CN114605151A - Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法 - Google Patents

Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法 Download PDF

Info

Publication number
CN114605151A
CN114605151A CN202210447800.2A CN202210447800A CN114605151A CN 114605151 A CN114605151 A CN 114605151A CN 202210447800 A CN202210447800 A CN 202210447800A CN 114605151 A CN114605151 A CN 114605151A
Authority
CN
China
Prior art keywords
energy storage
ceramic material
tungsten bronze
bronze structure
doped tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210447800.2A
Other languages
English (en)
Other versions
CN114605151B (zh
Inventor
杨变
孙少东
郭钰
杨曼
崔杰
张佳语
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202210447800.2A priority Critical patent/CN114605151B/zh
Publication of CN114605151A publication Critical patent/CN114605151A/zh
Application granted granted Critical
Publication of CN114605151B publication Critical patent/CN114605151B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了Gd‑Ta共掺杂钨青铜结构铁电储能陶瓷材料,该铁电储能陶瓷材料的结构式为Sr(0.53‑0.15x)Ba0.47GdxNb2‑yTayO6,其中,x的取值为0.01~0.1,y的取值为0.1~0.5。本发明还公开了其制备方法,具体为:称取BaCO3、SrCO3、Gd2O3、Nb2O5、Ta2O5,充分混合球磨,干燥后进行预烧,将预烧粉经造粒、压片、排胶后,进行烧结,即可。通过在陶瓷材料中掺杂Gd和Ta,不但获得了高储能密度,且显著提高了其储能效率,并改善了其储能性能的温度稳定性,在140℃下击穿场强可以达到400kV·cm‑1,储能密度达到85%。

Description

Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
技术领域
本发明属于陶瓷材料制备技术领域,具体涉及一种Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料,还涉及其制备方法。
背景技术
近年来,无铅压铁电材料除了研究提高压铁电性能以期替代含铅材料外,还在应变、电卡、热电、光电、发光等方面发现新的功能特性,使其受到越来越多的关注。而电介质陶瓷作为一种先进储能材料,由于其具有功率密度高(最高可达108W/kg)、工作电压高、充放电速度快和工作温度范围宽等优点,在混合动力汽车、微波通讯、脉冲功率武器、电磁弹射、脉冲功率电子器件等方面应用非常广泛。
钨青铜结构材料,由于其灵活多变的可调性,不同的离子掺杂或A位、B位离子的无序排布,可使其电学性能的调控性很大,故受到了广泛关注,但其储能性能的研究主要集中在Sr2NaNb5O15充满型结构体系,但Na元素在高温烧结过程中的挥发不利于获得致密陶瓷,而且该陶瓷体系不仅具有铁电-顺电相转变,还具有铁弹相转变,其复杂的相变过程导致高温下畴翻转和迁移产生能量耗散,降低击穿场强,限制其在储能方面的应用;因此,面对储能设备高集成化和小型化的发展,迫切需要寻求和开发具有高性能的电介质储能材料。
具有未充满型钨青铜结构的SrxBa1-xNb2O6(SBN)体系,其是SrNb2O6和BaNb2O6的固溶体,固溶范围在x=0.26~0.87,具有Sr/Ba比连续可调的特点,因此可以通过调节组分来改变电光性能,介电性能和热释电性能,使其满足在不同技术领域的需求。但该陶瓷在高温烧结时容易出现晶粒异常长大现象和液相熔融区域,很大程度地降低致密度并破坏电性能和储能性能。
发明内容
本发明的目的是提供Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料,显著提高了其储能效率和温度稳定性。
本发明所采用的技术方案是,Gd-Ta共掺杂钨青铜结构铁电储能陶瓷,该铁电储能陶瓷材料的结构式为Sr(0.53-0.15x)Ba0.47GdxNb2-yTayO6,其中,x的取值为0.01~0.1,y的取值为0.1~0.5。
优选的,x的取值为0.02、y的取值为0.2。
本发明所采用的另一技术方案是,Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料的制备方法,具体按照以下步骤实施:
步骤1,按照Sr(0.53-0.15x)Ba0.47GdxNb2-yTayO6的化学计量比分别称取纯度为99.00%以上的BaCO3、SrCO3、Gd2O3、Nb2O5、Ta2O5,充分混合球磨,干燥,得到原料混合物;
步骤2,将原料混合物进行预烧,得到预烧粉;
步骤3,将预烧粉经造粒、压片、排胶后,进行烧结,得到Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料。
本发明的特点还在于,
步骤1中,球磨时间为16~24小时;干燥温度为80~100℃,干燥时间为12~24小时。
步骤2中,预烧温度为900~1250℃,预烧时间为2~6小时。
步骤3中,具体为:将预烧粉在聚乙烯醇粘结剂作用下进行造粒、200MPa冷等静压下保持1min压片,随后以1℃/min升温至600℃排胶,并在1280~1340℃的条件下烧结2~6小时,即可得到Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料。
本发明另一目的是提供Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料的制备方法。
本发明的有益效果是:通过在Sr0.53Ba0.47Nb2O6陶瓷体系中掺杂Gd和Ta,不但获得了高储能密度,且显著提高了其储能效率,同时储能性能的温度稳定性也显著提高。
附图说明
图1是对比例1、对比例2及实施例1~4制备的陶瓷材料的XRD图。
图2是对比例1及实施例1~4制备的陶瓷材料的电滞回线图。
图3是对比例1及实施例1~4制备的陶瓷材料的室温储能性能图。
图4a是实施例2制备的陶瓷材料在不同温度下的电滞回线图;
图4b是实施例2制备的陶瓷材料的储能参数随温度变化图;
图5是对比例2制备的陶瓷材料在不同测试频率下的介电常数和介电损耗图;
图6是对比例1及实施例1~4制备的陶瓷材料在1kHz下的介电图谱;
图7是对比例1及实施例1~4制备的陶瓷材料在1kHz下的室温介电常数对比图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料,其结构式为Sr(0.53-0.15x)Ba0.47GdxNb2-yTayO6,其中,x的取值为0.01~0.1,y的取值为0.1~0.5;
优选的,x的取值为0.02、y的取值为0.2。
本发明Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料的制备方法,具体按照以下步骤实施:
步骤1,按照Sr(0.53-0.15x)Ba0.47GdxNb2-yTayO6的化学计量比分别称取纯度为99.00%以上的BaCO3、SrCO3、Gd2O3、Nb2O5、Ta2O5,充分混合球磨16~24小时,在80~100℃的条件下干燥12~24小时,得到原料混合物;
步骤2,将原料混合物在900~1250℃的条件下预烧2~6小时,得到预烧粉;
优选的,将原料混合物在1100℃的条件下预烧4小时;
步骤3,将预烧粉在聚乙烯醇(PVA)粘结剂作用下进行造粒、200MPa冷等静压下保持1min压片,随后以1℃/min升温至600℃排胶,并在1280~1340℃的条件下烧结2~6小时,得到Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料;
优选的,将预烧粉经造粒、压片、排胶后,在1330℃的条件下烧结2小时。
本发明通过Gd-Ta共掺杂Sr0.53Ba0.47Nb2O6陶瓷体系抑制了钨青铜结构陶瓷非等轴晶粒的异常长大,形成了致密的铁电储能材料,减少了电场下的能量耗散,另外,该陶瓷组成中不涉及高温烧结过程中易于挥发的Bi、Na、K等元素,易于器件的集成化,操作简单,对设备、人力和场地要求低,有望实现工业化生产。
实施例1
步骤1,按照Sr0.515Ba0.47Gd0.01Nb1.9Ta0.1O6的化学计量分别称取纯度为99.00%的SrCO3 2.5760g、纯度为99.00%的BaCO3 3.1425g、纯度为99.90%的Nb2O5 8.4786g、纯度为99.85%的Ta2O5 0.7422g、纯度为99.99%的Gd2O3 0.0608g,装入尼龙罐中,以锆球为磨球、无水乙醇为球磨介质,用球磨机400转/分钟球磨16小时,置于干燥箱内在80℃下干燥15小时,用研钵研磨30分钟,过80目筛,得到原料混合物,
步骤2,将原料混合物置于氧化铝坩埚内,用玛瑙棒压实,使其压实密度为1.5g/cm3,加盖,置于电阻炉内,以3℃/分钟的升温速率升温至1100℃预烧4小时,自然冷却至室温,出炉,用研钵研磨10分钟,过120目筛,得到预烧粉;
步骤3,向预烧粉中加入质量分数为5%的聚乙烯醇水溶液(聚乙烯醇水溶液的质量是预烧粉质量的50%),造粒,过100目筛,制成球状粉粒,将球状粉粒放入直径为15mm的不锈钢模具内,用冷等静压在200MPa的压力下将其压制成厚度为1.5mm的圆柱状坯件,将圆柱状坯件放在氧化锆平板上,将氧化锆平板置于氧化铝密闭匣钵中,先以1℃/分钟的升温速率升温至500℃,保温2小时排胶,冷却至室温,再以5℃/分钟的升温速率升温至1000℃,在以3℃/分钟的升温速率升温至1330℃,烧结2小时,随炉自然冷却至室温,得到Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料。
实施例2
本实施例的步骤1中,按照Sr0.5Ba0.47Gd0.02Nb1.8Ta0.2O6的化学计量分别称取纯度为99.00%的SrCO3 2.4548g、纯度为99.00%的BaCO3 3.0845g、纯度为99.90%的Nb2O57.8842g、纯度为99.85%的Ta2O5 1.4571g、纯度为99.99%的Gd2O3 0.1194g,其他步骤与实施例1相同,得到Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料。
实施例3
本实施例的步骤1中,按照Sr0.485Ba0.47Gd0.03Nb1.7Ta0.3O6的化学计量分别称取纯度为99.00%的SrCO3 2.3381g、纯度为99.00%的BaCO3 3.0287g、纯度为99.90%的Nb2O57.3114g、纯度为99.85%的Ta2O5 2.1460g、纯度为99.99%的Gd2O3 0.1758g,其他步骤与实施例1相同,得到Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料。
实施例4
本实施例的步骤1中,按照Sr0.455Ba0.47Gd0.05Nb1.5Ta0.5O6的化学计量分别称取纯度为99.00%的SrCO3 2.1168g、纯度为99.00%的BaCO3 2.9229g、纯度为99.90%的Nb2O56.2258g、纯度为99.85%的Ta2O5 3.4517g、纯度为99.99%的Gd2O3 0.2828g,
其他步骤与实施例1相同,得到Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料。
对比例1
按照Sr0.53Ba0.47Nb2O6的化学计量分别称取纯度为99.00%的SrCO3 2.7017g、纯度为99.00%的BaCO3 3.2026g、纯度为99.90%的Nb2O5 9.0956g,其他步骤与实施例1相同,得到Sr0.53Ba0.47Nb2O6陶瓷材料。
对比例2
按照Sr0.485Ba0.47Gd0.03Nb2O6的化学计量分别称取纯度为99.00%的SrCO32.7017g、纯度为99.00%的BaCO3 3.2026g、纯度为99.99%的Gd2O3 0.1864g、纯度为99.90%的Nb2O5 9.1221g,其他步骤与实施例1相同,得到Gd掺杂钨青铜结构铁电储能陶瓷材料。
上述对比例1和2及实施例1~4制备的陶瓷材料分别采用D/max-2200X型射线衍射仪(由日本理学公司生产)进行XRD测试、采用铁电工作站及连接控温装置(THMS600)对其铁电性能进行测试,并评估储能特性及其温度稳定性,结果见图1~4。由图1可见,对比例1、对比例2及实施例1~4制备陶瓷材料均为纯的四方钨青铜相。由图2可见,对比例2中通过在Sr0.53Ba0.47Nb2O6陶瓷材料中掺杂Gd虽然使陶瓷材料的极化强度增加,但其电场强度较弱,本发明通过在Sr0.53Ba0.47Nb2O6陶瓷材料中同时掺杂Gd和Ta,不但使陶瓷材料极化和电场强度同时增强,而且相对于对比例2,陶瓷材料的电滞回线变细,其储能密度和效率如图3所示,在实施例2中储能性能最为优异,其击穿场强为470kV·cm-1、最大极化强度为42.95μC·cm-2、室温储能性能为6.23J·cm-3、效率为83.8%,如图4所示,且在室温到140℃间其储能性能比较稳定,电场强度可以达到400kV/cm,储能密度仍有85%。
将对比例1、对比例2及实施例1~4制备的陶瓷材料表面依次用320目、800目、1500目砂纸抛光至0.5~0.6mm厚,然后在陶瓷上下表面涂覆厚度为0.01~0.03mm的银浆,置于电阻炉中840℃保温30分钟。采用HIOKI3532-50和Agilient4980A型精密阻抗分析仪(由安捷伦科技有限公司生产)等进行陶瓷介电性能测试,结果见图5~7。由图5~7可见,与对比例1和对比例2的陶瓷材料相比,本发明通过在陶瓷材料中同时掺杂Gd和Ta,陶瓷的弛豫性明显增强,在x取值为0.02、y的取值为0.2时,材料的室温介电常数为1845、居里温度为265K。
本发明制备的Gd-Ta共掺杂Sr0.53Ba0.47Nb2O6陶瓷材料的弛豫性明显增强,B位Ta的引入诱发极化单元BO6八面体发生畸变,同时非等价离子Gd3+取代Sr2+的引入造成离子无序分布及形成局域电场和弹性场,易于打破铁电畴的长程分布,形成纳米极化微畴,显著提高材料的耐击穿强度,即实现了高储能密度和效率,同时储能性能的温度稳定性也显著提高。

Claims (6)

1.Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料,其特征在于,该铁电储能陶瓷材料的结构式为Sr(0.53-0.15x)Ba0.47GdxNb2-yTayO6,其中,x的取值为0.01~0.1,y的取值为0.1~0.5。
2.如权利要求1所述的Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料,其特征在于,x的取值为0.02、y的取值为0.2。
3.如权利要求1所述的Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料的制备方法,其特征在于,具体按照以下步骤实施:
步骤1,按照Sr(0.53-0.15x)Ba0.47GdxNb2-yTayO6的化学计量比分别称取纯度为99.00%以上的BaCO3、SrCO3、Gd2O3、Nb2O5、Ta2O5,充分混合球磨,干燥,得到原料混合物;
步骤2,将原料混合物进行预烧,得到预烧粉;
步骤3,将预烧粉经造粒、压片、排胶后,进行烧结,得到Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料。
4.如权利要求3所述的Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料的制备方法,其特征在于,所述步骤1中,球磨时间为16~24小时;干燥温度为80~100℃,干燥时间为12~24小时。
5.如权利要求3所述的Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料的制备方法,其特征在于,所述步骤2中,预烧温度为900~1250℃,预烧时间为2~6小时。
6.如权利要求3所述的Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料的制备方法,其特征在于,所述步骤3中,具体为:将预烧粉在聚乙烯醇粘结剂作用下进行造粒、200MPa冷等静压下保持1min压片,随后以1℃/min升温至600℃排胶,并在1280~1340℃的条件下烧结2~6小时,即可得到Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料。
CN202210447800.2A 2022-04-24 2022-04-24 Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法 Active CN114605151B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210447800.2A CN114605151B (zh) 2022-04-24 2022-04-24 Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210447800.2A CN114605151B (zh) 2022-04-24 2022-04-24 Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法

Publications (2)

Publication Number Publication Date
CN114605151A true CN114605151A (zh) 2022-06-10
CN114605151B CN114605151B (zh) 2022-12-09

Family

ID=81869216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210447800.2A Active CN114605151B (zh) 2022-04-24 2022-04-24 Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN114605151B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425537A (zh) * 2023-04-11 2023-07-14 西安理工大学 Zr掺杂铌酸锶钡钆-二氧化锆复合陶瓷材料及制备方法
CN116425536A (zh) * 2023-04-11 2023-07-14 西安理工大学 具有非公度调制结构的Ti掺杂铌酸锶钡钆铁电陶瓷材料及制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283752A (en) * 1978-05-01 1981-08-11 Corning Glass Works Ternary niobate dielectric compositions
JP2003192434A (ja) * 2001-10-11 2003-07-09 Matsushita Electric Ind Co Ltd 圧電磁器組成物およびそれを用いた圧電素子
CN1793004A (zh) * 2006-01-05 2006-06-28 武汉理工大学 低温烧结铌酸盐微波介电陶瓷及其制备方法
CN101107204A (zh) * 2005-01-26 2008-01-16 株式会社村田制作所 透明陶瓷及其制造方法、和光学元件与光学装置
DE102009055984A1 (de) * 2009-11-20 2011-06-09 Schott Ag Gefärbte Spinell-Optokeramiken
CN105347796A (zh) * 2015-11-27 2016-02-24 河海大学常州校区 铒掺杂钽铌酸钾锂陶瓷及其制备方法
CN105948743A (zh) * 2016-04-29 2016-09-21 山东大学 一种改性共掺杂二氧化钛高介电陶瓷材料及其制备方法和应用
CN106365636A (zh) * 2016-08-26 2017-02-01 中国科学院上海硅酸盐研究所 一种高居里温度铌酸锶钡热释电陶瓷材料及其制备方法
CN107253859A (zh) * 2017-07-14 2017-10-17 陕西师范大学 高发光热稳定性的Eu‑Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法
CN108467266A (zh) * 2017-02-23 2018-08-31 Tdk株式会社 电介质组合物、电介质元件、电子部件和层叠电子部件
CN109694248A (zh) * 2019-03-01 2019-04-30 电子科技大学 高抗电强度无铅储能介质陶瓷材料及其制备方法
CN110668816A (zh) * 2019-10-16 2020-01-10 电子科技大学 一种钨青铜结构的无铅储能介质陶瓷材料及其制备方法
CN113880576A (zh) * 2021-10-14 2022-01-04 陕西师范大学 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283752A (en) * 1978-05-01 1981-08-11 Corning Glass Works Ternary niobate dielectric compositions
JP2003192434A (ja) * 2001-10-11 2003-07-09 Matsushita Electric Ind Co Ltd 圧電磁器組成物およびそれを用いた圧電素子
CN101107204A (zh) * 2005-01-26 2008-01-16 株式会社村田制作所 透明陶瓷及其制造方法、和光学元件与光学装置
CN1793004A (zh) * 2006-01-05 2006-06-28 武汉理工大学 低温烧结铌酸盐微波介电陶瓷及其制备方法
DE102009055984A1 (de) * 2009-11-20 2011-06-09 Schott Ag Gefärbte Spinell-Optokeramiken
CN105347796A (zh) * 2015-11-27 2016-02-24 河海大学常州校区 铒掺杂钽铌酸钾锂陶瓷及其制备方法
CN105948743A (zh) * 2016-04-29 2016-09-21 山东大学 一种改性共掺杂二氧化钛高介电陶瓷材料及其制备方法和应用
CN106365636A (zh) * 2016-08-26 2017-02-01 中国科学院上海硅酸盐研究所 一种高居里温度铌酸锶钡热释电陶瓷材料及其制备方法
CN108467266A (zh) * 2017-02-23 2018-08-31 Tdk株式会社 电介质组合物、电介质元件、电子部件和层叠电子部件
CN107253859A (zh) * 2017-07-14 2017-10-17 陕西师范大学 高发光热稳定性的Eu‑Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法
CN109694248A (zh) * 2019-03-01 2019-04-30 电子科技大学 高抗电强度无铅储能介质陶瓷材料及其制备方法
CN110668816A (zh) * 2019-10-16 2020-01-10 电子科技大学 一种钨青铜结构的无铅储能介质陶瓷材料及其制备方法
CN113880576A (zh) * 2021-10-14 2022-01-04 陕西师范大学 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
M.SAID ET AL.: "Dielectric,pyroelectric,and ferroelectric properties of gadolinium doped Sr0.53Ba0.47Nb2O6 ceramic", 《CERAMIC INTERNATIONAL》 *
ZUPEI YANG ET AL.: "Phase formation,microstructure and dielectric properties of Sr0.53Ba0.47Nb2-xTaxO6", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
张文俊等: "新型铁电玻璃陶瓷的研究进展", 《电子元件与材料》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116425537A (zh) * 2023-04-11 2023-07-14 西安理工大学 Zr掺杂铌酸锶钡钆-二氧化锆复合陶瓷材料及制备方法
CN116425536A (zh) * 2023-04-11 2023-07-14 西安理工大学 具有非公度调制结构的Ti掺杂铌酸锶钡钆铁电陶瓷材料及制备方法
CN116425537B (zh) * 2023-04-11 2024-03-15 西安理工大学 Zr掺杂铌酸锶钡钆-二氧化锆复合陶瓷材料及制备方法

Also Published As

Publication number Publication date
CN114605151B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN110511018B (zh) 一种高储能密度陶瓷电容器电介质及其制备方法
CN114716248B (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN110128126B (zh) 一种铁酸铋-钛酸钡-锌钛酸铋-铝酸铋高温无铅压电陶瓷及其制备方法
CN110128127B (zh) 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN113735578B (zh) 高介电温度稳定兼具储能特性的钛酸铋钠基无铅铁电陶瓷材料及其制备方法
CN111170735B (zh) 一种高电能存储效率的陶瓷材料及其制备方法
CN112919903A (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN107244912B (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN113666743A (zh) 一种knn基透明储能陶瓷材料及其制备方法
CN104529447B (zh) 铋层状复合结构压电陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN106699173A (zh) 一种反铁电高储能陶瓷材料及其制备方法
CN112225550B (zh) 一种压电陶瓷材料、其制备方法及压电陶瓷传感器
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN112521145A (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN115286386B (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN111217604A (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN116425537B (zh) Zr掺杂铌酸锶钡钆-二氧化锆复合陶瓷材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant