CN114615930A - 用于测量身体中的刺激的感测单元 - Google Patents

用于测量身体中的刺激的感测单元 Download PDF

Info

Publication number
CN114615930A
CN114615930A CN202080075844.6A CN202080075844A CN114615930A CN 114615930 A CN114615930 A CN 114615930A CN 202080075844 A CN202080075844 A CN 202080075844A CN 114615930 A CN114615930 A CN 114615930A
Authority
CN
China
Prior art keywords
voltage
signal
variable impedance
transmission line
sensing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080075844.6A
Other languages
English (en)
Inventor
C·G·维塞
G·J·N·都德曼
M·P·P·克雷吉嫩
J·范佩尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of CN114615930A publication Critical patent/CN114615930A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6851Guide wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/181Circuits; Control arrangements or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/066Superposing sensor position on an image of the patient, e.g. obtained by ultrasound or x-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种用于在身体中使用的感测单元包括可变阻抗电路,所述可变阻抗电路用于连接到传输线的远端并反射从所述传输线接收的载波信号。可变阻抗电路包括具有随施加的电压非线性变化的阻抗的可变阻抗部件、用于响应于刺激而生成电压的传感器以及用于为可变阻抗部件创建电压偏置的电压偏置***。所述电压偏置设置可变阻抗元件的操作点,使得来自传感器的电压变化非线性地改变可变阻抗元件的阻抗。

Description

用于测量身体中的刺激的感测单元
技术领域
本发明涉及一种用于测量身体中的刺激的传感器电路和用于操作该传感器电路的方法,并且更具体地涉及身体中的偏置传感器电路的领域。
背景技术
诸如导丝的微创体内流程可能难以引导,因为它们不能被直接观察到。
获得针端部的成像信息的一种已知方式是使用针端部处的超声PVDF(聚偏二氟乙烯或聚偏二氟乙烯)传感器来使针端部可视化。该传感器作为箔厚片的部分被附接到针上。
PVDF传感器信号读出是通过与沿针头延伸的细金属线和连接器的近侧的电流连接互连来完成的。虽然传感器信号很小,但通过适当设计读出电路(例如差分电荷放大器)和屏蔽,可以获得良好的信噪比(SNR)。提高SNR的一种解决方案是使用锆钛酸铅(PZT)传感器,其生成更高的信号。
当针对导丝使用时,会出现上述解决方案的问题。通过导丝的长线复杂且昂贵。增加的长度能够由于电容和电阻率的增加而导致信号劣化,这对SNR具有负面影响。信号完整性会进一步受到电磁干扰的影响。通过导丝的长线在生产中复杂并且导致额外的成本。用于与***进行电连接的连接器也是一个相对昂贵的部件,并且阻碍了临床工作流程。
在WO 2018/162361中,公开了一种所谓的单线RF谐振器概念以改善这种情况。在这里,变容二极管和PVDF传感器是谐振电路的一部分。在谐振模式下,变容二极管上的电压增加,导致更深的调制和更好的SNR。读出通过使用单条导丝来完成。缺点包括这样的谐振器的固定频率和尺寸。这些尺寸使得集成到导丝中是复杂的。
WO 2018/162285公开了一种基于导丝的感测***,其中第一和第二频率分量被传送到传感器,并且传感器的非线性元件生成互调制产物。
因此,需要一种可以容易地与导丝集成的感测单元,它在与长导丝集成时提供良好的SNR并且可以测量各种频率。
发明内容
本发明由权利要求所定义。
根据根据本发明一方面的示例,提供了一种用于在身体中使用的感测单元,包括用于连接到传输线的远端的可变阻抗电路,用于反射从传输线接收的信号,其中,所述可变阻抗电路包括:
可变阻抗元件,其阻抗随施加的电压非线性地变化;
传感器,其用于响应于刺激而生成电压,用于施加到所述可变阻抗部件,从而改变所述可变阻抗部件的阻抗;以及
电压偏置***,其用于为所述可变阻抗部件创建偏置电压,以用于设置所述可变阻抗部件的电压操作点。
所述单元通过反射从传输线接收的信号来操作。所述信号从所述可变阻抗电路反射,其幅值取决于所述可变阻抗电路的阻抗。然后可以通过外部检测器检测到该反射。所述可变阻抗部件具有在电压被施加时以非线性方式变化的阻抗。例如,当更高的电压施被加时,阻抗的差分变化更大。刺激创建对阻抗进行调制的电压。所述电压偏置***在电路中创建电压偏置,并且由此设置电路的操作点,使得所述可变阻抗部件的阻抗由激励而引起较大的变化,从而提高信噪比。
所述电压偏置***例如用于从载波信号创建DC偏置电压以施加到所述可变阻抗部件。
所述可变阻抗部件、所述传感器和所述电压偏置***可以并联连接。
所述可变阻抗部件可以包括二极管,并且所述电压偏置***可以包括用于根据从传输线接收的信号来生成的DC电压的DC电压采集器。二极管可以被用作所述可变阻抗部件,因为它们的阻抗会随着恰在导带之前的施加电压而急剧变化。
DC电压可能低于二极管的阈值电压。
刺激可以是超声信号,并且传感器可以是用于检测超声信号的压电材料。例如,这可以用于在介入流程期间使用超声成像场对介入工具进行位置检测。
刺激可以替代地是电磁场并且传感器可以用于检测电磁场。电磁场可以例如包括微波、无线电波、红外光、可见光、紫外光或X射线。
相反,刺激可以是由身体生成的生理信号。范例是温度或压力。因此,感测单元可用于体内监测或可用于位置检测。
本发明还提供了一种传感器***,包括:
传输线,其具有近端和远端;
感测单元,其在所述传输线的所述远端处;
信号生成器,基在所述传输线的近端处;以及
信号检测器,其用于检测来自所述可变阻抗电路的反射信号。所述信号检测器例如被电容耦合到所述传输线。
所述传输线可以是导丝。例如,如果要在身体内测量传感器对刺激的响应,则可以将所述感测***连接到所述导丝的端部,并且将所述导丝用作所述传输线。在该示例中,导丝上不需要其他设备来传输信号,从而降低了测量的复杂性。
本发明还提供了一种传感器***,包括:
传输线,其具有近端和远端;
感测单元,其在所述传输线的所述远端处;
信号生成器,基在所述传输线的近端处;以及
信号检测器,其用于检测来自所述可变阻抗电路的反射信号;
用于生成具有已知定时的刺激的外部信号生成器;以及
位置检测***,其用于基于所述刺激的定时和检测到的反射信号的定时来检所述测感测单元的位置。
所述外部信号生成器可以是超声探头。
本发明还提供了一种用于感测身体内的刺激的方法,包括:
在传输线远端的传感器单元处接收信号;
针对具有随施加电压非线性地变化的阻抗的可变阻抗元件创建偏置电压,从而设置所述可变阻抗元件的电压操作点;
接收要在所述传感器单元处感测的刺激;
使用所述传感器单元来响应于所述刺激而生成电压;
将所生成的电压应用于所述可变阻抗部件,从而改变所述可变阻抗部件的阻抗;
在所述可变阻抗部件处反射从所述传输线接收的信号;并且
检测被反射的信号。
所述刺激可以是由所述身体生成的信号(例如温度或压力),或者它可以是递送到身体的刺激,例如成像场。
创建偏置电压可以包括从从所述传输线接收的所述信号采集DC电压。
本发明还提供了一种检测所述感测单元的位置的方法,包括:
生成具有已知定时的刺激;并且
基于所述刺激的定时和检测到的反射信号的定时来检测所述感测单元的位置。
本发明还提供了一种包括代码单元的计算机程序,当所述程序在处理***上运行时,所述代码单元用于实现所述刺激的生成和对所述感测单元的位置的检测。
参考下文描述的(一个或多个)实施例,本发明的这些和其他方面将变得显而易见并得以阐述。
附图说明
为了更好地理解本发明,并且更清楚地示出其如何被付诸实践,现在将仅通过示例的方式参考附图,其中,
图1示出了感测单元的示意表示;
图2A和图2B示出了针对连接到导丝的感测单元的两个可能的电路图,包括二极管和直流电压采集器;
图3A、图3B和图3C示出了展示二极管的电容如何随偏置电压变化的曲线图;
图4A和图4B是表示通过传输线传输前后的反射信号的曲线图;
图5A和图5B示出了导丝,其中,在导丝的远端处的感测单元在身体中的管腔内,并且外部信号生成器在体之外;
图6A和图6B示出了具有用于发现血管内局部压力变化的感测单元的导丝;
图7A和图7B示出了用于确定针在体内的深度的探头;
图8A和图8B示出了概念验证测试的电路和示意图;并且
图9A、图9B和图9C示示了概念验证测试结果的曲线图。
具体实施方式
将参考附图来描述本发明。
应当理解,详细说明和具体示例虽然指示了设备、***和方法的示例性实施例,但是仅旨在用于说明的目的,而并不旨在限制本发明的范围。根据以下说明、所附权利要求书和附图,将更好地理解本发明的设备、***和方法的这些和其他特征、方面和优点。应该理解,附图仅是示意性的,并且未按比例绘制。还应该理解,贯穿附图,使用相同的附图标记来表示相同或相似的部分。
本发明提供了一种用于在身体中使用的感测单元包括可变阻抗电路,所述可变阻抗电路用于连接到传输线的远端并反射从所述传输线接收的载波信号。可变阻抗电路包括具有随施加的电压非线性变化的阻抗的可变阻抗部件、用于响应于刺激而生成电压的传感器和用于为可变阻抗部件创建电压偏置的电压偏置***。所述电压偏置设置可变阻抗元件的操作点,使得来自传感器的电压变化非线性地改变可变阻抗元件的阻抗。
图1示出了感测单元100的示意表示。它包括可变阻抗部件104、传感器106和电压偏置***108。存在通过传输线102传送的载波信号,所述载波信号将部分地或完全地从感测单元100被反射。当传感器106遇到刺激时,其创建电荷,电荷创建电压差。电压偏置***108也创建电压差。电压差的组合是施加到可变阻抗部件104的总电压。
特别地,传感器106在偏置***108施加在其上的电压下工作,并且它产生叠加在该工作电压上的信号。例如,其生成电荷,所述电荷被存储在可变阻抗部件的自电容上,从而改变可变阻抗部件两端的电压,从而改变阻抗。
然后施加的电压改变部件104的阻抗,其继而改变感测单元100的反射系数。
图2A和图2B示出了针对附接到传输线102的感测单元的电路图的示例,包括可变阻抗部件104,例如二极管,和电压偏置***108,在该示例中为DC电压采集器。DC电压采集器108从载波信号中采集DC偏置电压。电压采集器汲取小电流并且将二极管104偏置到接近导通。载波信号由传输线102从RF载波信号源202传输。传感器106、二极管104和DC电压采集器108在传输线102的远端并联连接。
DC电压采集器108产生DC电压,而传感器106产生AC电压。来自传感器106的AC信号被叠加在DC信号上。
图2A示出了具有单个采集二极管203的DC电压采集器108。电压采集器电路是所谓的维拉德电路。在采集二极管203上出现DC电压,作为电荷存储在与采集二极管并联的电容器205中。经由电阻器201,该直流电压被耦合到二极管104。
图2B示出了所谓的格雷纳彻(Greinacher)电路。DC电压采集器电路在没有负载电流的情况下提供电压,因为二极管104不导通。格雷纳彻电路在采集器底部为水平电容器205充电。垂直电阻器201将二极管104充电至直流电压,直到出现电导。DC电压采集器108电路具有去耦电容器209以从载波信号中去除任何DC信号。采集器二极管203a和203b对AC信号进行整流以对输出电容器205充电,从而创建DC偏置电压。高欧姆电阻器201被用于减少流向可变阻抗部件104的电流,确保输出电容器205不立即放电。
这些和其他电压采集电路对于本领域技术人员来说是已知的。
超声传感器可以用作传感器106,并且被定位在传输线102的远端作为介入设备的一部分。该超声传感器106通常是压电材料。传感器材料为PVDF(聚偏二氟乙烯或聚偏二氟乙烯,氟聚合物材料)和PZT(锆钛酸铅,无机材料)等压电材料。
通过经由调制的反向散射来调制载波信号,即反射载波信号,在传输线102上传输信号。反向散射调制由波反射位置的可变电容执行。可变阻抗部件104可以是二极管,其被定位于压电材料处或附近,并与超声传感器106电连接。添加二极管104是因为其电压相关的电容特性。偏置提高了由感测单元100进行的幅度调制的深度。
然后可以使用检测器204来读取来自感测单元100的反射信号。由于检测器204将读取载波信号和反射信号,因此需要对检测信号进行一些处理以仅读取反射信号。这可以通过应用与信号生成器202和检测器204额外耦合的高级同步检测器来完成,使得检测器204知道来自信号生成器202的信号并且可以从它检测到的整体信号中减去它。相减可以由处理器完成。检测器204可以包括电流连接器以检测信号。
该载波信号可以具有较宽的频率范围。对于不同的频率,不同的传输线102可以具有不同的特性,例如衰减和信号速度。载波信号也可以是许多信号类型中的一种,例如重复脉冲、正弦波、方波及其任意组合。可以动态选择载波信号频率和类型以获得最佳性能。
图3A、图3B和图3C示出了展示二极管104的电容如何随偏置电压变化的曲线图。
图3A示出了作为偏置电压的函数的电容。
当刺激110到达传感器106时,电荷被生成并且传感器106充当幅值小于二极管阈值电压的电压源。该电压峰值被馈送到二极管104,导致电容的短持续时间的变化。电容的变化取决于电压峰值的大小和二极管104的特性。
在图3B中,没有偏置电压,并且接收到的信号是0V处的波动。由于来自传感器106的电压峰值非常小,因而电容的变化(dC/dV)相对较小,导致反射信号302具有小的幅值和较差的SNR。
在WO2018/162361中公开了一种所谓的单线RF谐振器概念以改善这种情况。这里二极管104和传感器106是谐振电路的部分。在谐振模式下,二极管上的电压增加,导致更深的调制和更好的SNR。这仅适用于电路针对其被构建的选定谐振频率。
最近的一个见解表明,当在阈值电压附近(在其处二极管104开始导通)施加偏压时,二极管电容曲线的陡峭度会大大增加。在图3A中,dC/dV陡峭度在二极管104开始导通的>0.4伏的偏置电压下显著增加。
图3C显示了当施加550mV的偏压时,二极管104上的电压的微小变化如何在曲线的陡峭部分生成大得多的反射信号302。这导致增加的调制深度和反射信号302的更大幅值,其导致更好的SNR。
二极管104的操作点被推向阈值电压的方向,而不是被推向导通。<50μA的小的泄漏电流是可以接受的,并且有助于与高欧姆电压源保持平衡。
图4A和图4B是示出在通过传输线102传输之前和之后的典型反射信号302的曲线图。从图4A中可以看出,在通过传输线102传输之前直接形成感测单元100的反射信号302相对没有电噪声。然而,图4B显示反射信号302在由传输线102承载、由检测器204解调并放大以补偿传输损耗之后确实具有相对大量的电噪声。这可能是由于许多因素造成的,包括传输线102中的热噪声和来自附近电子元件的电磁干扰。电噪声使得检测幅值较小的信号变得困难,降低了信号与噪声的区分精度。传输线102还衰减信号(随长度减小幅度)并且取决于传输线102的长度和电特性。如图4B中可见,反射信号302的峰值具有小于反射信号302已经行进穿过传输线102之前的峰值的值,如图4A中所示。因此,为了更好的SNR,需要具有较大幅值的反射信号302。由于电压偏置***108允许可变阻抗部件104的阻抗发生更大的变化,这是可以实现的。
图5A和图5B示出了导丝502,其中感测单元100在导丝502的远端,在身体中的管腔内,以及诸如探头的外部信号生成器504在身体之外。
载波信号被馈送到充当传输线102的导丝502。由于导丝502被用作传输线102,因此不需要通过介入设备的导线。由于感测单元100的阻抗与导丝502的阻抗不匹配,所以至少部分载波信号被反射。
当感测单元100中的传感器106从探头504接收到刺激110时,由于可变阻抗部件104,它产生改变感测单元100的阻抗的小电荷。感测单元100的阻抗的这种变化导致反射信号302幅值的变化。反射的变化生成幅值调制边带。可以通过检测器204中的处理器将在导丝502的近端处的反射信号302与载波信号区分开来。反射信号302包含关于由传感器106创建的信号的信息。传感器信号被转换为反向散射相位调制信号,它对信号衰减和干扰不太敏感。
例如,刺激110可以是脉冲场,其中脉冲场的特性使得脉冲具有足够短的持续时间以允许识别定义的测量时间。脉冲可以有规律地重复,其中脉冲重复率允许在短时间内进行多次测量。
脉冲场可以是声脉冲,例如超声脉冲,或电磁脉冲,例如X射线脉冲。
提供感测单元100以对具有已知定时特性(即,脉冲定时已知)的刺激110进行响应,以便调制导丝502中的信号,并因此将定时信息“编码”到反射信号302中。
感测单元100并且因此导丝502的远端与探头504之间的距离d,可以根据发射的刺激110与在检测器204处测量的反射信号302之间的时间差以及来自刺激110穿过身体的速度的信息来计算。被发射的刺激110与反映载波信号的感测单元100之间的时间差是刺激110行进距离d所用的时间。如果已知刺激110穿过身体的速度,则可以计算距离d。由于不知道载波信号何时被反射的定时信息,因此可能还需要知道反射信号302从感测单元100穿过导丝502传输到检测器204需要多长时间。然后从被发射的刺激110和被检测到的反射信号302的时间差中减去该时间,以便获得刺激110行进穿过身体的准确时间。
反射信号从感测单元100传播到检测器204的时间可以通过对不同载波信号频率的导丝502进行预校准来获得。仅当刺激110行进穿过身体的时间与反射信号302从感测单元100行进到检测器204并被处理的时间具有相似的量级时,这才是必需的。
也可以在导丝502上包括许多感测单元100,同时感测不同的刺激110,例如不同频率的超声,或不同的刺激110类型,例如超声和电磁波。这可以通过在载波信号中具有各种频率并且准备感测单元100使得每个感测单元100反映不同的频率或频率的集合来实现。以此方式,反射信号302可以按频率或频率的集合分开,而来自各感测单元100的信号可以被分别处理。感测单元可以放置在导丝上不同的已知距离处。
图6A和图6B示出了具有感测单元100的导丝502,感测单元100用于发现血管内局部压力的变化。在这种情况下,感测单元100可以被准备为感测局部血压。如果局部血压突然变化,则可能指示血管局部阻塞。
还可以具有感测单元100,其给出其他体内生理信号,例如温度、心率或氧气水平。也可以在导丝502上包括许多感测单元100,一次感测不同的生理信号。
图7A和图7B示出了探头504被用来发现针702在体内的深度。感测单元100可以被集成到针702的远端中,以便找到针尖702在身体中的深度。超声探头504发射行进穿过身体的超声声波。当针702上的感测单元100感测超声时,它反射行进穿过针702或针702中的线的载波。然后可以在针702的近端测量反射波302。在探头504发射超声和被反射的载波之间所花费的时间是超声已经行进穿过身体的时间。利用超声在人体中传播速度的知识,可以找到探头504与感测单元100之间的距离,因此我们可以知道针702在体内的深度。
图8A和图8B示出了概念验证测试的电路和示意图。进行了一些初步测试来展示偏置二极管的概念。对于该展示,可变阻抗部件104是变容二极管,并且由外部电压源108(常规实验室电源)偏置。偏置线被屏蔽以避免外部信号拾取。使用了743MHz的射频载波。
图8A示出了电路,所述电路用于显示当施加偏压时来自二极管104的反射信号302的幅度更大。在图8B中,感测单元100被放置在水盆中并且超声脉冲110传输通过水。
图9A、图9B和图9C示示了概念验证测试结果的曲线图。图9A示出了当没有施加电流偏置时的反射信号302。图9B示出了反射信号302即使在施加<1μA的偏置电流时也具有较大的幅值,并且图9C示出了具有40μA的偏置电流的反射信号302的更加大的幅值。尽管没有表征设置的噪声链并且遇到了来自偏置电源108的显著噪声贡献,但是这些结果清楚地展示了使用偏置对SNR的积极影响。
变容二极管可以用作可变阻抗部件104。也可以使用任何接近其导带工作的二极管(例如肖特基、结、变容二极管和其他二极管类型)。可以选择二极管以获得最佳的结电容和高频特性。
感测单元100的部件可以被集成在专用集成电路(ASIC)中。ASIC将使感测单元100与导丝502的集成相对简单。
也可以将此概念与无线供电和信号读出相组合。不需要电流连接器并且反射信号302的读出可以通过电容耦合器来完成。无线供电和读出可以简化***的使用,因为它避免了在***的近端(***受控的地方)具有部件。
将考虑各种因素来选择RF生成器202的RF频率。因为传输线(例如导丝)在导丝上的RF生成器202的位置处不具有恒定且明确定义的阻抗,所以在RF生成器202的固定阻抗和导丝阻抗之间将存在失配。此时的导丝阻抗取决于RF频率等。
导丝通常用于引导导管。然而,传输线可以简单地用作传感器线,并且然后可以更一般地认为是细长线而不是导丝。
在将射频载波从射频生成器传输到导丝时,一些射频频率将提供更好的效率,而其他射频频率的效率非常低。要将适当的射频载波电平注入导丝,有多种选择。
第一种选择是使用效率高的频率。在这种情况下,可以应用频率扫描并且返回的调制信号的幅度是用于找到该最佳频率的量度。
第二种选择是使用可变阻抗变换网络,使可变导丝阻抗适应射频生成器阻抗。这被称为自动天线(阻抗)调谐器。
第三种选择是将RF生成器信号幅度增加或减少到导丝处请求的RF信号水平。在阻抗不匹配的情况下,只有一部分射频信号将被传输到导丝,另一部分将在射频生成器中耗散。
该***可以利用处理器来执行数据处理。处理器可以用软件和/或硬件以多种方式实现,以执行所需的各种功能。处理器通常采用一个或多个微处理器,可以使用软件(例如,微代码)对其进行编程,以执行所需的功能。处理器可以实现为用于执行一些功能的专用硬件与用于执行其他功能的一个或多个编程的微处理器和相关联的电路的组合。
可以在本公开的各种实施例中使用的电路的范例包括但不限于,常规微处理器,专用集成电路(ASIC)和现场可编程门阵列(FPGA)。
在各种实现方式中,处理器可以与一个或多个存储介质相关联,诸如易失性和非易失性计算机存储器,诸如RAM,PROM,EPROM和EEPROM。存储介质可以编码有一个或多个程序,所述程序当在一个或多个处理器和/或控制器上运行时执行所需的功能。各种存储介质可以固定在处理器或控制器内,或者可以是可转移的,使得存储在其上的一个或多个程序可以加载到处理器中。
本领域技术人员通过研究附图、公开内容以及权利要求书,在实践请求保护的本发明时能够理解并且实现对所公开的实施例的变型。在权利要求中,“包括”一词不排除其他元件或步骤,并且词语“一”或“一个”不排除多个。单个处理器或其他单元可以完成权利要求书中所记载的若干个项目的功能。尽管特定措施是在互不相同的从属权利要求中记载的,但是这并不指示不能有利地使用这些措施的组合。可以将计算机程序存储/分布在与其它硬件一起提供或者作为其它硬件的部分提供的诸如光存储介质或者固态介质的合适介质上,但是还可以以诸如经因特网或者其它有线或无线电信***的其它形式分布。如果在权利要求书或说明书中使用术语“适于”,则应注意,术语“适于”旨在等同于术语“被配置为”。权利要求书中的任何附图标记不应被解释为对范围的限制。

Claims (15)

1.一种用于在身体中使用的感测单元(100),包括用于连接到传输线(102)的远端的可变阻抗电路,所述可变阻抗电路用于反射从所述传输线(102)的近端接收的信号,其中,所述可变阻抗电路包括:
可变阻抗元件(104),其具有随施加的电压非线性地变化的阻抗;
传感器(106),其用于响应于刺激(110)而生成电压,用于施加到所述可变阻抗部件(104),从而改变所述可变阻抗部件(104)的阻抗;以及
电压偏置***(108),其用于根据所述信号来创建DC偏置电压以施加到所述可变阻抗部件(104)以设置所述可变阻抗部件(104)的电压操作点。
2.根据权利要求1所述的感测单元(100),其中,所述可变阻抗部件(104)、所述传感器(106)和所述电压偏置***(108)是并联连接的。
3.根据权利要求2所述的感测单元(100),其中,所述可变阻抗部件(104)包括二极管,并且所述电压偏置***(108)包括DC电压采集器,所述DC电压采集器用于根据从所述传输线(102)接收的所述信号来生成DC电压。
4.根据权利要求3所述的感测单元(100),其中,所述DC电压低于所述二极管的阈值电压。
5.根据权利要求1至4中的任一项所述的感测单元(100),其中,所述刺激(110)是超声信号,并且所述传感器(106)是用于检测所述超声信号的压电材料。
6.根据权利要求1至4中的任一项所述的感测单元(100),其中,所述刺激(110)是电磁场,并且所述传感器(106)用于检测所述电磁场。
7.根据权利要求1至4中的任一项所述的感测单元(100),其中,所述刺激(110)是由所述身体生成的生理信号。
8.一种感测***,包括:
传输线(102),其具有近端和远端;
根据权利要求1至7中的任一项所述的感测单元(100),其在所述传输线(102)的所述远端处;
信号生成器(202),其在所述传输线(102)的所述近端处;以及
信号检测器(204),其用于检测来自所述可变阻抗电路的被反射的信号(302)。
9.根据权利要求8所述的感测***,其中,所述传输线(102)是导丝(502)。
10.一种感测***,包括:
传输线(102),其具有近端和远端;
根据权利要求1至6中的任一项所述的感测单元(100),其在所述传输线(102)的所述远端处;
信号生成器(202),其在所述传输线(102)的所述近端处;以及
信号检测器(204),其用于检测来自所述可变阻抗电路的被反射的信号(302);
外部信号生成器(504),其用于生成具有已知定时的刺激(110);以及
位置检测***,其用于基于所述刺激(110)的定时和检测到的被反射的信号(302)的定时来检测所述感测单元(100)的位置。
11.根据权利要求10所述的感测***,其中,所述外部信号生成器(504)是超声探头。
12.一种感测方法,包括:
在传输线(102)的远端处的传感器单元(100)处接收信号;
针对具有随施加的电压非线性地变化的阻抗的可变阻抗元件(104)根据所述信号来创建DC偏置电压,从而用于设置所述可变阻抗元件(104)的电压操作点;
接收要在所述传感器单元(106)处被感测的刺激;
使用所述传感器单元(106)来响应于所述刺激(110)而生成电压;
将所生成的电压应用于所述可变阻抗部件(104),从而改变所述可变阻抗部件(104)的阻抗;
在所述可变阻抗部件(104)处反射从所述传输线(102)接收的信号;并且
检测被反射的信号(302)。
13.根据权利要求12所述的感测方法,其中,创建偏置电压包括从所述信号采集DC电压,所述信号是从所述传输线(102)接收的。
14.根据权利要求12或13所述的方法,包括:
生成具有已知定时的刺激(110);并且
基于所述刺激(110)的定时和检测到的被反射的信号(302)的定时来检测所述感测单元(100)的位置。
15.一种包括代码单元的计算机程序,当所述程序在处理***上运行时,所述代码单元用于实施根据权利要求14所述的方法中的所述刺激(110)的所述生成和所述感测单元(100)的所述位置的所述检测。
CN202080075844.6A 2019-10-28 2020-10-21 用于测量身体中的刺激的感测单元 Pending CN114615930A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19205586.1A EP3815606A1 (en) 2019-10-28 2019-10-28 A sensing unit for measuring stimuli in a body
EP19205586.1 2019-10-28
PCT/EP2020/079642 WO2021083767A1 (en) 2019-10-28 2020-10-21 A sensing unit for measuring stimuli in a body

Publications (1)

Publication Number Publication Date
CN114615930A true CN114615930A (zh) 2022-06-10

Family

ID=68382274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080075844.6A Pending CN114615930A (zh) 2019-10-28 2020-10-21 用于测量身体中的刺激的感测单元

Country Status (5)

Country Link
US (1) US20220409081A1 (zh)
EP (2) EP3815606A1 (zh)
JP (1) JP2022554091A (zh)
CN (1) CN114615930A (zh)
WO (1) WO2021083767A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039533A1 (ja) * 2018-08-23 2020-02-27 三菱電機株式会社 生体センサ装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836828A (en) * 1972-07-21 1974-09-17 Weldotron Corp Electronic protection and sensing apparatus
JPS6472732A (en) * 1987-09-16 1989-03-17 Mitsubishi Electric Corp Receiving probe for nmr
JPH0194834A (ja) * 1987-10-06 1989-04-13 Mitsubishi Electric Corp Nmr用高周波プローブ及びnmr信号測定方法
US20060173285A1 (en) * 2004-12-20 2006-08-03 General Electric Company Methods and systems for reducing RF-induced heating in magnetic resonance imaging
CN101414764A (zh) * 2007-10-17 2009-04-22 电力集成公司 用于减小电源中体电容所需体积的方法和装置
US20100198039A1 (en) * 2007-05-04 2010-08-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Systems and Methods for Wireless Transmission of Biopotentials
CN103424133A (zh) * 2012-05-10 2013-12-04 捷通国际有限公司 用于测量无线传感器中的可变阻抗元件的***和方法
CN105491947A (zh) * 2013-08-28 2016-04-13 Iee国际电子工程股份公司 感应呼吸传感器
WO2018162285A1 (en) * 2017-03-09 2018-09-13 Koninklijke Philips N.V. Measuring a property in a body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100277175A1 (en) * 2006-08-15 2010-11-04 Koninklijke Philips Electronics N.V. Tunable and/or detunable mr receive coil arrangements
EP3551074A1 (en) * 2016-12-12 2019-10-16 Koninklijke Philips N.V. Ultrasound guided positioning of therapeutic device
CN110418599A (zh) 2017-03-09 2019-11-05 皇家飞利浦有限公司 用于测量体内性质的传感器电路和信号分析器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836828A (en) * 1972-07-21 1974-09-17 Weldotron Corp Electronic protection and sensing apparatus
JPS6472732A (en) * 1987-09-16 1989-03-17 Mitsubishi Electric Corp Receiving probe for nmr
JPH0194834A (ja) * 1987-10-06 1989-04-13 Mitsubishi Electric Corp Nmr用高周波プローブ及びnmr信号測定方法
US20060173285A1 (en) * 2004-12-20 2006-08-03 General Electric Company Methods and systems for reducing RF-induced heating in magnetic resonance imaging
US20100198039A1 (en) * 2007-05-04 2010-08-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Systems and Methods for Wireless Transmission of Biopotentials
CN101414764A (zh) * 2007-10-17 2009-04-22 电力集成公司 用于减小电源中体电容所需体积的方法和装置
CN103424133A (zh) * 2012-05-10 2013-12-04 捷通国际有限公司 用于测量无线传感器中的可变阻抗元件的***和方法
CN105491947A (zh) * 2013-08-28 2016-04-13 Iee国际电子工程股份公司 感应呼吸传感器
WO2018162285A1 (en) * 2017-03-09 2018-09-13 Koninklijke Philips N.V. Measuring a property in a body

Also Published As

Publication number Publication date
US20220409081A1 (en) 2022-12-29
JP2022554091A (ja) 2022-12-28
EP4051103A1 (en) 2022-09-07
EP3815606A1 (en) 2021-05-05
WO2021083767A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US20120041310A1 (en) Apparatus, System and Method for Ultrasound Powered Neurotelemetry
US12023499B2 (en) Methods and systems for measuring tissue impedance and monitoring PVD treatment using neuro-implants with improved ultrasound powering
JP5525655B2 (ja) ケーブルマイクロホン効果によるリード線の動き検知
EP0774918B1 (en) Monitoring and imaging apparatus
CN102421356B (zh) 用于确定心脏的性质的装置、方法以及计算机程序
EP1803396B1 (en) Monitoring apparatus for physical movements of a body organ and method for the same
US20140062717A1 (en) Method for RFID Communication Using Inductive Orthogonal Coupling For Wireless Medical Implanted Sensors and Other Short-Range Communication Applications
EP3592209B1 (en) Measuring a property in a body
US10080624B2 (en) Powering and reading implanted devices
US20120059265A1 (en) Active Transducer Probes and Circuits
US20190105014A1 (en) Method and apparatus for positioning medical device
US6019726A (en) Catheter having probes for correcting for non-uniform rotation of a transducer located within the catheter
US20060173337A1 (en) Intravascular ultrasound probing device
US20060094937A1 (en) Monitoring apparatus of arterial pulses and method for the same
WO2013001437A1 (en) A tracking system for tracking interventional tools in ultrasound guided interventions and an ultrasound diagnostic system comprising such a tracking system
CN114615930A (zh) 用于测量身体中的刺激的感测单元
US20210128118A1 (en) Sensor circuit and a signal analyzer for measuring an in-body property
US10405746B2 (en) Wireless analog passive sensors
EP3406186A1 (en) A sensor circuit and a signal analyzer for measuring an in-body property
EP3632335A1 (en) Reducing sensor interference in a medical device
JP6498004B2 (ja) 生体信号センサ
CN109982227A (zh) 测定声学换能器最佳驱动信号的方法与***
Gulick et al. Characterization of simple wireless neurostimulators and sensors
CN110786931B (zh) 对超声影像增强显示的装置和方法
EP3788948A1 (en) Implantable electronic sensing system for measuring and monitoring medical parameters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination