CN114516664B - Carbonate grafted carbonate type positive electrode material precursor and preparation method and application thereof - Google Patents

Carbonate grafted carbonate type positive electrode material precursor and preparation method and application thereof Download PDF

Info

Publication number
CN114516664B
CN114516664B CN202210330370.6A CN202210330370A CN114516664B CN 114516664 B CN114516664 B CN 114516664B CN 202210330370 A CN202210330370 A CN 202210330370A CN 114516664 B CN114516664 B CN 114516664B
Authority
CN
China
Prior art keywords
carbonate
solution
salt
positive electrode
grafted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210330370.6A
Other languages
Chinese (zh)
Other versions
CN114516664A (en
Inventor
赵孝连
方刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Gaodian Technology Co ltd
Gaodian Shenzhen Technology Co ltd
Original Assignee
Guizhou Gaodian Technology Co ltd
Gaodian Shenzhen Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Gaodian Technology Co ltd, Gaodian Shenzhen Technology Co ltd filed Critical Guizhou Gaodian Technology Co ltd
Priority to CN202210330370.6A priority Critical patent/CN114516664B/en
Publication of CN114516664A publication Critical patent/CN114516664A/en
Application granted granted Critical
Publication of CN114516664B publication Critical patent/CN114516664B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/06Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention provides a carbonate grafted carbonate type positive electrode material precursor, a preparation method and application thereof, and the structural formula is ACO 3 ‑R‑BCO 3 A and B are Ni 1‑a‑b Co a Mn b Z c Wherein a is more than or equal to 0 and less than or equal to 1; b is more than or equal to 0 and less than or equal to 1; a+b is more than 0 and less than or equal to 1; c is more than or equal to 0 and less than or equal to 1, the molar ratio of nickel, cobalt and manganese in A is different from the molar ratio of nickel, cobalt and manganese in B, and Z is at least one of Al, mg, ti, B, zr, bi, mo, P and rare earth elements; r is a grafting agent comprising at least one element of Ni, co, mn, al, mg, si, ti, B, zr, bi, mo, P and rare earth elements. Compared with the prior art, the precursor is grafted at the precursor end, so that the aim of uniformly mixing different types of materials is fulfilled, and the problems of uneven slurry dispersion, poor pole piece uniformity and inconsistent electrochemical performance of the materials existing in the existing mixed anode material are solved.

Description

Carbonate grafted carbonate type positive electrode material precursor and preparation method and application thereof
Technical Field
The invention relates to the field of lithium batteries, in particular to a carbonate grafted carbonate type positive electrode material precursor, a preparation method and application thereof.
Background
Lithium ion batteries are increasingly used in everyday life. Currently, the positive electrode materials of lithium ion batteries mainly comprise lithium cobaltate, lithium manganate, lithium iron phosphate, lithium nickel cobalt manganate and the like. Different types of positive electrode materials have different electrochemical performances and are matched with different application scenes.
Along with the continuous expansion of application scenes of lithium ion batteries, the lithium ion batteries manufactured by a single positive electrode material have difficulty in meeting the requirements of various subdivision fields in terms of performance and cost. The mixing of multiple positive electrode materials (typically two) generally achieves a balance of cost control and performance requirements. The current common method is to directly mix several positive electrode materials according to different proportions according to the requirements. However, this method still has the following problems: 1) A slurry mixing process problem of the mixed material; 2) The dispersion uniformity of the anode material in the pole piece is improved; 3) The lithium removal and insertion behaviors of different materials under the same voltage in the charge and discharge process have the influence on the stability of the pole piece structure and the consistency of macroscopic electrical performance of the battery.
In view of the foregoing, it is necessary to provide a solution to the above-mentioned problems.
Disclosure of Invention
One of the objects of the present invention is: the precursor of the carbonate grafted carbonate type positive electrode material is provided to solve the problems of uneven slurry dispersion, poor uniformity of the pole piece and inconsistent electrochemical performance of the material when a plurality of positive electrode materials are mixed and used in the current application process of the lithium ion battery.
In order to achieve the above purpose, the present invention adopts the following technical scheme:
A carbonate grafted carbonate type positive electrode material precursor has a structural formula of ACO 3 -R-BCO 3 A and B are Ni 1-a-b Co a Mn b Z c Wherein a is more than or equal to 0 and less than or equal to 1; b is more than or equal to 0 and less than or equal to 1; a+b is more than 0 and less than or equal to 1; c is more than or equal to 0 and less than or equal to 1, the mole ratio of nickel, cobalt and manganese in A is different from that in B, Z is at least one of Al, mg, ti, B, zr, bi, mo, P and rare earth elementsThe method comprises the steps of carrying out a first treatment on the surface of the R is a grafting agent comprising at least one element of Ni, co, mn, al, mg, si, ti, B, zr, bi, mo, P and rare earth elements.
Preferably, the mass of R is ACO 3 And BCO 3 1 to 10 percent of the sum of the mass.
Preferably, ACO 3 And BCO 3 The mass ratio of (2) is 1:99-99:1.
Preferably, R is (M x N y )CO 3 Or (M) x N y )(OH) 2 X is more than 0 and less than 1; y is more than 0 and less than 1; x+y is more than 0 and less than or equal to 1; m and N are selected from different elements, and are at least one element of Ni, co, mn, al, mg, si, ti, B, zr, bi, mo, P and rare earth elements.
The second object of the present invention is: the preparation method of the carbonate grafted carbonate type positive electrode material precursor comprises the following steps:
s1, mixing an aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt with a carbonate aqueous solution for reaction, controlling the pH value of the solution in the reaction process to be 6-9, aging, and suction-filtering to obtain first carbonate salt ACO 3
S2, mixing and reacting an aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt with a carbonate aqueous solution, controlling the pH value of the solution in the reaction process to be 6-9, aging, and suction-filtering to obtain a second carbonate salt BCO 3
S3, preparing the first carbonate salt ACO 3 With a second carbonate salt BCO 3 Mixing at 25-70 deg.c to prepare slurry; adding a solution for liquid phase reaction to form a grafting agent R into the slurry, stirring and reacting for 30-90 min, washing and drying to obtain a carbonate grafted carbonate type positive electrode material precursor ACO 3 -R-BCO 3
Preferably, in step S1, the first carbonate salt ACO 3 The preparation method of (2) comprises the following steps: adding aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt and carbonate aqueous solution into a reactor containing water at a speed of 1-2 mL/min respectively, continuously stirring and reacting at 30-80 ℃ in inert atmosphere, controlling pH of the solution in the reaction process to be 6-9, and continuously stirring after the addition is finishedDissolving for 10-36 h, vacuum filtering to obtain first carbonate salt ACO 3
Preferably, in step S2, the second carbonate salt BCO 3 The preparation method of (2) comprises the following steps: adding aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt and carbonate aqueous solution into a reactor containing water at a speed of 1-2 mL/min respectively, continuously stirring and reacting at 30-80 ℃ in an inert atmosphere, controlling the pH of the solution in the reaction process to be 6-9, continuously stirring and aging for 10-36 h after the addition, and vacuum filtering to obtain second carbonate salt BCO 3
Preferably, in step S3, the solution for forming the grafting agent R by the liquid phase reaction includes a first solution and a second solution, wherein the first solution is a mixed solution of cobalt salt and manganese salt, the second solution is sodium bicarbonate solution or sodium hydroxide solution, and the first solution and the second solution form the grafting agent R by the liquid phase reaction to form the first carbonate salt ACO 3 With a second carbonate salt BCO 3 Grafting is performed.
Preferably, in step S3, the first solution and the second solution are pumped into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively for pre-reaction, and then the remaining first solution and second solution are pumped into the slurry for continuous stirring reaction, and washed and dried to obtain the carbonate grafted carbonate type cathode material precursor ACO 3 -R-BCO 3
The third object of the present invention is to provide a preparation method of the grafted cathode material, wherein the precursor of the carbonate grafted carbonate cathode material is mixed with lithium salt, sintered for 6-24 hours at 750-950 ℃, cooled and ground to obtain the grafted cathode material.
Preferably, the sintering conditions are: firstly, heating to 750-800 ℃ at the speed of 5-7 ℃/min, and preserving heat for 2-6 h; then heating to 900-950 ℃ at the speed of 2-6 ℃/min, and preserving heat for 10-24 h.
The fourth object of the present invention is to provide a grafted positive electrode material prepared by the above-mentioned preparation method of a grafted positive electrode material.
The fifth object of the present invention is to provide a positive electrode sheet comprising the above-mentioned graft type positive electrode material.
The invention aims at providing a lithium ion battery, which comprises a positive plate, a negative plate and a diaphragm which is arranged between the positive plate and the negative plate, wherein the positive plate is the positive plate.
Compared with the prior art, the invention has the beneficial effects that: according to the carbonate grafted carbonate positive electrode material precursor, the purpose of uniformly mixing different types of materials is achieved through a precursor end grafting mode, namely, two carbonate salt positive electrode material precursors are coupled together through a chemical method under the action of a grafting agent, and a brand new and stable positive electrode material precursor is formed through fusion. In the positive electrode material prepared by the novel grafting precursor, two different types of positive electrode materials are fused and grown into a whole to form the grafting positive electrode material, so that the problem of uneven dispersion of mixed components in the process of preparing slurry by the grafting positive electrode material is avoided, the problem of the segregation of the mixed components in a pole piece does not exist, and the electrochemical potential of the mixed components is the same, thereby solving the problems of uneven dispersion of slurry, poor uniformity of the pole piece and inconsistent electrochemical performance of the material of the mixed positive electrode material in the application process of the lithium ion battery when the various positive electrode materials are mixed and used in the current application of the lithium ion battery. Meanwhile, as different types of positive electrode materials have different electrochemical properties, the preparation method of the grafted precursor can design and prepare the positive electrode material with specific properties.
Drawings
Fig. 1 is an SEM image of a grafted cathode material precursor according to example 1 of the present invention.
Fig. 2 is an XRD pattern of a grafted positive electrode material precursor of example 1 of the present invention.
Fig. 3 is an SEM image of the graft type cathode material of example 1 of the present invention.
Fig. 4 is an XRD pattern of the graft type cathode material of example 1 of the present invention.
Detailed Description
1. Carbonate grafted carbonate type positive electrode material precursor
The first aspect of the present invention is to provide a carbonate-grafted carbonate-type positive electrode material precursor having the structural formula ACO 3 -R-BCO 3 A and B are Ni 1-a-b Co a Mn b Z c Wherein a is more than or equal to 0 and less than or equal to 1; b is more than or equal to 0 and less than or equal to 1; a+b is more than 0 and less than or equal to 1; c is more than or equal to 0 and less than or equal to 1, the molar ratio of nickel, cobalt and manganese in A is different from the molar ratio of nickel, cobalt and manganese in B, and Z is at least one of Al, mg, ti, B, zr, bi, mo, P and rare earth elements; r is a grafting agent comprising at least one element of Ni, co, mn, al, mg, si, ti, B, zr, bi, mo, P and rare earth elements.
Wherein, the mole ratio of nickel, cobalt and manganese in A includes but is not limited to 1:1: 1. 5:2: 3. 6:2: 2. 8:1: 1. 6:1:3, the specific adjustment can also be carried out according to the requirement, such as 55:15:30. the doping amount of the element Z in the A can be adjusted according to the weight ratio of the A by selecting at least one of Al, mg, ti, B, zr, bi, mo, P, F and rare earth elements according to the requirement, and is preferably less than 1% of the weight of the A, and more preferably 0.05-0.5% of the weight of the A.
Likewise, the molar ratio of nickel, cobalt, manganese in B includes, but is not limited to, 1:1: 1. 5:2: 3. 6:2: 2. 8:1: 1. 6:1:3, the specific adjustment can also be carried out according to the requirement, such as 55:15:30. the doping amount of the element Z in the B can be adjusted according to the weight ratio of the B by selecting at least one of Al, mg, ti, B, zr, bi, mo, P, F and rare earth elements according to the requirement, and is preferably less than 1% of the weight of the B, and more preferably 0.05-0.5% of the weight of the B.
Specifically, the carbonate-grafted carbonate-type positive electrode material precursor may be (Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -R-(Ni 1/3 Co 1/3 Mn 1/3 )CO 3 、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -R-CoCO 3 、(Ni 0.6 Co 0.2 Mn 0.2 )CO 3 -R-CoCO 3 、(Ni 0.6 Co 0.2 Mn 0.2 )CO 3 -R-(Ni 1/3 Co 1/3 Mn 1/3 )CO 3 、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -R-(Ni 0.6 Mn 0.4 )CO 3 、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -R-(Ni 0.6 Co 0.4 )CO 3 Or (Ni) 0.5 Co 0.2 Mn 0.3 )CO 3 -R-(Ni 0.6 Co 0.2 Mn 0.2 )CO 3
The grafting agent R can be at least one of hydroxide, carbonate, oxide and phosphate. I.e. at least one of the hydroxide, carbonate, oxide, phosphate should be comprised of Ni, co, mn, al, mg, ti, B, zr, bi, mo, P, rare earth elements, such as CoCO 3 、MnPO 4 、Co(OH) 2 Etc.
Preferably, the grafting agent R is (M x N y )CO 3 Or (M) x N y )(OH) 2 X is more than 0 and less than 1; y is more than 0 and less than 1; x+y is more than 0 and less than or equal to 1; m and N are selected from different elements, and are at least one element of Ni, co, mn, al, mg, si, ti, B, zr, bi, mo, P and rare earth elements. Specifically included but not limited to (Co 0.5 Mn 0.5 )CO 3 、(Ni 0.5 Mn 0.5 )CO 3 、(Co 0.5 Mn 0.5 )(OH) 2 And (Ni) 0.5 Mn 0.5 )(OH) 2 . With grafting agent (Co) 0.5 Mn 0.5 )CO 3 And (Ni) 0.5 Mn 0.5 )CO 3 For example, the corresponding grafted positive electrode material precursor may be (Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Co 0.5 Mn 0.5 )CO 3 -(Ni 1/3 Co 1/3 Mn 1/3 )CO 3 、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Co 0.5 Mn 0.5 )CO 3 -CoCO 3 、(Ni 0.6 Co 0.2 Mn 0.2 )CO 3 -(Co 0.5 Mn 0.5 )CO 3 -CoCO 3 、(Ni 0.6 Co 0.2 Mn 0.2 )CO 3 -(Co 0.5 Mn 0.5 )CO 3 -(Ni 1/3 Co 1/3 Mn 1/3 )CO 3 、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Ni 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Mn 0.4 )CO 3 、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Ni 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Co 0.4 )CO 3 、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Ni 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Co 0.2 Mn 0.2 )CO 3 Any one of the following.
The invention preferentially achieves the aim of uniformly mixing different types of positive electrode material precursors in a mode of grafting at a precursor end, adopts the grafted precursor to prepare the positive electrode material for fusion growth of different types of positive electrode materials, ensures the consistency of the positive electrode material particles in electrochemical performance, such as the same potential and the like, and ensures the excellent effects of the subsequently obtained lithium ion battery in polarization resistance, cycle stability, high temperature performance and safety performance.
The grafting agent adopted by the invention is a component part of the positive electrode material, and can be used as a functional doping agent, so that the grafting agent with proper dosage does not negatively influence the structure and the performance of the final positive electrode material.
The grafted positive electrode material precursor provided by the invention is easier to realize single crystal grafted single crystal positive electrode material.
In some embodiments, the mass of R is ACO 3 And BCO 3 1 to 10 percent of the sum of the mass. The quality of the grafting agent R is controlled within the range, so that on one hand, the situation that a grafting precursor cannot be obtained due to the fact that the grafting agent R surrounds the grafting materials A and B too much is avoided, and on the other hand, the situation that the coupling fusion of the grafting materials A and B cannot be guaranteed due to the fact that the grafting agent R is too little is avoided. Preferably, the mass of R is ACO 3 And BCO 3 The total mass is 2-5%, specifically 2%, 2.5%, 3%, 3.5%, 4%, 4.5% and 5%. The grafting agent with 2-5% can better pass through the grafting material A and the grafting material BThe positive electrode material precursors with stable structures are obtained by coupling through a chemical method, and can be shown in figures 1-2.
In some embodiments, ACO 3 And BCO 3 The mass ratio of (2) is 1:99-99:1. The specific adjustment can be carried out according to actual demands. Preferably, the first carbonate salt ACO 3 With a second carbonate salt BCO 3 The mass ratio of (2) can be 20:80-80:20. Specifically, the first carbonate salt ACO 3 With a second carbonate salt BCO 3 The mass ratio of (c) may be 20:80, 30:70, 40:60, 50:50, 60:40, 70:30 or 80:20, such as in 100g mass of the first carbonate salt ACO 3 Is 80g by mass of the second carbonate salt BCO 3 Is 20g; or a first carbonate salt ACO 3 Is 60g by mass of the second carbonate salt BCO 3 Mass of 40g, etc.
The second aspect of the present invention is directed to a method for preparing the carbonate-grafted carbonate-type positive electrode material precursor, comprising the steps of:
s1, mixing an aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt with a carbonate aqueous solution for reaction, controlling the pH value of the solution in the reaction process to be 6-9, aging, and suction-filtering to obtain first carbonate salt ACO 3
S2, mixing and reacting an aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt with a carbonate aqueous solution, controlling the pH value of the solution in the reaction process to be 6-9, aging, and suction-filtering to obtain a second carbonate salt BCO 3
S3, preparing the first carbonate salt ACO 3 With a second carbonate salt BCO 3 Mixing at 25-70 deg.c to prepare slurry; adding a solution for liquid phase reaction to form a grafting agent R into the slurry, stirring and reacting for 30-90 min, washing and drying to obtain a carbonate grafted carbonate type positive electrode material precursor ACO 3 -R-BCO 3
According to the preparation method provided by the invention, the first carbonate salt particles and the second carbonate salt particles are prepared respectively, then the two particles are mixed to prepare slurry, and the slurry are mixed at the temperature of 25-70 ℃ so as to be more beneficial to uniform mixing of the two particles; then in the slurryAdding a solution for liquid phase reaction to form a grafting agent R (the added solution can generate the grafting agent R through the liquid phase reaction), and controlling the reaction time to ensure that two carbonate salt particles are connected to the grafting agent under the action of the grafting agent, thereby forming ACO 3 -R-BCO 3 The structure is a novel positive electrode material precursor with a grafted structure.
In some embodiments, in step S1, the first carbonate salt ACO 3 The preparation method of (2) comprises the following steps: adding aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt and carbonate aqueous solution into a reactor containing water at a speed of 1-2 mL/min respectively, continuously stirring and reacting at 30-80 ℃ in an inert atmosphere, controlling the pH of the solution in the reaction process to be 6-9, continuously stirring and aging for 10-36 h after the addition, and vacuum-filtering to obtain first carbonate salt ACO 3
In some embodiments, in step S2, the second carbonate salt BCO 3 The preparation method of (2) comprises the following steps: adding aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt and carbonate aqueous solution into a reactor containing water at a speed of 1-2 mL/min respectively, continuously stirring and reacting at 30-80 ℃ in an inert atmosphere, controlling the pH of the solution in the reaction process to be 6-9, continuously stirring and aging for 10-36 h after the addition, and vacuum filtering to obtain second carbonate salt BCO 3
In some embodiments, in step S3, the solution for the liquid phase reaction to form the grafting agent R includes a first solution that is a mixed solution of a cobalt salt and a manganese salt and a second solution that is a sodium bicarbonate solution or a sodium hydroxide solution, the first and second solutions forming the grafting agent R by the liquid phase reaction to form the first carbonate salt ACO 3 With a second carbonate salt BCO 3 Grafting is performed. The second solution mainly enables cobalt and manganese in the first solution to perform coprecipitation reaction, so that a product grafting agent R is obtained through the reaction, and the grafting material A and the grafting material B are coupled together through bridging action of the grafting agent R. Preferably, the molar ratio of cobalt salt to manganese salt in the first solution is 1:1, and the grafting is carried out by adopting a mixed grafting agent solution, and experiments prove that the grafting agent is used forThe coupling effect of the grafting material A and the grafting material B is better.
In some embodiments, in step S3, the first solution and the second solution are pumped into the slurry at a rate of 0.5mL/min and 3.5mL/min, respectively, to perform a pre-reaction, and then the remaining first solution and second solution are pumped into the slurry to continue stirring and reacting, and washing and drying are performed to obtain the carbonate grafted carbonate positive electrode material precursor ACO 3 -R-BCO 3 . Firstly, pumping a part of solution into the slurry by controlling the flow rate to perform a pre-grafting reaction, and then pumping the rest of grafted solution into the slurry to stir and react, so that the grafting effect of two carbonate salts can be further ensured, and the consistency of the electrochemical performance of the subsequent positive electrode material is ensured.
2. Grafted positive electrode material
The third aspect of the invention aims to provide a preparation method of a grafted cathode material, which is characterized in that the carbonate grafted carbonate cathode material precursor is mixed with lithium salt, sintered for 6-24 hours at 750-950 ℃, cooled and ground to obtain the grafted cathode material.
In some embodiments, the sintering conditions are: firstly, heating to 750-800 ℃ at the speed of 5-7 ℃/min, and preserving heat for 2-6 h; then heating to 900-950 ℃ at the speed of 2-6 ℃/min, and preserving heat for 10-24 h. Preferably, the sintering conditions are: firstly, heating to 760 ℃ at the speed of 6 ℃/min, and preserving heat for 4 hours; then heating to 920 ℃ at the speed of 3 ℃/min, and preserving heat for 12 hours.
A fourth aspect of the present invention is directed to providing a grafted positive electrode material, such as LiNi, prepared by the method for preparing a grafted positive electrode material 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 1/3 Co 1/3 Mn 1/3 O 2 、LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiCoO 2 、LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 0.6 Co 0.4 O 2 、LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 0.6 Mn 0.4 O 2
3. Positive plate
A fifth aspect of the present invention is directed to a positive electrode sheet comprising the above-described graft type positive electrode material.
The positive plate comprises a positive current collector and a positive active layer coated on at least one surface of the positive current collector, wherein the positive active material in the positive active layer is the grafted positive material. The grafted positive electrode material is mixed with a binder and a conductive agent to prepare slurry, and then the slurry is coated on a positive electrode current collector, and the positive electrode plate is obtained after drying.
4. Lithium ion battery
The sixth aspect of the present invention is directed to a lithium ion battery, which includes a positive electrode sheet, a negative electrode sheet, and a separator spaced between the positive electrode sheet and the negative electrode sheet, where the positive electrode sheet is the positive electrode sheet described above.
The active material coated on the negative electrode sheet can be one or more of graphite, soft carbon, hard carbon, carbon fiber, mesophase carbon microsphere, silicon-based material, tin-based material, lithium titanate or other metals capable of forming alloy with lithium. Wherein, the graphite can be selected from one or more of artificial graphite, natural graphite and modified graphite; the silicon-based material can be one or more selected from simple substance silicon, silicon oxygen compound, silicon carbon compound and silicon alloy; the tin-based material can be selected from one or more of elemental tin, tin oxide and tin alloy. While the negative current collector used for the negative electrode sheet is generally a structure or a part for collecting current, the negative current collector may be various materials suitable for use as a negative current collector of a lithium ion battery in the field, for example, the negative current collector may be a metal foil, etc., and more specifically may include a copper foil, etc.
And the separator may be a variety of materials suitable for lithium ion battery separators in the art, for example, may be a combination of one or more of polyethylene, polypropylene, polyvinylidene fluoride, aramid, polyethylene terephthalate, polytetrafluoroethylene, polyacrylonitrile, polyimide, polyamide, polyester, natural fibers, and the like.
The lithium ion battery also comprises electrolyte, wherein the electrolyte comprises organic solvent and electrolyte lithium saltAnd additives. Wherein the electrolyte lithium salt can be LiPF used in high-temperature electrolyte 6 And/or LiBOB; liBF used in the low-temperature electrolyte may be used 4 、LiBOB、LiPF 6 At least one of (a) and (b); liBF used in the overcharge-preventing electrolyte may also be used 4 、LiBOB、LiPF 6 At least one of LiTFSI; liClO may also be 4 、LiAsF 6 、LiCF 3 SO 3 、LiN(CF 3 SO 2 ) 2 At least one of them. And the organic solvent may be a cyclic carbonate, including PC, EC; chain carbonates, including DFC, DMC, or EMC; carboxylic esters, including MF, MA, EA, MP, and the like, are also contemplated. And additives include, but are not limited to, film forming additives, conductive additives, flame retardant additives, overcharge prevention additives, and control of H in electrolytes 2 At least one of an additive for O and HF content, an additive for improving low temperature performance, and a multifunctional additive.
In order to make the technical scheme and advantages of the present invention more apparent, the present invention and its advantageous effects will be described in further detail below with reference to the detailed description and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
Example 1
Preparation method of carbonate grafted carbonate type positive electrode material, with structural formula of LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 1/3 Co 1/3 Mn 1/3 O 2 . Wherein the structural formula of the precursor is (Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Co 0.5 Mn 0.5 )CO 3 -(Ni 1/3 Co 1/ 3 Mn 1/3 )CO 3
The preparation method of the grafted positive electrode material precursor comprises the following steps:
S1、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 (i.e., NCM523-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 5:2:3 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain first carbonate salt NCM523-CO 3
S2、(Ni 1/3 Co 1/3 Mn 1/3 )CO 3 (i.e., NCM111-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 1:1:1 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain a second carbonate salt NCM111-CO 3
S3, preparing a positive electrode material precursor: 80g of NCM523-CO was weighed 3 And 20g NCM111-CO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (CoSO 4 :MnSO 4 Molar ratio 1: 1) At a concentration of 2mol/L, where CoSO 4 And MnSO 4 The sum of the mass of the precursor of the positive electrode material is 5 percent, and the second solution NaHCO 3 The concentration is 1mol/L; the first solution and the second solution were each used in an amount of 0.5mL Pumping the slurry at the speed of 3.5mL/min for 30min, pumping the residual first solution and the second solution into the slurry for continuous stirring reaction for 30min, washing, filtering and drying the slurry to obtain the anode material precursor NCM523-CO 3 Grafted NCM111-CO 3 Is marked as NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -NCM111-CO 3 (4:1)。
The obtained carbonate grafted carbonate type positive electrode material precursor is used for preparing a positive electrode material, and the preparation steps are as follows:
s4, obtaining NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -NCM111-CO 3 (4:1) and Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, mechanically mixing, loading the obtained mixture into a sagger, putting the sagger into a muffle furnace, heating to 760 ℃ at a speed of 6 ℃/min under the air atmosphere, and preserving heat for 2 hours; heating to 900 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; cooling to room temperature along with a furnace after solid-phase sintering, and grinding to obtain a grafted anode material LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 1/3 Co 1/3 Mn 1/3 O 2
Example 2
Unlike example 1, the preparation step S3 of the carbonate-grafted carbonate-type positive electrode material precursor.
S3, preparing a grafted positive electrode material precursor: 60g NCM523-CO is weighed 3 And 40gNCM111-CO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (CoSO 4 :MnSO 4 Molar ratio 1: 1) At a concentration of 2mol/L, naHCO as a second solution 3 The concentration is 1mol/L; pumping the first solution and the second solution into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively, reacting for 30min, pumping the rest first solution and the second solution into the slurry, continuously stirring and reacting for 30min, washing, filtering and drying the slurry to obtain a positive electrode material precursor NCM523-CO 3 Grafted NCM111-CO 3 Is marked as NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -NCM111-CO 3 (1.5:1)。
The remainder is the same as embodiment 1 and will not be described here again.
Example 3
Unlike example 1, the preparation step S3 of the carbonate-grafted carbonate-type positive electrode material precursor.
S3, preparing a grafted positive electrode material precursor: weighing 50g of NCM523-CO 3 And 50gNCM111-CO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (CoSO 4 :MnSO 4 Molar ratio 1: 1) At a concentration of 2mol/L, naHCO as a second solution 3 The concentration is 1mol/L; pumping the first solution and the second solution into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively, reacting for 30min, pumping the rest first solution and the second solution into the slurry, continuously stirring and reacting for 30min, washing, filtering and drying the slurry to obtain a positive electrode material precursor NCM523-CO 3 Grafted NCM111-CO 3 Is marked as NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -NCM111-CO 3 (1:1)。
The remainder is the same as embodiment 1 and will not be described here again.
Example 4
Preparation method of carbonate grafted carbonate type positive electrode material, with structural formula of LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiCoO 2 . Wherein the structural formula of the precursor is (Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Co 0.5 Mn 0.5 )CO 3 -CoCO 3
The preparation method of the grafted positive electrode material precursor comprises the following steps:
S1、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 (i.e., NCM523-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 5:2:3 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain first carbonate salt NCM523-CO 3
S2、CoCO 3 Precursor preparation: preparation of 2mol x L -1 CoSO of (2) 4 500mL of aqueous solution, labeled solution 1; formulation of 4mol L -1 NH of (C) 4 HCO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain second carbonate salt CoCO 3
S3, preparing a positive electrode material precursor: 80g of NCM523-CO was weighed 3 And 20g CoCO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (CoSO 4 :MnSO 4 Molar ratio 1: 1) At a concentration of 2mol/L, where CoSO 4 And MnSO 4 The sum of the mass of the precursor of the positive electrode material is 5 percent, and the second solution NaHCO 3 The concentration is 1mol/L; pumping the first solution and the second solution into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively, reacting for 30min, pumping the rest first solution and the second solution into the slurry, continuously stirring and reacting for 30min, washing, filtering and drying the slurry to obtain a positive electrode material precursor NCM523-CO 3 Grafting CoCO 3 Is marked as NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -CoCO 3 (4:1)。
The obtained carbonate grafted carbonate type positive electrode material precursor is used for preparing a positive electrode material, and the preparation steps are as follows:
S4, obtaining NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -CoCO 3 (4:1) and Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, mechanically mixing, loading the obtained mixture into a sagger, putting the sagger into a muffle furnace, heating to 760 ℃ at a speed of 6 ℃/min under the air atmosphere, and preserving heat for 2 hours; heating to 900 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; cooling to room temperature along with a furnace after solid-phase sintering, and grinding to obtain a grafted anode material LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 1/3 Co 1/3 Mn 1/3 O 2
Example 5
Unlike example 4, the preparation step S3 of the carbonate-grafted carbonate-type positive electrode material precursor.
S3, preparing a grafted positive electrode material precursor: 60g NCM523-CO is weighed 3 And 40g CoCO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (CoSO 4 :MnSO 4 Molar ratio 1: 1) At a concentration of 2mol/L, naHCO as a second solution 3 The concentration is 1mol/L; pumping the first solution and the second solution into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively, reacting for 30min, pumping the rest first solution and the second solution into the slurry, continuously stirring and reacting for 30min, washing, filtering and drying the slurry to obtain a positive electrode material precursor NCM523-CO 3 Grafting CoCO 3 Is marked as NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -CoCO 3 (1.5:1)。
The remainder is the same as embodiment 4 and will not be described here again.
Example 6
Unlike example 4, the preparation step S3 of the carbonate-grafted carbonate-type positive electrode material precursor.
S3, preparing a grafted positive electrode material precursor: weighing 50g of NCM523-CO 3 And 50g CoCO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (CoSO 4 :MnSO 4 Molar ratio 1: 1) At a concentration of 2mol/L, naHCO as a second solution 3 The concentration is 1mol/L; pumping the first solution and the second solution into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively, reacting for 30min, pumping the rest first solution and the second solution into the slurry, continuously stirring and reacting for 30min, washing, filtering and drying the slurry to obtain a positive electrode material precursor NCM523-CO 3 Grafting CoCO 3 Is marked as NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -CoCO 3 (1:1)。
The remainder is the same as embodiment 4 and will not be described here again.
Example 7
Preparation method of carbonate grafted carbonate type positive electrode material, with structural formula of LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 0.6 Co 0.2 Mn 0.2 O 2 . Wherein the structural formula of the precursor is (Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Co 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Co 0.2 Mn 0.2 )CO 3
The preparation method of the grafted positive electrode material precursor comprises the following steps:
S1、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 (i.e., NCM523-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 5:2:3 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain first carbonate salt NCM523-CO 3
S2、(Ni 0.6 Co 0.2 Mn 0.2 )CO 3 (i.e., NCM622-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 6:2:2 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain a second carbonate salt NCM622-CO 3
S3, preparing a positive electrode material precursor: 80g of NCM523-CO was weighed 3 And 20g NCM622-CO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (CoSO 4 :MnSO 4 Molar ratio 1: 1) At a concentration of 2mol/L, where CoSO 4 And MnSO 4 The sum of the mass of the precursor of the positive electrode material is 5 percent, and the second solution NaHCO 3 The concentration is 1mol/L; pumping the first solution and the second solution into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively, reacting for 30min, pumping the rest first solution and the second solution into the slurry, continuously stirring and reacting for 30min, washing, filtering and drying the slurry to obtain a positive electrode material precursor NCM523-CO 3 Grafted NCM622-CO 3 Is marked as NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -NCM622-CO 3 (4:1)。
The obtained carbonate grafted carbonate type positive electrode material precursor is used for preparing a positive electrode material, and the preparation steps are as follows:
s4, obtaining NCM523-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -NCM622-CO 3 (4:1) and Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, mechanically mixing, loading the obtained mixture into a sagger, putting the sagger into a muffle furnace, heating to 760 ℃ at a speed of 6 ℃/min under the air atmosphere, and preserving heat for 2 hours; heating to 900 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; cooling to room temperature along with a furnace after solid-phase sintering, and grinding to obtain a grafted anode material LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 1/3 Co 1/3 Mn 1/3 O 2
Example 8
Preparation method of carbonate grafted carbonate type positive electrode material, with structural formula of LiNi 0.6 Co 0.2 Mn 0.2 O 2 -LiNi 1/3 Co 1/3 Mn 1/3 O 2 . Wherein the structural formula of the precursor is (Ni 0.6 Co 0.2 Mn 0.2 )CO 3 -(Co 0.5 Mn 0.5 )CO 3 -(Ni 1/3 Co 1/ 3 Mn 1/3 )CO 3
The preparation method of the grafted positive electrode material precursor comprises the following steps:
S1、(Ni 0.6 Co 0.2 Mn 0.2 )CO 3 (i.e., NCM622-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 6:2:2 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protect and secureThe reaction temperature is kept at 30-80 ℃ and the stirring speed is 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain first carbonate salt NCM622-CO 3
S2、(Ni 1/3 Co 1/3 Mn 1/3 )CO 3 (i.e., NCM111-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 1:1:1 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain a second carbonate salt NCM111-CO 3
S3, preparing a positive electrode material precursor: 80g NCM622-CO was weighed 3 And 20g NCM111-CO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (CoSO 4 :MnSO 4 Molar ratio 1: 1) At a concentration of 2mol/L, where CoSO 4 And MnSO 4 The sum of the mass of the precursor of the positive electrode material is 5 percent, and the second solution NaHCO 3 The concentration is 1mol/L; pumping the first solution and the second solution into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively, reacting for 30min, pumping the rest first solution and the second solution into the slurry, continuously stirring and reacting for 30min, washing, filtering and drying the slurry to obtain a positive electrode material precursor NCM622-CO 3 Grafted NCM111-CO 3 Recorded as NCM622-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -NCM111-CO 3 (4:1)。
The obtained carbonate grafted carbonate type positive electrode material precursor is used for preparing a positive electrode material, and the preparation steps are as follows:
S4, obtaining NCM622-CO 3 -(Co 0.5 Mn 0.5 )CO 3 -NCM111-CO 3 (4:1) and Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, mechanically mixing, loading the obtained mixture into a sagger, putting the sagger into a muffle furnace, heating to 760 ℃ at a speed of 6 ℃/min under the air atmosphere, and preserving heat for 2 hours; heating to 900 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; cooling to room temperature along with a furnace after solid-phase sintering, and grinding to obtain a grafted anode material LiNi 0.6 Co 0.2 Mn 0.2 O 2 -LiNi 1/3 Co 1/3 Mn 1/3 O 2
Example 9
Preparation method of carbonate grafted carbonate type positive electrode material, with structural formula of LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 0.6 Co 0.4 O 2 . Wherein the structural formula of the precursor is (Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Ni 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Co 0.4 )CO 3
The preparation method of the grafted positive electrode material precursor comprises the following steps:
S1、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 (i.e., NCM523-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 5:2:3 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; at the same time throughDropwise adding ammonia water to control the pH value of the solution in the reaction process to be 6-9; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain first carbonate salt NCM523-CO 3
S2、(Ni 0.6 Co 0.4 )CO 3 (i.e. NiCo-CO) 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 6:4 4 、CoSO 4 Is (Ni) 2+ 、Co 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain a second carbonate salt NiCo-CO 3
S3, preparing a positive electrode material precursor: 60g NCM523-CO is weighed 3 And 40g of NiCo-CO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (NiSO 4 :MnSO 4 Molar ratio 1: 1) The concentration is 2mol/L, wherein, niSO 4 And MnSO 4 The sum of the mass of the precursor of the positive electrode material is 5 percent, and the second solution NaHCO 3 The concentration is 1mol/L; pumping the first solution and the second solution into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively, reacting for 30min, pumping the rest first solution and the second solution into the slurry, continuously stirring and reacting for 30min, washing, filtering and drying the slurry to obtain a positive electrode material precursor NCM523-CO 3 Grafting (Ni) 0.6 Co 0.4 )CO 3 Is marked as NCM523-CO 3 -(Ni 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Co 0.4 )CO 3 (1.5:1)。
The obtained carbonate grafted carbonate type positive electrode material precursor is used for preparing a positive electrode material, and the preparation steps are as follows:
s4, obtaining NCM523-CO 3 -(Ni 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Co 0.4 )CO 3 (1.5:1) and Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, mechanically mixing, loading the obtained mixture into a sagger, putting the sagger into a muffle furnace, heating to 760 ℃ at a speed of 6 ℃/min under the air atmosphere, and preserving heat for 2 hours; heating to 900 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; cooling to room temperature along with a furnace after solid-phase sintering, and grinding to obtain a grafted anode material LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 0.6 Co 0.4 O 2
Example 10
Preparation method of carbonate grafted carbonate type positive electrode material, with structural formula of LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 0.6 Mn 0.4 O 2 . Wherein the structural formula of the precursor is (Ni 0.5 Co 0.2 Mn 0.3 )CO 3 -(Ni 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Mn 0.4 )CO 3
The preparation method of the grafted positive electrode material precursor comprises the following steps:
S1、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 (i.e., NCM523-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 5:2:3 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; at the position of Continuously stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain first carbonate salt NCM523-CO 3
S2、Ni 0.6 Mn 0.4 CO 3 (i.e. NiMn-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 6:4 4 、MnSO 4 Is (Ni) 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain a second carbonate salt NiMn-CO 3
S3, preparing a positive electrode material precursor: 60g NCM523-CO is weighed 3 And 40g of NiMn-CO 3 Dispersing in 100g deionized water, and stirring at 60 ℃ to prepare slurry; preparing a solution (for generating grafting agent R by liquid phase reaction): comprises a first solution (NiSO 4 :MnSO 4 Molar ratio 1: 1) The concentration is 2mol/L, wherein, niSO 4 And MnSO 4 The sum of the mass of the precursor of the positive electrode material is 5 percent, and the second solution NaHCO 3 The concentration is 1mol/L; pumping the first solution and the second solution into the slurry at the rates of 0.5mL/min and 3.5mL/min respectively, reacting for 30min, pumping the rest first solution and the second solution into the slurry, continuously stirring and reacting for 30min, washing, filtering and drying the slurry to obtain a positive electrode material precursor NCM523-CO 3 Grafting (Ni) 0.6 Mn 0.4 )CO 3 Is marked as NCM523-CO 3 -(Ni 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Mn 0.4 )CO 3 (1.5:1)。
The obtained carbonate grafted carbonate type positive electrode material precursor is used for preparing a positive electrode material, and the preparation steps are as follows:
s4, obtaining NCM523-CO 3 -(Ni 0.5 Mn 0.5 )CO 3 -(Ni 0.6 Mn 0.4 )CO 3 (1.5:1) and Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, mechanically mixing, loading the obtained mixture into a sagger, putting the sagger into a muffle furnace, heating to 760 ℃ at a speed of 6 ℃/min under the air atmosphere, and preserving heat for 2 hours; heating to 900 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; cooling to room temperature along with a furnace after solid-phase sintering, and grinding to obtain a grafted anode material LiNi 0.5 Co 0.2 Mn 0.3 O 2 -LiNi 0.6 Mn 0.4 O 2
Comparative example 1
The preparation method of the positive electrode material comprises the following steps:
S1、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 (i.e., NCM523-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 5:2:3 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain first carbonate salt NCM523-CO 3
S2, NCM523-CO 3 With Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, mechanically mixing, loading the obtained mixture into a sagger, putting the sagger into a muffle furnace, heating to 760 ℃ at a speed of 6 ℃/min under the air atmosphere, and preserving heat for 2 hours; heating to 900 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; solid phase sinteringThen cooling to room temperature along with the furnace, grinding to obtain a first anode material LiNi 0.5 Co 0.2 Mn 0.3 O 2
S3、(Ni 1/3 Co 1/3 Mn 1/3 )CO 3 (i.e., NCM111-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 1:1:1 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain a second carbonate salt NCM111-CO 3
S4, NCM111-CO 3 With Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, mechanically mixing, loading the obtained mixture into a sagger, putting the sagger into a muffle furnace, heating to 760 ℃ at a speed of 6 ℃/min under the air atmosphere, and preserving heat for 2 hours; heating to 900 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; cooling to room temperature along with a furnace after solid-phase sintering, and grinding to obtain a second anode material Li Ni 1/3 Co 1/3 Mn 1/3 O 2
S5, mixing the first positive electrode material and the second positive electrode material according to a mass ratio of 80: and 20, mechanically and uniformly mixing to obtain the composite anode material.
Comparative example 2
The preparation method of the positive electrode material comprises the following steps:
S1、(Ni 0.5 Co 0.2 Mn 0.3 )CO 3 (i.e., NCM523-CO 3 ) Precursor preparation: preparing NiSO according to a molar ratio of 5:2:3 4 、CoSO 4 、MnSO 4 Is (Ni) 2+ 、Co 2+ 、Mn 2+ Is 2 mol.L -1 ) 500mL, labeled solution 1; formulation of 4mol L -1 Na of (2) 2 CO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain first carbonate salt NCM523-CO 3
S2, NCM523-CO 3 With Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, mechanically mixing, loading the obtained mixture into a sagger, putting the sagger into a muffle furnace, heating to 760 ℃ at a speed of 6 ℃/min under the air atmosphere, and preserving heat for 2 hours; heating to 900 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; cooling to room temperature along with a furnace after solid-phase sintering, and grinding to obtain a first anode material Ni 1/3 Co 1/3 Mn 1/3
S3、CoCO 3 Precursor preparation: preparation of 2mol x L -1 CoSO of (2) 4 500mL of aqueous solution, labeled solution 1; formulation of 4mol L -1 NH of (C) 4 HCO 3 500mL of solution, labeled solution 2; solution 1 and solution 2 were fed into a five-neck flask reactor with 100mL of deionized water at a rate of about 1mL/min by a peristaltic pump and reacted with stirring, and N was introduced during the reaction 2 Protecting and keeping the reaction temperature at 30-80 ℃ and stirring at 500rpm/min; simultaneously controlling the pH value of the solution in the reaction process to be 6-9 by dropwise adding ammonia water; continuing stirring for 24 hours after the addition of the solution 1 and the solution 2 is finished so as to age; after the aging is finished, the obtained precipitate is filtered in vacuum to obtain second carbonate salt CoCO 3
S4, coCO 3 With Li 2 CO 3 According to a metal/Li molar ratio of 1:1.05, placing the obtained mixture into a sagger, placing into a muffle furnace, and heating to 6 deg.C/min under air atmospherePreserving heat for 2h at 760 ℃; heating to 940 ℃ at a speed of 3 ℃/min, and preserving heat for 12 hours; cooling to room temperature along with a furnace after solid-phase sintering, and grinding to obtain a second anode material LiCoO 2
S5, mixing the first positive electrode material and the second positive electrode material according to a mass ratio of 80: and 20, mechanically and uniformly mixing to obtain the composite anode material.
The above positive electrode material component ingredients were finished as shown in table 1 below.
TABLE 1
First carbonate salt Second carbonate salt
Example 1 80g NCM523-CO 3 20g NCM111-CO 3
Example 2 60g NCM523-CO 3 40g NCM111-CO 3
Example 3 50g NCM523-CO 3 50g NCM111-CO 3
Example 4 80g NCM523-CO 3 20g CoCO 3
Example 5 60g NCM523-CO 3 40g CoCO 3
Example 6 50g NCM523-CO 3 50g CoCO 3
Example 7 80g NCM523-CO 3 20g NCM622-CO 3
Example 8 80g NCM622-CO 3 20g NCM111-CO 3
Example 9 60g NCM523-CO 3 40g NiCo-CO 3
Example 10 60g NCM523-CO 3 40g NiMn-CO 3
The carbonate-grafted carbonate-type positive electrode material precursor obtained in example 1 was subjected to electron microscopic examination and X-ray diffraction analysis, see SEM and XRD patterns shown in fig. 1 to 2. As can be seen from fig. 1 to 2, the grafted positive electrode material precursor provided by the invention has successfully completed grafting of two carbonate salts, and the grafted precursor structure is not destroyed, so that the grafting effect is good.
In addition, electron microscopic examination and X-ray diffraction analysis were also performed on the grafted cathode material obtained in example 1. As can be seen from SEM and XRD patterns of fig. 3 to 4, the grafted cathode material obtained in the present invention is converted into a cathode material after sintering, and has a layered structure.
The grafted positive electrode materials obtained in examples 1 to 10 and comparative examples 1 to 2 were used in positive electrode sheets, and the preparation method was as follows: and mixing the grafted positive electrode material with super P and PVDF binder according to the mass ratio of 95:2:3 to prepare slurry, so as to obtain the positive electrode plate, wherein the mass of the grafted positive electrode material is 500g, and the specific preparation method can be seen in the preparation of the existing positive electrode plate.
Preparing the obtained positive plate into a full battery, testing the cycle performance, taking natural graphite as a negative electrode material, and taking 1mol/L LiPF as electrolyte 6 EC, DMC, EMC (volume ratio 1:1:1) of (with additives), the separator was a celgard2400 polypropylene film, and a soft-pack full cell (404050) was made. The additives in the electrolyte can be referred to as conventional electrolyte additive settings, and will not be described herein.
Performance test:
1) Capacity exertion test a: (4.2-2.75V, RT, 0.2C/0.2C): charging the formed 0.2C constant current to a cut-off voltage of 4.2V, and stopping constant voltage until the current is less than 0.05C; the 0.2C constant current discharges to a cut-off voltage of 2.75V. And multiplying the constant current discharge time by the discharge current and dividing the discharge current by the mass of the positive electrode material to obtain the capacity exertion.
Capacity exertion test B: (4.35-2.75V, RT, 0.2C/0.2C): charging the formed 0.2C constant current to a cut-off voltage of 4.35V, and stopping constant voltage until the current is less than 0.05C; the 0.2C constant current discharges to a cut-off voltage of 2.75V. And multiplying the constant current discharge time by the discharge current and dividing the discharge current by the mass of the positive electrode material to obtain the capacity exertion.
2) Cycle performance test a: at 25+ -2deg.C, the lithium ion secondary battery is charged to 4.2V at a constant current of 1C, then charged to 0.05C at a constant voltage of 4.2V, left for 5min, and then discharged to 2.75V at a constant current of 1C, which is a charge-discharge cycle process, and the discharge capacity at this time is the discharge capacity of the first cycle. The battery was subjected to a cyclic charge-discharge test according to the above method, and the discharge capacity per cycle was recorded.
Cycle performance test B: at 55+ -2deg.C, the lithium ion secondary battery is charged to 4.35V at a constant current of 1C, then charged to 0.05C at a constant voltage of 4.35V, left for 5min, and then discharged to 2.75V at a constant current of 1C, which is a charge-discharge cycle process, and the discharge capacity at this time is the discharge capacity of the first cycle. The battery was subjected to a cyclic charge-discharge test according to the above method, and the discharge capacity per cycle was recorded.
3) Overcharge resistance test: at room temperature, each group of 10 cells was discharged to 3.0V at 0.5C, and then subjected to a 1C/10V overcharge test. A thermocouple and a temperature acquisition instrument (HIOKI, LR 8501) are added on the battery core, the positive electrode and the negative electrode of the battery core are connected with a constant current and constant voltage source (Agilent, 34410A), the current is regulated to 1C, the voltage is 10V until the current is reduced to 0A, and the temperature change and the swelling condition of the battery core are monitored in the overcharging process.
The test results are shown in Table 2 below.
TABLE 2
From the test results, the positive electrode material of the carbonate type salt grafted carbonate type salt provided by the invention is applied to a battery, and the cycle performance, high-temperature cycle performance, charging and other safety performances of the battery are effectively improved. The invention mainly aims at coupling two carbonate salts together by adopting a chemical grafting method in a precursor end grafting mode, achieving the aim of uniformly mixing different types of materials, effectively solving the problems of uneven slurry dispersion and poor pole piece uniformity in the application process of the existing direct-mixed positive electrode material in a lithium ion battery, more importantly solving the problem of unbalanced local potential of different types of materials in the charging and discharging processes, improving the electrochemical performance of the positive electrode material in the battery, and finally realizing the larger improvement of the comprehensive performance of the grafted positive electrode material.
In addition, as can be seen from the comparison of examples 1 to 10, the precursor is prepared by different methods and different contents, and the finally obtained positive electrode material has different effects on the cycle performance, high-temperature cycle performance, charging and other safety performances of the lithium ion battery. When the mass ratio of two carbonates is 4: and 1, preparing a precursor, and obtaining better battery cycle performance, high-temperature cycle performance, charging safety performance and the like.
In summary, the cathode material precursor of carbonate salt grafted carbonate salt solves the problems of uneven slurry dispersion, poor pole piece uniformity and inconsistent electrochemical performance of the material in the application process of the lithium ion battery of the current mixed cathode material, and effectively improves the cycle performance of the battery.
Variations and modifications of the above embodiments will occur to those skilled in the art to which the invention pertains from the foregoing disclosure and teachings. Therefore, the present invention is not limited to the above-described embodiments, but is intended to be capable of modification, substitution or variation in light thereof, which will be apparent to those skilled in the art in light of the present teachings. In addition, although specific terms are used in the present specification, these terms are for convenience of description only and do not limit the present invention in any way.

Claims (10)

1. A carbonate grafted carbonate type positive electrode material precursor is characterized in that the structural formula is ACO 3 -R-BCO 3 A and B are Ni 1-a-b Co a Mn b Z c Wherein a is more than or equal to 0 and less than or equal to 1; b is more than or equal to 0 and less than or equal to 1; a+b is more than 0 and less than or equal to 1; c is more than or equal to 0 and less than or equal to 1, the molar ratio of nickel, cobalt and manganese in A is different from the molar ratio of nickel, cobalt and manganese in B, and Z is at least one of Al, mg, ti, B, zr, bi, mo, P and rare earth elements; r is a grafting agent comprising Ni, co, mn, al, mg, si, ti, B, zr, bi, mo, P and at least one element of rare earth elements;
Wherein R is (M) x N y )CO 3 Or (M) x N y )(OH) 2 X is more than 0 and less than 1; y is more than 0 and less than 1; x+y is more than 0 and less than or equal to 1; m and N are selected from different elements, and are at least one element of Ni, co, mn, al, mg, si, ti, B, zr, bi, mo, P and rare earth elements;
wherein the mass of R is ACO 3 And BCO 3 1 to 10 percent of the sum of the mass.
2. The carbonate grafted carbonate positive electrode material precursor according to claim 1, wherein ACO 3 And BCO 3 The mass ratio of (2) is 1:99-99:1.
3. A method for preparing a carbonate grafted carbonate positive electrode material precursor according to any of claims 1-2, comprising the steps of:
s1, mixing an aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt with a carbonate aqueous solution for reaction, controlling the pH value of the solution in the reaction process to be 6-9, aging, and suction-filtering to obtain first carbonate salt ACO 3
S2, mixing and reacting an aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt with a carbonate aqueous solution, controlling the pH value of the solution in the reaction process to be 6-9, aging, and suction-filtering to obtain a second carbonate salt BCO 3
S3, preparing the first carbonate salt ACO 3 With a second carbonate salt BCO 3 Mixing at 25-70 deg.c to prepare slurry; adding a solution for liquid phase reaction to form a grafting agent R into the slurry, stirring and reacting for 30-90 min, washing and drying to obtain a carbonate grafted carbonate type positive electrode material precursor ACO 3 -R-BCO 3
4. The method for preparing a carbonate-grafted carbonate-type positive electrode material precursor according to claim 3, wherein in step S1, the first carbonate-type salt ACO 3 The preparation method of (2) comprises the following steps: adding aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt and carbonate aqueous solution into water at the speed of 1-2 mL/min respectivelyIn the reactor of (2), continuously stirring and reacting at 30-80 ℃ in inert atmosphere, controlling the pH of the solution in the reaction process to be 6-9, continuously stirring and aging for 10-36 h after the addition is finished, and vacuum-filtering to obtain the first carbonate salt ACO 3
5. The method for preparing a carbonate-grafted carbonate-type positive electrode material precursor according to claim 3, wherein in step S2, the second carbonate-type salt BCO 3 The preparation method of (2) comprises the following steps: adding aqueous solution containing nickel salt, cobalt salt, manganese salt and Z salt and carbonate aqueous solution into a reactor containing water at a speed of 1-2 mL/min respectively, continuously stirring and reacting at 30-80 ℃ in an inert atmosphere, controlling the pH of the solution in the reaction process to be 6-9, continuously stirring and aging for 10-36 h after the addition, and vacuum filtering to obtain second carbonate salt BCO 3
6. The method for preparing a carbonate-grafted carbonate-type cathode material precursor according to claim 3, wherein in step S3, the solution for forming the grafting agent R by the liquid phase reaction comprises a first solution and a second solution, the first solution is a mixed solution of cobalt salt and manganese salt, the second solution is a sodium bicarbonate solution or a sodium hydroxide solution, and the first solution and the second solution form the grafting agent R by the liquid phase reaction to ACO the first carbonate-type salt 3 With a second carbonate salt BCO 3 Grafting is performed.
7. A preparation method of a grafted cathode material, which is characterized in that the carbonate grafted carbonate cathode material precursor according to any one of claims 1-2 is mixed with lithium salt, sintered for 6-24 hours at 750-950 ℃, cooled and ground to obtain the grafted cathode material.
8. A grafted positive electrode material prepared by the method for preparing a grafted positive electrode material according to claim 7.
9. A positive electrode sheet comprising the grafted positive electrode material of claim 8.
10. A lithium ion battery comprising a positive plate, a negative plate and a diaphragm spaced between the positive plate and the negative plate, wherein the positive plate is the positive plate of claim 9.
CN202210330370.6A 2022-03-31 2022-03-31 Carbonate grafted carbonate type positive electrode material precursor and preparation method and application thereof Active CN114516664B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210330370.6A CN114516664B (en) 2022-03-31 2022-03-31 Carbonate grafted carbonate type positive electrode material precursor and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210330370.6A CN114516664B (en) 2022-03-31 2022-03-31 Carbonate grafted carbonate type positive electrode material precursor and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN114516664A CN114516664A (en) 2022-05-20
CN114516664B true CN114516664B (en) 2024-04-02

Family

ID=81600522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210330370.6A Active CN114516664B (en) 2022-03-31 2022-03-31 Carbonate grafted carbonate type positive electrode material precursor and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN114516664B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552327A (en) * 2015-12-18 2016-05-04 哈尔滨工业大学 Lithium metal oxide composite positive electrode material with multilayer structure, precursor material for constituting same, and preparation method and application for precursor material
CN107240712A (en) * 2016-03-28 2017-10-10 赵孝连 Lithium ion battery oxidative grafting presoma, positive electrode and its preparation method and application
CN108448075A (en) * 2018-02-05 2018-08-24 河南师范大学 A kind of lithium ion battery manganese base composite positive pole and preparation method thereof
WO2018162165A1 (en) * 2017-03-08 2018-09-13 Umicore Precursors of cathode materials for a rechargeable lithium ion battery
CN108866328A (en) * 2018-04-27 2018-11-23 湖南邦普循环科技有限公司 The method of iron aluminium is removed in a kind of nickel cobalt manganese solution
CN113044891A (en) * 2021-03-09 2021-06-29 高点(深圳)科技有限公司 Preparation method of surface grafting type high-voltage lithium cobaltate, surface grafting type high-voltage lithium cobaltate and application thereof
CN113363474A (en) * 2021-03-19 2021-09-07 万向一二三股份公司 Method for coating lithium-rich manganese-based positive electrode material by using sol-gel method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7435402B2 (en) * 2002-11-01 2008-10-14 U Chicago Argonne Llc Method and apparatus for preparation of spherical metal carbonates and lithium metal oxides for lithium rechargeable batteries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552327A (en) * 2015-12-18 2016-05-04 哈尔滨工业大学 Lithium metal oxide composite positive electrode material with multilayer structure, precursor material for constituting same, and preparation method and application for precursor material
CN107240712A (en) * 2016-03-28 2017-10-10 赵孝连 Lithium ion battery oxidative grafting presoma, positive electrode and its preparation method and application
WO2018162165A1 (en) * 2017-03-08 2018-09-13 Umicore Precursors of cathode materials for a rechargeable lithium ion battery
CN108448075A (en) * 2018-02-05 2018-08-24 河南师范大学 A kind of lithium ion battery manganese base composite positive pole and preparation method thereof
CN108866328A (en) * 2018-04-27 2018-11-23 湖南邦普循环科技有限公司 The method of iron aluminium is removed in a kind of nickel cobalt manganese solution
CN113044891A (en) * 2021-03-09 2021-06-29 高点(深圳)科技有限公司 Preparation method of surface grafting type high-voltage lithium cobaltate, surface grafting type high-voltage lithium cobaltate and application thereof
CN113363474A (en) * 2021-03-19 2021-09-07 万向一二三股份公司 Method for coating lithium-rich manganese-based positive electrode material by using sol-gel method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三元镍钴锰正极材料的制备及改性;邵奕嘉;黄斌;刘全兵;廖世军;;化学进展;20180424(第04期);全文 *
邵奕嘉 ; 黄斌 ; 刘全兵 ; 廖世军 ; .三元镍钴锰正极材料的制备及改性.化学进展.2018,(04),全文. *

Also Published As

Publication number Publication date
CN114516664A (en) 2022-05-20

Similar Documents

Publication Publication Date Title
EP1751809B1 (en) Lithium metal oxide materials and methods of synthesis and use
US9054379B2 (en) Electrode composite material, method for making the same, and lithium ion battery using the same
CN108336326A (en) Positive active material for lithium secondary battery and preparation method thereof and lithium secondary battery
US9991511B2 (en) Composite cathode active material, lithium battery including the same, and method of preparing the same
KR20150070853A (en) Composite cathode active material, cathode, lithium battery comprising the same, and preparation method thereof
KR101802517B1 (en) Cathod active material, method for preparing the same, lithium secondary battery comprising the same
KR20120056674A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2016176928A1 (en) Negative electrode material, preparation method therefor, and lithium-ion secondary battery using the negative electrode material
JP2009026514A (en) Nonaqueous electrolyte secondary battery
CN111771301A (en) Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
KR102368363B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR100812547B1 (en) Positive active material for lithium secondary battery, method for preparing same, and lithium secondary battery including same
CN114613963B (en) Negative electrode material, preparation method thereof, negative electrode sheet and secondary battery
CN114516664B (en) Carbonate grafted carbonate type positive electrode material precursor and preparation method and application thereof
CN114590852B (en) Hydroxide grafted oxide type positive electrode material precursor, and preparation method and application thereof
CN114873654B (en) Grafted positive electrode material precursor and preparation method and application thereof
CN114671469B (en) Carbonate grafted oxide type positive electrode material precursor and preparation method and application thereof
CN114604909B (en) Grafted positive electrode material precursor and preparation method and application thereof
KR101627847B1 (en) Positive active material for rechargeable lithium battery, and method for manufacturing the same
CN114883555B (en) Multiphase manganese material, preparation method thereof, positive plate and secondary battery
CN113555537B (en) Positive electrode material, preparation method thereof, positive electrode plate and lithium ion battery
CN114551827A (en) Negative electrode material, preparation method thereof, negative plate and secondary battery
CN116190554A (en) Modified positive electrode material, preparation method and application thereof
CN116409828A (en) High-nickel positive electrode material, preparation method thereof, battery and application
CN114784234A (en) Composite modified lithium-rich manganese-based positive electrode material and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant