CN114594493B - 激光雷达***及其环境光感知方法 - Google Patents

激光雷达***及其环境光感知方法 Download PDF

Info

Publication number
CN114594493B
CN114594493B CN202210034743.5A CN202210034743A CN114594493B CN 114594493 B CN114594493 B CN 114594493B CN 202210034743 A CN202210034743 A CN 202210034743A CN 114594493 B CN114594493 B CN 114594493B
Authority
CN
China
Prior art keywords
photodetector
light
time
pixel unit
excitation signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210034743.5A
Other languages
English (en)
Other versions
CN114594493A (zh
Inventor
常健忠
寿翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Hongjing Zhijia Technology Co ltd
Original Assignee
Hangzhou Hongjing Zhijia Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Hongjing Zhijia Technology Co ltd filed Critical Hangzhou Hongjing Zhijia Technology Co ltd
Priority to CN202210034743.5A priority Critical patent/CN114594493B/zh
Priority to PCT/CN2022/076492 priority patent/WO2023133965A1/zh
Publication of CN114594493A publication Critical patent/CN114594493A/zh
Application granted granted Critical
Publication of CN114594493B publication Critical patent/CN114594493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本公开提供了一种用于激光雷达***的环境光感知方法,该方法包括:向探测区域发射激光脉冲;检测在发射激光脉冲的预定时段内光电探测器的每个像素单元所发生的光激发信号数量;根据所检测的光激发信号数量确定每个像素单元的环境光强度。本公开还提供了一种激光雷达***和电子装置。

Description

激光雷达***及其环境光感知方法
技术领域
本公开涉及先进驾驶辅助***(ADAS)和自动驾驶***领域,尤其涉及先进驾驶辅助***(ADAS)和自动驾驶***中所应用的激光雷达技术。
背景技术
在先进驾驶辅助***和自动驾驶***中,激光雷达被广泛用于对车辆周边环境进行空间距离测量和三维环境重建,是实现高精度自动驾驶控制的重要前提条件。激光雷达在使用中容易受到环境光的干扰。尤其是,在不同的场景中,例如晴天、阴天、下雨、夜晚、隧道,雾霾等,环境光对激光雷达探测能力会产生不同的影响。为此,激光雷达需要针对不同场景的不同环境光强度调节自身的参数性能,以克服环境光对激光雷达性能的影响。
现有技术的激光雷达通常使用单一预设阈值来检测外部环境光强。然而,外部场景变化莫测,变化范围难以确定,即使在同一场景下,不同的探测角度和测试距离所对应的环境光光强也不一样。因此,使用单一阈值很难对外部环境光强进行准确判读,导致激光雷达的性能大受影响。
发明内容
本公开针对现有技术的缺陷,对激光雷达***做进一步改进,以提高激光雷达在各种环境光场景下均具有良好的使用性能。
在一个方面,提供一种用于激光雷达***的环境光感知方法,该方法包括:
向探测区域发射激光脉冲;
检测在发射激光脉冲的预定时段内光电探测器的每个像素单元所发生的光激发信号数量;
根据所检测的光激发信号数量确定每个像素单元的环境光强度。
有益的是,所述像素单元为所述光电探测器上的单个像素。
有益的是,所述像素单元包括光电探测器的两个或两个以上像素。
在另一个方面,提供另一种用于激光雷达***的环境光感知方法,该方法包括:
获取光电探测器的预定像素单元在激光器向探测区域发射激光脉冲过程的预设时段内发生的光激发信号总量;和
比较所述光激发信号总量与光强阈值表,确定环境光强度等级,其中所述光强阈值表包括多个光强阈值,每个光强阈值具有预设的光激发信号数量并表征相应的环境光强度等级。
有益的是,所述预定像素单元的光激发信号总量的获取包括:
设置所述预设时段由多个时间序列组成,每个时间序列包括多个时间单元;和
对光电探测器的预定像素单元在每个时间单元的光激发信号输出进行记录并将所述时间序列的所有所述时间单元的光激发信号累加得到光激发信号总量。
有益的是,连续的两个时间序列之间存在序列时间间隔。
有益的是,所述预定像素单元为光电探测器的单个像素单元。
有益的是,所述预定像素单元为光电探测器的两个或两个以上像素单元。
有益的是,所述光电探测器为单光子雪崩二极管芯片。
在又一个方面,提供又一种用于激光雷达***的环境光感知方法,该方法包括:
获取光电探测器的每个像素单元在激光器向探测区域发射激光脉冲过程的预设时段内发生的光激发信号总量;和
比较所述光激发信号总量与光强阈值表,确定每个像素单元的环境光强度等级,其中所述光强阈值表包括多个光强阈值,每个光强阈值具有预设的光激发信号数量并表征相应的环境光强度等级。
在又一个方面,提供一种激光雷达***,包括:
激光器,其被设置为向探测区域发射激光脉冲;
光电探测器,其被设置为在接收到光子信号时发生光激发信号;
采集器,其被设置为统计在预设时段内光电探测器的每个像素单元发生的光激发信号总量;和
比较器,其被设置为接收所述光激发信号总量并与光强阈值表比较,以确定环境光强度等级,其中所述光强阈值表包括多个阈值,每个阈值具有预设的光激发信号数量并表征相应的环境光强度等级。
有益的是,所述采集器被进一步设置为:
记录所述预设时段,其中该预设时段由多个时间序列组成,每个时间序列包括多个时间单元;和
记录每个像素单元在每个时间单元的光激发信号输出并统计得到光激发信号总量。
有益的是,所述光电探测器的像素单元为光电探测器的单个像素。
有益的是,所述光电探测器的像素单元为光电探测器的两个或两个以上像素。
在又一个方面,提供一种电子设备,包括:至少一个处理器以及与所述至少一个处理器通信连接的存储器,该存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行以执行本公开所述的方法。
附图说明
以下将结合附图进一步详细介绍本公开的其他细节和优点,其中:
图1示出了根据一个或多个实施例的一种激光雷达***的结构框图;
图2示出了根据一个或多个实施例的一种用于激光雷达***的环境光感知方法流程图;
图3示出了根据一个或多个实施例所应用的一种单光子雪崩二极管(Single-Photon Avalanche Diode,下称SPAD)传感器的像素示意图;
图4示出了根据一个或多个实施例的另一种用于激光雷达***的环境光感知方法;
图5示出了根据一个或多个实施例所应用的获取预定像素单元的光激发信号数量的步骤示意图;
图6示出了根据一个或多个实施例的又一种用于激光雷达***的环境光感知方法。
具体实施方式
图1示出了根据本公开一个或多个实施例的一种激光雷达***的结构框图,图中仅仅示出了激光雷达***的部分组成单元、电子器件或者功能模块。本领域技术人员在明白本公开的原理后可以想到,为了实现本公开,图中***需要或者可以增加其他相关的单元、器件或者模块。
所述激光雷达***包括激光器1和控制器2,其中激光器1在控制器2的控制下向探测区域3发射激光脉冲,该激光脉冲以激光束的形式在探测区域表面形成漫反射回波被激光雷达***检测,以实现例如探测区域的距离测量等功能。
所述激光器1可以为本领域已知的任何形式的激光器,例如分布式反馈激光器或垂直腔面发射激光器等半导体激光器。在一个或多个实施例中,控制器根据预设的时间序列向激光器发出脉冲信号,激光器在收到脉冲信号后向探测区域发射激光脉冲。
所述控制器2用于向激光器发出工作指令,例如脉冲信号,以实现激光器的开启、关闭以及调节激光脉宽、重频、能量参数等功能。所述控制器可以为专用的电子控制器件,也可以通过中央处理器来实现所述控制功能。
所述激光雷达***还包括光电探测器4,其被设置为在接收到外部光波时发生光激发信号。所述光电探测器4例如为CCD光传感器、CMOS传感器、PD光电二极管、APD雪崩二极管、SPAD单光子雪崩二极管等。在一个或多个实施例中,采用SPAD芯片(单光子雪崩二极管)作为光电探测传感器。SPAD芯片是一种数字芯片,具有由多个像素组成的像素阵列,每个像素在外加高电压差下,处于雪崩状态(在一些特殊场景下其放大倍数非最大状态,也可以为线性放大状态的盖革模式)。在雪崩状态下,像素单元在接收到激光漫反射回波或者外部环境光的光子信号时,被光子信号激发放电,输出值为“1”,如果没有接收激光漫反射回波或者外在环境光则不被激发,不输出任何值或输出值为“0”。
所述激光雷达***还包括采集器5,其被设置为采集激光器的发射时间信息和统计在预设时段内光电探测器的像素单元发生的光激发信号总量。在一个或多个实施例中,所述采集器5包括TDC电路(Time-Distance Convert时间距离准换),其与SPAD芯片连接,以确定激光发射以及SPAD光电探测器检测到激光漫反射回波的时间差,以计算出探测区域到激光雷达的距离,计算公式为:S=光速×时间差/2。TDC电路通过将激光脉冲从发射激光至收到漫反射回波的时间差直接计算成激光雷达***与探测区域之间的距离,省去使用其他感光元件时所需的光信号-模拟信号-数字信号的信号变化流程,具有更高的执行效率。
所述激光雷达***还包括比较器6,其接收光电探测器的预定像素单元所发生的光激发信号总量,并通过将所述光激发信号总量与预设的光强阈值表比较,确定环境光强度等级。所述光强阈值表包括多个阈值,每个阈值具有预设的光激发信号数量并表征相应的环境光强度等级。
所述光强阈值表的设置方法:将激光雷达完全置于不同的场景中,如在夜晚,阴天、雨天、多云、晴天等,对照远处进行测试,得到的光探测器中单个像素总激发量,以此为标准进行设置光强阈值。
光束光强阈值表的另一设置方法,在实验室中设置不同的照度,采集单个像素的总激发量,并设置相应的光强阈值。
所述激光雷达***还包括存储器7,其例如为一种非易失性计算机可读存储介质,用于存储非易失性软件程序、非易失性计算机可执行程序以及模块等。存储在存储器中的非易失性软件程序、指令以及模块等由控制器或者其他的处理器运行,以执行***的各种功能应用以及数据处理。存储器可以包括程序存储区和数据存储区,其中,程序存储区可存储例如操作***、至少一个功能所需要的应用程序等;数据存储区可存储例如选项列表、光强阈值表等。在一些实施例中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至外接设备,所述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
图2示出了根据一个或多个实施例的一种用于激光雷达***的环境光感知方法,该方法包括:
S101:向探测区域发射激光脉冲。
激光脉冲作为检测信号源,可以是为了检测环境光而单独发射的激光脉冲,也可以是激光雷达在实际探测工作中所发射的激光脉冲。在一个或多个实施例中,激光雷达***的激光器在控制器的控制下向探测区域发射激光脉冲,该激光脉冲以激光束的形式在探测区域表面形成漫反射回波并被光电探测器接收而发生光激发信号。例如,根据激光雷达***的控制器发出的工作指令,激光器在预定时间开始工作,发出具有预定脉宽、重频、能量等参数的激光束。
S102:检测在发射激光脉冲的预定时段内光电探测器的每个像素单元所发生的光激发信号数量。
光电探测器一般设置有多个像素单元。在一个实例中,所述像素单元例如被设置为光电探测器上的单个像素。在另一个实例中,所述像素单元例如被设置为光电探测器上的两个或两个以上像素。图2中的方法例如由采集器获取光电探测器的每个像素的光激发信号,并对组成像素单元的多个像素在预定时段内所发生的光激发信号数量予以统计。
图3示出了根据一个或多个实施例所应用的一种具体光电探测器的像素示意图,该光电探测器例如为SPAD传感器,该传感器设置有像素阵列(20×10),包括20个像素单元42,每个像素单元包括10个像素41,每个像素在接收到激光漫反射回波或者外在环境光的光子信号时,被光子信号激发放电输出,输出值为“1”,如果没有被激发,则不输出任何值或输出值为“0”。如图中所示,在预定时段内,所述像素单元内的10个像素被光信号激光,采集器采集每个像素每个时间单元内的激光量。其他的像素单元也以同样的方法进行检测,以确定其在预定时段内的单个像素的光激发信号总数量。
S103:根据所检测的光激发信号数量确定每个像素单元的环境光强度。
在一个或多个实施例中,所述激光雷达***的比较器接收每个像素单元的光激发信号总量并与预设的光强阈值表比较,以确定每个像素单元对应的探测区域位置的环境光强度等级。所述光强阈值表预设有多个阈值,每个阈值具有预设的光激发信号数量,以表征相应的环境光强度等级。
例如,光强阈值表预设N个阈值,每个阈值预设的光激发数量分别为K1、K2、……、Kn,所述预设光激发数量可以为具体数值,也可以为数值范围。通过比较每个像素单元的光激发信号数量与光强阈值表,确定其落入的具体阈值,从而确定该像素单元所接收的光强强度等级,其中,K1为最弱光强,Kn为最强光强。
首先将激光雷达完全置于不同的场景下,如在夜晚,、雨天、阴天、多云、晴天等,对照远处进行测试,得到的光探测器总激发量,激光雷达探测器阵列的所有像素都会测到预设时间内的总激发量,并对其平均化处理,得到一组数据,如夜晚测得的激发量为1000,雨天为2000,阴天为3000、多云为5000、晴天为8000,以此为预设值,将K1设为2000,K2设为3000,K3设为5000,K4设为8000,并录入到存储器中,在激光雷达实际的测试中,通过比较每个像素单元的光激发信号数量与预设K值比较,判读每个像素测到的环境。
还有一种预设值方法,根据环境的照度进行设置,在照度标准实验室中,设置不同的照度,分别设置照度为500Lux,10000Lux,20000Lux,100000Lux,对激光雷达的像素单元的每个像素的激发量进行统计,可根据实际需求情况,设置不同间隔的照度和不同数量的照度级别,以此来设置不同间隔的环境阈值和阈值数量。
图4示出了根据一个或多个实施例的另一种用于激光雷达***的环境光感知方法,该方法包括:
S201:获取光电探测器的预定像素单元在激光器向探测区域发射激光脉冲的预设时段内发生的光激发信号总量。
所述预定像素单元例如被设置为光电探测器上的单个像素,或者包括所述光电探测器上的两个或两个以上像素。
所述预设时段由多个时间序列组成,每个时间序列包括多个时间单元。通过对每个时间单元中光电探测器的预定像素单元的光激发信号输出进行记录并统计得到光激发信号总量。在一个实例中,连续的两个时间序列之间存在序列时间间隔。
在此步骤中,激光器被控制器启动向探测区域发射激光脉冲后,激光脉冲以激光束的形式在探测区域表面形成漫反射回波,该回波与其他环境光被光电探测器接收而发生光激发信号。与此同时,例如使用采集器来监测光电探测器的预定像素单元的光激发信号,并对该预定像素单元在预设时段内的光激发信号数量予以统计。
图5例示了根据一个或多个实施例的一种具体的统计预定像素单元在预设时段内的光激发信号数量的方法:
首先,控制器向激光器发出脉冲信号,激光器向测试区域发射第1次激光脉冲,TDC电路开始计时,每隔一个时间单元Tunit,对该时间单元内光电探测器的预定像素单元的光激发信号输出情况进行记录,总计M个时间单元,共需Tsum时间,并将M个时间单元的光激发信号输出结果例如存入寄存器。
接后,激光器向探测区域发射第2次激光脉冲,TDC电路再次开始计时,每隔一个时间单元Tunit,对该时间单元内光电探测器的预定像素单元的光激发信号输出情况进行记录,总计M个时间单元,共需Tsum时间,并将M个时间单元的光激发信号输出结果例如存入寄存器。
再后,在激光器发出N次激光脉冲后,对所述预定像素单元每个像素在预定时段N*M*Tunit内的光激发信号数量进行累加,记为光激发信号总量K。
更具体的,控制器向激光器发出脉冲信号,激光器向测试区域发射第1次激光脉冲,TDC电路开始计时,TDC电路主频500MHz,即每隔一个时间单元2ns,对该时间单元内光电探测器的预定像素单元的光激发信号输出情况进行记录,总计1000个时间单元,共需2μs,并将1000个时间单元的光激发信号输出结果例如存入寄存器。
接后,激光器向探测区域发射第2次激光脉冲,TDC电路再次开始计时,每隔一个时间单元2ns,对该时间单元内光电探测器的预定像素单元的光激发信号输出情况进行记录,总计1000个时间单元,共需2μs时间,并将1000个时间单元的光激发信号输出结果例如存入寄存器。
重复之前的步骤,直至激光器发出150次激光脉冲后,对所述预定像素单元每个像素在预定时段0.3ms内的光激发信号数量进行累加,记为光激发信号总量K。
S202:比较所述光激发信号总量与光强阈值表,确定环境光强度等级。
所述光强阈值表预设有多个阈值,每个阈值具有预设的光激发信号数量,以表征相应的环境光强度等级。例如,光强阈值表预设N个阈值,每个阈值预设的光激发数量分别为K1、K2、……、Kn,所述预设的光激发数量可以为具体数值,也可以为数值范围。通过比较所述预定像素单元在预定时段N*M*Tunit内的光激发信号总量K与光强阈值表,确定其落入的具体阈值,从而确定该预定像素所接收的光强强度等级,其中,K1为最弱光强,Kn为最强光强。
例如,所述激光雷达***的比较器接收所述预定像素单元的光激发信号总量并与预设的光强阈值表比较,以确定环境光强度等级。
图6示出了根据一个或多个实施例的又一种用于激光雷达***的环境光感知方法,该方法包括:
S301:获取光电探测器的每个像素单元在激光器向探测区域发射激光脉冲过程的预设时段内发生的光激发信号总量。
激光***的光电探测器设置有多个像素单元,所述像素单元可以被设置为单个像素,或者被设置为所述光电探测器上的两个或两个以上像素。
所述预设时段由多个时间序列组成,每个时间序列包括多个时间单元。通过对每个时间单元中光电探测器像素单元的光激发信号输出进行记录并统计得到光激发信号总量。在一个实例中,连续的两个时间序列之间存在序列时间间隔。
又根据一个或多个实施例,激光器向探测区域发射激光脉冲的预设时段内,激光脉冲以激光束的形式在探测区域表面形成漫反射回波,该回波与其他环境光被光电探测器接收而发生光激发信号。利用采集器来监测光电探测器的每个像素单元的光激发信号,并对每个像素单元在预设单元内的光激发信号数量予以统计获得光激发信号总量。
S302:比较所述光激发信号总量与光强阈值表,确定每个像素单元的环境光强度等级。
在一个或多个实施例中,所述激光雷达***的比较器接收光电探测器的每个像素单元的光激发信号总量并与预设的光强阈值表比较,以确定每个像素单元的环境光强度等级。所述光强阈值表预设有多个阈值,每个阈值具有预设的光激发信号数量,以表征相应的环境光强度等级。例如,光强阈值表预设N个阈值,每个阈值预设的光激发数量分别为K1、K2、……、Kn,所述光激发预设数量可以为具体数值,也可以为数值范围。通过比较每个像素单元的光激发信号总量与光强阈值表,确定其落入的具体阈值,从而确定该像素所接收的光强强度等级,其中,K1为最弱光强,Kn为最强光强。
在一个或多个实施例中,通过对光电检测单元的每个像素单元在预定时段内的光激发信号输出情况进行记录、存储、读取、统计,确定总输出值,并对每个像素单元的环境光强分别进行判断,更准确地反应了监测区域的实际环境光强强度,避免了由一个像素确定整个环境光的强度。再者,每个像素所测得的光强度会随着外界环境光强度的改变而实时调整,提高了激光雷达感知环境光的时效性和准确性。此外,通过设置不同的环境光光强等级,更能符合不同场景下的环境光强度。另外,本发明中的激光雷达对环境光的数据的采集与激光雷达探测距离所采集的方法和数据相同,为同一组数据,无需进行另外的数据采集工作,增加了激光雷达测试效率。
本领域技术人员可以明白,实现上述实施例方法中的全部或部分步骤可以通过程序来指令相关的硬件予以执行,该程序存储在存储介质中,包括若干指令以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各实施例所述方法的全部或部分步骤。所述存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种能够存储程序代码的介质。

Claims (11)

1.一种用于激光雷达***的环境光感知方法,该方法包括:
获取光电探测器的预定像素单元在激光器向探测区域发射激光脉冲过程的预设时段内发生的光激发信号总量,包括:设置所述预设时段由多个时间序列组成,其中连续的两个时间序列之间存在序列时间间隔,并且每个时间序列包括多个时间单元;对光电探测器的预定像素单元在每个时间单元的光激发信号输出进行记录并将所述时间序列的所有所述时间单元的光激发信号累加得到光激发信号总量;和
比较所述光激发信号总量与光强阈值表,确定环境光强度等级,其中所述光强阈值表包括多个光强阈值,每个光强阈值具有预设的光激发信号数量并表征相应的环境光强度等级。
2.根据权利要求1所述的环境光感知方法,其特征在于,所述预定像素单元为光电探测器的单个像素单元。
3.根据权利要求1所述的环境光感知方法,其特征在于,所述预定像素单元为光电探测器的两个或两个以上像素单元。
4.根据权利要求1所述的环境光感知方法,其特征在于,所述光电探测器为单光子雪崩二极管芯片。
5.根据权利要求1所述的环境光感知方法,其特征在于,所述预定像素单元为光电探测器的每个像素单元。
6.根据权利要求5所述的环境光感知方法,其特征在于,所述像素单元为所述光电探测器的单个像素。
7.根据权利要求5所述的环境光感知方法,其特征在于,所述像素单元为所述光电探测器的两个或两个以上像素。
8.一种激光雷达***,包括:
激光器,其被设置为向探测区域发射激光脉冲;
光电探测器,其被设置为在接收到光子信号时发生光激发信号;
采集器,其被设置为统计在预设时段内光电探测器的每个像素单元发生的光激发信号总量,包括:设置所述预设时段由多个时间序列组成,其中连续的两个时间序列之间存在序列时间间隔,并且每个时间序列包括多个时间单元;对光电探测器的每个像素单元在每个时间单元的光激发信号输出进行记录并将所述时间序列的所有所述时间单元的光激发信号累加得到光激发信号总量;
比较器,其被设置为接收所述光激发信号总量并与光强阈值表比较,以确定环境光强度等级,其中所述光强阈值表包括多个阈值,每个阈值具有预设的光激发信号数量并表征相应的环境光强度等级。
9.根据权利要求8所述的激光雷达***,其特征在于,所述光电探测器的像素单元为光电探测器的单个像素。
10.根据权利要求8所述的激光雷达***,其特征在于,所述光电探测器的像素单元为光电探测器的两个或两个以上像素。
11.一种电子设备,包括:至少一个处理器以及与所述至少一个处理器通信连接的存储器,该存储器存储有可被所述至少一个处理器执行的指令,其特征在于,所述指令被所述至少一个处理器执行以执行权利要求1-7中任一项所述的方法。
CN202210034743.5A 2022-01-13 2022-01-13 激光雷达***及其环境光感知方法 Active CN114594493B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210034743.5A CN114594493B (zh) 2022-01-13 2022-01-13 激光雷达***及其环境光感知方法
PCT/CN2022/076492 WO2023133965A1 (zh) 2022-01-13 2022-02-16 激光雷达***及其环境光感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210034743.5A CN114594493B (zh) 2022-01-13 2022-01-13 激光雷达***及其环境光感知方法

Publications (2)

Publication Number Publication Date
CN114594493A CN114594493A (zh) 2022-06-07
CN114594493B true CN114594493B (zh) 2023-03-21

Family

ID=81803689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210034743.5A Active CN114594493B (zh) 2022-01-13 2022-01-13 激光雷达***及其环境光感知方法

Country Status (2)

Country Link
CN (1) CN114594493B (zh)
WO (1) WO2023133965A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537124A (zh) * 2017-03-01 2019-12-03 奥斯特公司 用于lidar的准确光检测器测量
CN111366944A (zh) * 2020-04-01 2020-07-03 浙江光珀智能科技有限公司 一种测距装置和测距方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105306912B (zh) * 2015-12-07 2018-06-26 成都比善科技开发有限公司 基于光强度和距离检测触发摄像的智能猫眼***
DE102017209643A1 (de) * 2017-06-08 2018-12-13 Robert Bosch Gmbh Betriebsverfahren und Steuereinheit für ein LiDAR-System, LiDAR-System und Arbeitsvorrichtung
CN108008402B (zh) * 2017-11-30 2021-05-28 南京大学 一种用于激光测距的单光子雪崩二极管探测器阵列
CN108037511A (zh) * 2017-12-29 2018-05-15 北醒(北京)光子科技有限公司 一种抑制背景光噪声***及激光雷达
WO2020061967A1 (zh) * 2018-09-27 2020-04-02 深圳市大疆创新科技有限公司 一种测距装置以及基于测距装置的时间测量方法
DE102018221083A1 (de) * 2018-12-06 2020-06-10 Robert Bosch Gmbh LiDAR-System sowie Kraftfahrzeug
CN112219135A (zh) * 2019-02-20 2021-01-12 深圳市大疆创新科技有限公司 一种测距装置、测距方法以及移动平台
CN109839639A (zh) * 2019-02-27 2019-06-04 宁波舜宇车载光学技术有限公司 激光雷达和减少环境光干扰的激光雷达***及其探测方法
CN109655810B (zh) * 2019-03-05 2021-02-19 深圳市镭神智能***有限公司 一种激光雷达抗干扰的方法、激光雷达及车辆
US11644549B2 (en) * 2019-03-06 2023-05-09 The University Court Of The University Of Edinburgh Extended dynamic range and reduced power imaging for LIDAR detector arrays
CN110530515A (zh) * 2019-08-23 2019-12-03 上海禾赛光电科技有限公司 光电探测电路、激光雷达和控制方法
CN110568422B (zh) * 2019-08-30 2022-08-23 上海禾赛科技有限公司 SiPM接收器和激光雷达的动态阈值调节方法以及激光雷达
CN112710388B (zh) * 2019-10-24 2022-07-01 北京小米移动软件有限公司 环境光检测方法、环境光检测装置、终端设备及存储介质
US20210223398A1 (en) * 2020-01-21 2021-07-22 Semiconductor Components Industries, Llc Imaging systems with single-photon avalanche diodes and ambient light level detection
CN113534107A (zh) * 2020-04-22 2021-10-22 上海禾赛科技有限公司 输出脉宽可调节的探测电路、接收单元、激光雷达
CN112098973A (zh) * 2020-08-21 2020-12-18 上海禾赛光电科技有限公司 用于激光雷达的光接收装置、光接收装置的动态调节方法
CN112986951B (zh) * 2021-04-29 2023-03-17 上海禾赛科技有限公司 使用激光雷达测量目标物反射率的方法及激光雷达
CN113514814A (zh) * 2021-06-24 2021-10-19 杭州宏景智驾科技有限公司 一种抗环境光的光学接收***及激光雷达

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110537124A (zh) * 2017-03-01 2019-12-03 奥斯特公司 用于lidar的准确光检测器测量
CN111366944A (zh) * 2020-04-01 2020-07-03 浙江光珀智能科技有限公司 一种测距装置和测距方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
激光三角测距***中光强度的自适应控制方法;刘立波等;《电子测量技术》;20080531;第31卷(第05期);全文 *

Also Published As

Publication number Publication date
WO2023133965A1 (zh) 2023-07-20
CN114594493A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN110609293B (zh) 一种基于飞行时间的距离探测***和方法
US11294037B2 (en) Detecting light using a plurality of avalanche photodiode elements
CN110609267B (zh) 一种激光雷达***及其抗干扰方法
US20210181317A1 (en) Time-of-flight-based distance measurement system and method
CN109791195B (zh) 用于光达的自适应发射功率控制
US10877133B2 (en) Optoelectronic sensor and method of measuring the distance from an object
US10948575B2 (en) Optoelectronic sensor and method of measuring the distance from an object
CN113661407A (zh) 测量飞行时间传感器中的光学串扰的方法和对应的飞行时间传感器
CN110221272B (zh) 时间飞行深度相机及抗干扰的距离测量方法
CN110927734A (zh) 一种激光雷达***及其抗干扰方法
WO2019226487A1 (en) Parallel photon counting
CN111983586B (zh) 一种光电探测器的控制方法、控制***及激光雷达
CN111366944B (zh) 一种测距装置和测距方法
US20220187430A1 (en) Time of flight calculation with inter-bin delta estimation
WO2022206031A1 (zh) 确定噪声水平的方法、激光雷达以及测距方法
CN111656219B (zh) 用于使用光信号确定至少一个对象的距离的装置和方法
CN111538026B (zh) 一种激光测距方法及***
CN111656220A (zh) 用于接收光信号的接收装置
CN114594493B (zh) 激光雷达***及其环境光感知方法
CN114594494B (zh) 激光雷达***及其环境光去噪方法
CN114594455B (zh) 激光雷达***及其控制方法
CN112470026B (zh) 激光雷达及其探测方法、存储介质和探测***
US20230196501A1 (en) Systems and Methods for Memory-Efficient Pixel Histogramming
WO2023150920A1 (en) Methods and apparatus for single-shot time-of-flight ranging with background light rejection
CN116299508A (zh) 基于硅光电倍增管的快速自适应激光测距***及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant