. Oil resistance: the adhesive prepared in the examples 1-3 and the comparative examples 1-8 is dried at room temperature to form a film, the film is soaked in engine oil for 48 hours, the film is taken out and wiped to dry the engine oil on the surface, and the weight is weighed and the oil absorption rate is calculated.
4. The initial adhesion (N/25mm) was determined according to GB/T4852-.
5. Taking a GB/T2792-2014 standard preparation sample, standing for 20min at room temperature, then placing in an oven at 170 ℃ for processing for 1h, cooling, slowly peeling, and observing whether the surface of an adherend has an adhesive residue phenomenon.
Item Water absorption% Initial adhesion N/25mm Peel strength N/25mm Oil absorption rate 170℃;1h
Example 1 3.15% 5.24 16.7 4.28% No adhesive residue
Example 2 2.97% 5.37 16.9 4.13% No adhesive residue
Example 3 3.01% 5.28 16.3 4.19% No adhesive residue
Comparative example 1 4.53% / 15.1 6.52% /
Comparative example 2 4.32% / 15.2 6.38% /
Comparative example 3 9.16% / 16.4 11.21% /
Comparative example 4 10.71% / 17.6 12.54% /
Comparative example 5 8.58% / 13.8 10.63% /
Comparative example 6 6.52% / 14.2 8.27% /
Comparative example 7 4.87% / 14.9 6.89% /
Comparative example 8 5.63% / 14.6 7.65% /
And (4) conclusion: the invention discloses an oil-resistant acrylic adhesive and a preparation method thereof, and the prepared acrylic adhesive with a nuclear layer-intermediate layer-shell layer composite structure has excellent high-temperature resistance, excellent water resistance and oil resistance, insolubility in soaking machine oil for 48 hours, no obvious change in appearance, good chemical corrosion resistance and high practicability.
Finally, it should be noted that: although the present invention has been described in detail with reference to the foregoing embodiments, it will be apparent to those skilled in the art that changes may be made in the embodiments and/or equivalents thereof without departing from the spirit and scope of the invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (10)

1. The preparation method of the oil-resistant acrylic acid adhesive is characterized by comprising the following steps: the method comprises the following steps:
(1) taking an emulsifier, deionized water and a core layer monomer, and pre-emulsifying to obtain a core layer pre-emulsion; the core layer monomer consists of an acrylate monomer and a dibutyl itaconate copolymer;
pre-emulsifying an emulsifier, deionized water and an intermediate layer monomer to obtain an intermediate layer pre-emulsion; the middle layer monomer consists of an acrylate monomer, a dibutyl itaconate copolymer and fluorine-containing vinyl silane;
pre-emulsifying an emulsifier, deionized water and a shell monomer to obtain a shell pre-emulsion; the shell layer monomer consists of an acrylate monomer, methacrylic acid, dibutyl itaconate copolymer and fluorine-containing vinyl silane;
(2) taking an emulsifier and deionized water, and uniformly mixing to obtain a pre-emulsion;
taking the pre-emulsion, dropwise adding the core layer pre-emulsion and 1/4 initiator at 80-85 ℃, reacting for 30-40 min under heat preservation, dropwise adding the middle layer pre-emulsion and 1/4 initiator, reacting for 30-40 min under heat preservation at 80-85 ℃, finally dropwise adding the shell layer pre-emulsion and the rest initiator, continuing reacting for 1-1.2 h under heat preservation, cooling, adding ammonia water, and adjusting the pH value to 7-8 to obtain the adhesive.
2. The method for preparing the oil-resistant acrylic adhesive according to claim 1, wherein the method comprises the following steps: the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer in the core layer monomer is 9: 2; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the intermediate layer monomer is 9: 1: 1; the mass ratio of the acrylate monomer to the dibutyl itaconate copolymer to the fluorine-containing vinyl silane in the shell layer monomer is 9: 1: 2; the methacrylic acid accounts for 8-10 wt% of the monomer amount of the shell layer.
3. The method for preparing the oil-resistant acrylic adhesive according to claim 1, wherein the method comprises the following steps: in the step (1), the dibutyl itaconate copolymer is prepared by the following steps:
s1: mixing and stirring hydroxyethyl carbazole, p-toluenesulfonic acid and hydroquinone for 10-20 min, heating to 85-95 ℃, adding methacrylic acid, heating to 110-120 ℃, reacting for 10-11 h, washing after reaction, separating, and distilling under reduced pressure to obtain ethyl carbazole methacrylate;
s2: mixing and stirring ethyl carbazole methacrylate, dibutyl itaconate, N-vinyl carbazole and toluene uniformly, adding azobisisobutyronitrile, reacting for 20-24 hours in a nitrogen environment at the reaction temperature of 65-70 ℃, precipitating methanol after reaction, filtering and collecting a product, and drying in vacuum to obtain the dibutyl itaconate copolymer.
4. The method for preparing the oil-resistant acrylic adhesive according to claim 3, wherein the method comprises the following steps: in step S2, the mass ratio of ethyl carbazole methacrylate, dibutyl itaconate, and N-vinylcarbazole is 2: 3: 1; the amount of the azodiisobutyronitrile is 2-2.5 wt% of the amount of the dibutyl itaconate copolymer.
5. The method for preparing the oil-resistant acrylic adhesive according to claim 1, wherein the method comprises the following steps: in the step (1), the preparation of the fluorine-containing vinyl silane comprises the following steps: taking magnesium powder, methyltriethoxysilane, iodine and tetrahydrofuran, uniformly mixing, heating to 65-70 ℃ in a nitrogen environment, dropwise adding 4- (trifluorovinyl ether) bromobenzene, stirring for reacting for 20-24 h, cooling, removing tetrahydrofuran, and collecting a product to obtain the fluorine-containing vinyl silane.
6. The method for preparing the oil-resistant acrylic adhesive according to claim 5, wherein the method comprises the following steps: the molar ratio of the methyl triethoxysilane to the 4- (trifluorovinyl ether) bromobenzene is 4: 3.
7. the method for preparing the oil-resistant acrylic adhesive according to claim 1, wherein the method comprises the following steps: in the step (1), the mass ratio of the core layer monomer to the intermediate layer monomer to the shell layer monomer is 4: 3: 3; the acrylate monomer comprises methyl methacrylate, butyl acrylate and caprolactone acrylate, wherein the weight ratio of the methyl methacrylate to the butyl acrylate to the caprolactone acrylate is 5: 2: 2.
8. the method for preparing the oil-resistant acrylic adhesive according to claim 1, wherein the method comprises the following steps: in the step (2), the amount of the emulsifier is 2-3 wt% of the total amount of the shell monomers; the initiator accounts for 2-3 wt% of the total amount of the shell layer monomer, the core layer monomer and the middle layer monomer.
9. The method for preparing the oil-resistant acrylic adhesive according to claim 1, wherein the method comprises the following steps: the emulsifier comprises sodium dodecyl benzene sulfonate and alkylphenol polyoxyethylene, wherein the mass ratio of the sodium dodecyl benzene sulfonate to the alkylphenol polyoxyethylene is 1: 2.
10. the adhesive prepared by the preparation method of the oil-resistant acrylic adhesive according to any one of claims 1 to 9.
CN202210377305.9A 2022-04-11 2022-04-11 Oil-resistant acrylic acid adhesive and preparation method thereof Active CN114671984B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210377305.9A CN114671984B (en) 2022-04-11 2022-04-11 Oil-resistant acrylic acid adhesive and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210377305.9A CN114671984B (en) 2022-04-11 2022-04-11 Oil-resistant acrylic acid adhesive and preparation method thereof

Publications (2)

Publication Number Publication Date
CN114671984A true CN114671984A (en) 2022-06-28
CN114671984B CN114671984B (en) 2022-11-15

Family

ID=82078543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210377305.9A Active CN114671984B (en) 2022-04-11 2022-04-11 Oil-resistant acrylic acid adhesive and preparation method thereof

Country Status (1)

Country Link
CN (1) CN114671984B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625006A (en) * 1982-07-23 1986-11-25 Dynamit Nobel Aktiengesellschaft Adhesivizing agent copolymers containing both acrylate or methacrylate groups and alkoxysilyl groups
US5534579A (en) * 1991-11-18 1996-07-09 Nippon Shokubai Co., Ltd. Highly weather-resistant, single package, crosslinkable emulsion
CN102206299A (en) * 2010-03-30 2011-10-05 大金工业株式会社 Aqueous dispersoid of fluorine-containing seed polymer particles and aqueous coating combination
CN105367703A (en) * 2014-08-27 2016-03-02 齐鲁工业大学 Three-layer core-shell structure epoxy modified acrylate emulsion
CN113402674A (en) * 2021-06-30 2021-09-17 山西省应用化学研究所(有限公司) Aqueous medium for wallpaper printing and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625006A (en) * 1982-07-23 1986-11-25 Dynamit Nobel Aktiengesellschaft Adhesivizing agent copolymers containing both acrylate or methacrylate groups and alkoxysilyl groups
US5534579A (en) * 1991-11-18 1996-07-09 Nippon Shokubai Co., Ltd. Highly weather-resistant, single package, crosslinkable emulsion
CN102206299A (en) * 2010-03-30 2011-10-05 大金工业株式会社 Aqueous dispersoid of fluorine-containing seed polymer particles and aqueous coating combination
CN105367703A (en) * 2014-08-27 2016-03-02 齐鲁工业大学 Three-layer core-shell structure epoxy modified acrylate emulsion
CN113402674A (en) * 2021-06-30 2021-09-17 山西省应用化学研究所(有限公司) Aqueous medium for wallpaper printing and preparation method thereof

Also Published As

Publication number Publication date
CN114671984B (en) 2022-11-15

Similar Documents

Publication Publication Date Title
CA1230443A (en) Process for the preparation of an aqueous copolymer dispersion and the use of the dispersion
CN101348595B (en) Fluorine-silicon modified self-crosslinking acrylic ester emulsion preparation method
CN102533177B (en) High water resistance emulsion polyacrylate pressure-sensitive adhesive and preparation method and application thereof
CN101121771A (en) Acryloxyalkoxysilicane modified acrylic acid ester polymerization emulsion and its preparation method and application
CN102167773B (en) Acrylic acid emulsion and functional acrylic acid emulsion for unshadowed protective film
US20160122597A1 (en) Preparation of pressure sensitive adhesive dispersions from multi-stage emulsion polymerization for applications of protective films
CN108359050B (en) Preparation method of modified styrene-butadiene latex with core-shell structure
CN111454402B (en) Acrylate emulsion leather finishing agent and preparation method thereof
CN110627950A (en) Aqueous fluorine modified acrylic emulsion and preparation method and application thereof
CN104140733A (en) Low-temperature cureable coating composition and article having cured coating thereof
CN109369839B (en) Self-crosslinking vinyl chloride copolymer emulsion and preparation method thereof
CN111234727A (en) Waterborne environmental protection acrylic emulsion pressure sensitive adhesive protection film
CN101445574B (en) Core-shell polymer emulsion for manufacturing re-dispersible latex powder, and preparation method thereof
CN114671984B (en) Oil-resistant acrylic acid adhesive and preparation method thereof
CN112851882B (en) Preparation method of epoxy resin modified styrene-acrylic emulsion for plastic ink
CN111748301A (en) Low-temperature-resistant acrylic coating adhesive and preparation method and application thereof
CN107849418A (en) Include the hot-melt adhesive of poly- (methyl) acrylate prepared by (methyl) alkyl acrylate and (methyl) acrylate containing heterocyclic group determined
CN115124657A (en) Acrylate emulsion with core-shell structure and preparation method thereof
CN115287014A (en) Water-based acrylate pressure-sensitive adhesive for protective film and preparation method thereof
CN113637433A (en) Water-based acrylate pressure-sensitive adhesive and application thereof
US9034938B2 (en) Photoreactive polymer
CN1205293C (en) Pressure-sensitive adhesive agent with improved stripping strength and adhesiveness
CN114605943B (en) Recyclable adhesive lost when heated
CN111040086A (en) Multilayer core-shell structure acrylic resin and preparation method thereof
CN110760029A (en) Preparation method of polymer for bridging layer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant