CN114482995A - 一种细粒沉积物泥质含量精细确定方法 - Google Patents

一种细粒沉积物泥质含量精细确定方法 Download PDF

Info

Publication number
CN114482995A
CN114482995A CN202210233604.5A CN202210233604A CN114482995A CN 114482995 A CN114482995 A CN 114482995A CN 202210233604 A CN202210233604 A CN 202210233604A CN 114482995 A CN114482995 A CN 114482995A
Authority
CN
China
Prior art keywords
content
shale content
data
core
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210233604.5A
Other languages
English (en)
Other versions
CN114482995B (zh
Inventor
程超
贺书洲
焦世祥
李培彦
张亮
李�杰
叶榆
高妍
陈雁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202210233604.5A priority Critical patent/CN114482995B/zh
Publication of CN114482995A publication Critical patent/CN114482995A/zh
Application granted granted Critical
Publication of CN114482995B publication Critical patent/CN114482995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明的目的在于提供一种细粒沉积物泥质含量精细确定方法,首先基于储层沉积特征及测井曲线组合特征,划分出单井沉积微相剖面。其次根据岩心分析、粒度等实验结果,以不同的粒度值完成不同类型沉积微相泥质含量的标定。再经过岩心深度归位后,根据不同类型的沉积微相地层的测井响应特征提取测井特征参数,并建立训练数据集和检验数据集。针对训练集采用LSTM神经网络的方法进行训练,建立泥质含量计算模型。然后用检验集进行模型检验,满足精度要求后进行推广应用。实践证明,该方法能准确计算复杂沉积环境下细粒沉积物低阻储层的泥质含量,为该类储层孔隙度、饱和度等其他储层参数的计算打下重要的基础,并具有广泛应用及推广前景。

Description

一种细粒沉积物泥质含量精细确定方法
技术领域
本发明涉及地球物理勘探领域,属于测井资料处理评价技术,具体为一种细粒沉积物泥质含量精细确定方法,是一种以粒度实验分析和沉积微相划分为基础,基于机器学习算法的泥质含量精细计算方法,适用于类似珠江口盆地文昌油田群细粒沉积地层的泥质含量参数计算。
背景技术
弱水动力环境下的细粒沉积地层往往发育低阻油气层,较为典型的例子就是南海北部珠江口盆地文昌油田群。区内浅海陆棚环境下的珠江组一段广泛发育大量电阻率接近1Ω.m的低阻油层,具有粒度细、泥质含量高、束缚水饱和度高的特点,大大增加了储集层参数精确评价和流体识别的难度。众所周知,对于泥质砂岩地层来说,准确的泥质含量计算模型是求准其它储层参数的关键。目前泥质含量的计算模型较多,计算方法也相对比较成熟,归纳起来主要有三类。一类是利用自然电位、自然伽马(GR)或自然伽马能谱等单条能反应泥质含量的测井曲线采用经验公式逐一计算泥质含量进行定量,再经过组合得到最终结果(王晓光,2017;雍世和,1996;袁义东,2017;张绍芳,2016)。如专利CN202110513391.7(杨林等,2021)公开了一种利用自然伽马(GR)曲线求取泥质含量的方法。专利CN202011282762.7(王猛,2020)按地层的伽马值大小划分为不同的类型,利用自然伽马(GR)曲线计算多条泥质含量曲线,通过曲线等级评估后再进行组合最终得到泥质含量。专利CN201811138450.1(***,2018)公开了一种经过SP和GR曲线进行加权处理后计算泥质指数模型。二类是基于三孔隙度测井曲线(声波、中子、密度),采用两两交会的方法计算泥质含量(邱潇,2019;孟凡霄,2019;张德梅,2011)。三类是选取与泥质含量关系密切的多条测井曲线采用多元回归或BP神经网络的方法对泥质含量进行预测。如专利CN201911286140.9(李丙龙,2019)公开了一种基于神经网络的泥质含量预测方法,其侧重于针对不同测井曲线类型而进行。第一类方法和第二类方法在泥质含量与测井曲线之间的相关性较好时能得到比较满意的结果,但在文昌油田群细粒沉积物储层的泥质含量计算的应用中效果并不理想。经岩心数据检验,多元回归法和BP神经网络法在精度上有所提高,但仍不能满足现场的精细评价要求。主要原因在于(1)岩石颗粒细,填隙物含量高,泥质含量与GR曲线等单一曲线间关系复杂;(2)岩石薄片和粒度分析资料表明不同沉积微相类型的岩石具有不同的岩石学特征,难以建立统一的泥质含量模型;(3)以上模型未考虑不同沉积微相储层的具体特点和差异。
发明内容
为了克服上述计算泥质含量方法在实际应用中存在的一些不足,本发明的目的在于提供一种细粒沉积物泥质含量精细确定方法,以粒度分析实验为基础,沉积微相控制下的细粒沉积物岩心泥质含量标定思路,对比长期以来用同一粒度标准标定岩心泥质含量的方法,更加符合地质规律,精度更好。该方法,考虑了地层沉积层序时间序列和泥质含量、测井曲线的深度序列关系,使用在序列建模问题上优势明显的LSTM神经网络算法,对于解决泥质含量与自然伽马曲线具有复杂关系的细粒沉积物效果良好。
为了达到上述目的,本发明的技术方案为:
一种细粒沉积物泥质含量精细确定方法,包括以下步骤:
步骤一:沉积微相类型划分。在区域沉积大背景下,以沉积相为基础,结合岩心分析和录井等资料,依据测井曲线的组合特征划分出沉积微相类型。
步骤二:开展粒度实验。用筛析法等手段对研究区的岩心开展粒度分析实验,得到的粒度实验数据(φ值)用于泥质含量参数的标定。
步骤三:将用于粒度分析实验的岩心深度归位到测井深度。
步骤四:制作岩心泥质含量标签数据。由于不同沉积微相类型的碎屑岩粒度不同,因此可用粒度分析数据按沉积微相类型对泥质含量参数进行分类精细标定,将标定后的数据组合后得到岩心泥质含量标签数据。
步骤五:提取表征泥质含量的特征参数。采用主成分分析法等降维方法提取表征岩心泥质含量的测井特征参数。经分析研究区表征泥质含量的测井特征参数曲线有自然伽马(GR)、自然电位(SP)、补偿中子(CNL)、补偿声波(AC)、深感应电阻率(Rt)。
步骤六:建立训练数据集和测试数据集。将步骤四得到的岩心泥质含量标签数据、步骤五得到的测井特征参数组合成标签数据库,用其中80%的数据作为模型训练数据,剩余20%的数据作为模型测试数据。
步骤七:使用LSTM神经网络算法建立泥质含量计算模型。考虑了地层沉积层序时间序列和泥质含量、测井曲线的深度序列关系,本发明使用在序列建模问题上优势明显,具有长时记忆功能的LSTM神经网络算法来建立泥质含量精细模型。
步骤八:利用测试数据集对LSTM神经网络模型进行检验。将步骤七的泥质含量模型用于测试数据集进行泥质含量计算,再用测试数据集的岩心泥质含量对计算结果进行效果检验,若效果良好,则可以认为该模型可以进行推广应用。
步骤九:计算泥质含量。将步骤八通过检验建立的LSTM神经网络模型推广应用于区内每口单井泥质含量的计算中,得到泥质含量参数,为孔隙度、含油饱和度等储层参数的计算打下基础。
本发明首先基于储层沉积特征及测井曲线组合特征,划分出单井沉积微相剖面。其次根据岩心薄片、粒度及物性实验结果,以不同的粒度(φ)值完成不同类型沉积微相泥质含量的标定。经过岩心归位后,再根据不同类型的沉积微相地层的测井响应特征提取特征参数,建立训练数据集和检验数据集。针对训练集采用LSTM神经网络的方法进行训练,建立泥质含量计算模型。然后用检验集进行模型检验,满足精度要求后进行推广应用。实践证明,该方法能准确计算复杂沉积环境下细粒沉积物储层的泥质含量,为该类储层孔隙度、含油饱和度等其他参数的计算打下重要的基础,并具有广泛应用及推广前景。
本发明的有益效果如下:
本发明在岩心薄片、粒度等基础实验等地质研究的基础上,认为不同沉积微相类型的岩石具有不同的岩石学特征,泥质含量、孔隙度、渗透率等储层参数差异明显。用不同的粒度(φ)值完成不同类型沉积微相泥质含量的标定。克服了细粒低阻沉积背景下,取统一的粒度(φ)值作为泥质标准无法对泥质含量进行精细标定的难题。另外细粒沉积地层岩石颗粒细,填隙物含量高,泥质含量与GR等测井参数之间是典型的多参数非线性映射问题,考虑到泥质含量反映了不同沉积期地层的声学、电性、核物理性质,具有时间序列特征,在测井曲线上则表现为深度序列特征,LSTM神经网络算法可以从数据出发去寻找多种不同参数之间的非线性关系,非常适合解决非线性的储层参数测井评价问题。因此本发明结合LSTM循环神经网络对序列化结构数据的处理优势,使用LSTM循环神经网络来计算求取了泥质含量的方法不仅能同时充分利用多种测井参数对不同地层的响应特征,而且可以摆脱传统经验公式和交会图分析的线性预测的局限性。
附图说明
图1实施例的浅海泥粒度概率曲线图;
图2实施例的席状砂粒度概率曲线图;
图3实施例的临滨沙坝粒度概率曲线图;
图4是LSTM模型图;
图5是本发明的流程图。
具体实施方式
结合实施例说明本发明的具体技术方案。
如图1所示,一种细粒沉积物泥质含量精细确定方法,包括以下步骤:
步骤一:沉积微相划分
在区域沉积大背景下,以沉积相为基础,结合岩心分析和录井资料,依据测井曲线的组合特征划分出沉积微相类型。文昌油田群珠江组一段为接受来自西北方向的物源海相沉积。根据其岩心、薄片、录井和电性组合特征划分出浅海席状砂、临滨沙坝、浅海泥三种沉积微相,其中储层以浅海席状砂为主,岩性主要为泥质粉砂岩。
(1)席状砂:水动力环境相对比较平静,有充足的物源补给,岩性以泥质粉砂岩为主,分选好,测井的自然伽玛曲线表现为低幅齿形,是本油田有利的储集相带。
(2)浅海泥:浅海泥通常分布在海底部,反应出安静的水动力环境,岩性为泥岩和粉砂质泥岩,测井的自然伽玛曲线表现为高值。
(3)临滨砂坝:粒度较粗,反映水动力较强,水体较浅。测井的自然伽玛曲线为高幅箱形或漏斗形,平滑或微齿,顶突变底渐变。
步骤二:开展粒度实验
对研究区的岩心开展粒度分析实验,得到精确的实验数据(φ值),对实验数据加以分析并整理用于泥质含量的标定,如表1所示。
表1岩心粒度实验表
Figure BDA0003541309710000051
步骤三:将用于粒度分析实验的岩心深度归位到测井深度。
步骤四:制作岩心泥质含量标签数据
按照研究区浅海泥、席状砂、临滨沙坝三种不同沉积微相对粒度实验数据和物性测试数据进行分类统计,发现不同沉积微相的粒度有较大差异,如表2所示。其中浅海泥粒度最细,细-粉砂-粘土级别的含量介于72.7%-84.5%之间;临滨沙坝粒度相对较粗,细-粉砂-粘土级别的含量介于24.5%-52.1%之间;而席状砂则介于二者之间。
表2不同沉积微相的粒度特征
Figure BDA0003541309710000061
经典测井解释理论通常粗略的将粒径小于0.01mm的碎屑作为泥质的划分标准,测井上一般采用统一的粒度标准(
Figure BDA0003541309710000062
值)或者统一的粒径进行泥质含量的标定。但不同沉积微相类型的碎屑岩粒度不同,因此可用粒度分析数据按沉积微相类型对泥质含量进行精细厘定。研究区浅海席状砂以
Figure BDA0003541309710000063
为6作为泥质标准,临滨沙坝以
Figure BDA0003541309710000064
为7作为泥质标准、浅海泥以
Figure BDA0003541309710000065
为8作为泥质标准,将标定后的数据组合后得到岩心泥质含量标签数据。
步骤五:提取表征泥质含量的特征参数
细粒沉积物泥质含量高,与单一测井曲线关系复杂,呈非线性的映射关系。为精细求取泥质含量,需对测井数据进行特征参数提取以获得更好的训练数据,提高机器学习模型的性能和精度。用主成分分析法等降维方法提取表征岩心泥质含量的测井特征参数,经分析研究区表征泥质含量的特征参数曲线有自然伽马(GR)、自然电位(SP)、补偿中子(CNL)、补偿声波(AC)、深感应电阻率(Rt)。
步骤六:建立训练数据集和测试数据集
将步骤四得到的岩心泥质含量标签数据、步骤五得到的特征参数数据组合成标签数据库,用其中80%的数据作为模型训练数据集,剩余20%的数据作为模型测试数据。
步骤七:针对训练数据集建立基于LSTM神经网络算法的泥质含量计算模型
考虑了地层沉积层序时间序列和泥质含量、测井曲线的深度序列关系,本发明使用在序列建模问题上优势明显,具有长时记忆功能的LSTM神经网络算法来建立泥质含量精细模型。首先对训练数据进行标准化处理,然后将数据输入到设计好的长短时记忆网络(LSTM)算法中训练网络模型,利用损失函数来衡量网络模型对训练数据的拟合能力,通过多次的训练迭代来调整模型参数(即网络的权重值),最终通过损失函数的下降趋势来判断算法是否已经取得了理想的深度神经网络模型,由此建立基于LSTM神经网络算法的泥质含量预测模型。
步骤八:利用测试数据集对LSTM神经网络模型进行检验。
将步骤七中训练好的LSTM神经网络模型用于测试数据集进行泥质含量计算,再使用测试数据集中的标签(岩心标定的泥质含量)对计算结果进行效果检验。通过相关系数和均方根误差分析,若效果良好,则可以认为该模型可以进行推广应用。
步骤九:计算泥质含量
将步骤八通过检验建立的LSTM神经网络模型推广应用于区内每口单井泥质含量的计算中,得到泥质含量参数,为孔隙度、含油饱和度等储层参数的计算打下基础。
本发明在文昌油田群珠江组一段细粒沉积的泥质砂岩地层泥质含量计算的成功应用,说明此方法能有效解决细粒沉积的泥质砂岩地层泥质含量精确评价这一大难题,可以广泛推广应用于类似于文昌油田群细粒沉积物的地层评价中。

Claims (4)

1.一种细粒沉积物泥质含量精细确定方法,其特征在于,包括以下步骤:
步骤一:沉积微相类型划分;在区域沉积大背景下,以沉积相为基础,结合岩心分析和录井资料,依据测井曲线的组合特征划分出沉积微相类型;
步骤二:开展粒度实验;对研究区的岩心开展粒度实验,得到的粒度实验分析数据用于泥质含量参数的标定;
步骤三:将用于粒度分析实验的岩心深度归位到测井深度;
步骤四:制作岩心泥质含量标签数据;用步骤三归位后的岩心粒度实验分析数据按沉积微相类型对泥质含量进行分类精细标定,将标定后的数据组合后得到岩心泥质含量标签数据;
步骤五:提取表征泥质含量的测井特征参数;
步骤六:建立训练数据集和测试数据集;将步骤四得到的岩心泥质含量标签数据、步骤五得到的测井特征参数组合成标签数据库,用其中80%的数据作为模型训练数据,剩余20%的数据作为模型测试数据;
步骤七:使用LSTM神经网络算法建立泥质含量计算模型;
步骤八:利用测试数据集对LSTM神经网络模型进行检验;将步骤七的泥质含量模型用于测试数据集进行泥质含量计算,再用测试数据集的岩心泥质含量对计算结果进行效果检验,若效果良好,则可以认为该模型可以应用;
步骤九:计算泥质含量;将步骤八通过检验建立的LSTM神经网络模型推广应用于区内每口单井泥质含量的计算中,得到泥质含量参数。
2.根据权利要求1所述的一种细粒沉积物泥质含量精细确定方法,其特征在于,步骤四中,采用粒度分析实验数据按沉积微相类型对泥质含量进行分类精细标定。
3.根据权利要求2所述的一种细粒沉积物泥质含量精细确定方法,其特征在于,步骤五中,采用主成分分析法提取表征泥质含量的测井特征参数。
4.根据权利要求3所述的一种细粒沉积物泥质含量精细确定方法,其特征在于,表征泥质含量的测井特征参数曲线有自然伽马GR、自然电位SP、补偿中子CNL、补偿声波AC、深感应电阻率Rt。
CN202210233604.5A 2022-03-10 2022-03-10 一种细粒沉积物泥质含量精细确定方法 Active CN114482995B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210233604.5A CN114482995B (zh) 2022-03-10 2022-03-10 一种细粒沉积物泥质含量精细确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210233604.5A CN114482995B (zh) 2022-03-10 2022-03-10 一种细粒沉积物泥质含量精细确定方法

Publications (2)

Publication Number Publication Date
CN114482995A true CN114482995A (zh) 2022-05-13
CN114482995B CN114482995B (zh) 2024-06-18

Family

ID=81486811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210233604.5A Active CN114482995B (zh) 2022-03-10 2022-03-10 一种细粒沉积物泥质含量精细确定方法

Country Status (1)

Country Link
CN (1) CN114482995B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116087042A (zh) * 2023-02-16 2023-05-09 中国矿业大学 一种粉尘沉积量空间分布实时监测***及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130318019A1 (en) * 2012-05-24 2013-11-28 Dale E. Jamison Methods and apparatuses for modeling shale characteristics in wellbore servicing fluids using an artificial neural network
CN106223942A (zh) * 2016-08-26 2016-12-14 中国石油新疆油田分公司勘探开发研究院 一种基于测井曲线重构的砾岩油藏泥质含量计算方法
CN108227036A (zh) * 2018-01-22 2018-06-29 中国石油大港油田勘探开发研究院 一种细粒沉积岩岩心归位的方法
CN109653725A (zh) * 2018-09-13 2019-04-19 山东鼎维石油科技有限公司 基于沉积微相和岩石相的混积储层水淹程度测井解释方法
CN110318745A (zh) * 2019-06-10 2019-10-11 中国石油大学(华东) 一种沉积微相约束下粒径岩性测井评价方法
CN110489769A (zh) * 2019-01-30 2019-11-22 中国海洋石油集团有限公司 一种储油层泥质含量计算方法及电子设备
CN110954942A (zh) * 2018-09-26 2020-04-03 中国石油化工股份有限公司 粘土含量识别的图版制作方法及***
CN111255435A (zh) * 2020-01-17 2020-06-09 西安石油大学 一种复杂储层泥质含量计算方法
CN112541523A (zh) * 2020-11-17 2021-03-23 中海油田服务股份有限公司 一种泥质含量计算方法和装置
US20210124071A1 (en) * 2019-10-25 2021-04-29 Schlumberger Technology Corporation Methods and systems for characterizing clay content of a geological formation
CN112987122A (zh) * 2019-12-13 2021-06-18 北京国双科技有限公司 一种泥质含量计算方法、装置、电子设备及存储介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130318019A1 (en) * 2012-05-24 2013-11-28 Dale E. Jamison Methods and apparatuses for modeling shale characteristics in wellbore servicing fluids using an artificial neural network
CN106223942A (zh) * 2016-08-26 2016-12-14 中国石油新疆油田分公司勘探开发研究院 一种基于测井曲线重构的砾岩油藏泥质含量计算方法
CN108227036A (zh) * 2018-01-22 2018-06-29 中国石油大港油田勘探开发研究院 一种细粒沉积岩岩心归位的方法
CN109653725A (zh) * 2018-09-13 2019-04-19 山东鼎维石油科技有限公司 基于沉积微相和岩石相的混积储层水淹程度测井解释方法
CN110954942A (zh) * 2018-09-26 2020-04-03 中国石油化工股份有限公司 粘土含量识别的图版制作方法及***
CN110489769A (zh) * 2019-01-30 2019-11-22 中国海洋石油集团有限公司 一种储油层泥质含量计算方法及电子设备
CN110318745A (zh) * 2019-06-10 2019-10-11 中国石油大学(华东) 一种沉积微相约束下粒径岩性测井评价方法
US20210124071A1 (en) * 2019-10-25 2021-04-29 Schlumberger Technology Corporation Methods and systems for characterizing clay content of a geological formation
CN112987122A (zh) * 2019-12-13 2021-06-18 北京国双科技有限公司 一种泥质含量计算方法、装置、电子设备及存储介质
CN111255435A (zh) * 2020-01-17 2020-06-09 西安石油大学 一种复杂储层泥质含量计算方法
CN112541523A (zh) * 2020-11-17 2021-03-23 中海油田服务股份有限公司 一种泥质含量计算方法和装置

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
丘琳;: "利用测井资料研究粒度中值和泥质含量", 中国海上油气, no. 05, 25 October 1989 (1989-10-25) *
宁创;张丽伟;高候林;赵华胜;: "浅析用测井资料识别地层岩性", 广东化工, no. 05, 25 May 2012 (2012-05-25) *
安鹏;曹丹平: "深度学习方法在泥质含量预测中的应用", CPS/SEG北京2018国际地球物理会议暨展览, 31 December 2018 (2018-12-31) *
张绍芳;: "直罗油田长7、长8泥质含量计算方法研究", 石化技术, no. 09, 28 September 2016 (2016-09-28) *
杨晓辉;王祝文;王文华;郑武;周大鹏;: "BP神经网络算法在火成岩泥质含量计算中的应用", 世界地质, no. 04, 25 December 2015 (2015-12-25) *
王小雷;杨浩;赵其国;王轶虹;魏荣菲;: "云南抚仙湖近现代环境变化的沉积物粒度记录", 沉积学报, no. 04, 15 August 2010 (2010-08-15) *
祝贺;孙志高;衣华鹏;王传远;任鹏;: "曹妃甸近岸表层沉积物粒度和粘土矿物分布特征研究", 地球与环境, no. 03, 10 June 2017 (2017-06-10) *
赵培华,谭廷栋: "砂岩储层胶结指数m的一种标定方法", 测井技术, no. 06, 22 December 1994 (1994-12-22) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116087042A (zh) * 2023-02-16 2023-05-09 中国矿业大学 一种粉尘沉积量空间分布实时监测***及方法
CN116087042B (zh) * 2023-02-16 2023-09-08 中国矿业大学 一种粉尘沉积量空间分布实时监测***及方法

Also Published As

Publication number Publication date
CN114482995B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
CN109061765B (zh) 非均质薄砂岩互层油藏的圈闭评价方法
CN107703560B (zh) 一种基于三重信息的泥页岩岩相精细识别方法
Raeesi et al. Classification and identification of hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial neural networks
CN105445800B (zh) 一种厚层砂体顶部分异岩性油藏的识别方法
Yasin et al. Estimation of petrophysical parameters from seismic inversion by combining particle swarm optimization and multilayer linear calculator
Shahbazi et al. Integration of knowledge-based seismic inversion and sedimentological investigations for heterogeneous reservoir
CN108802812A (zh) 一种井震融合的地层岩性反演方法
Yanhu et al. A method of seismic meme inversion and its application
CN110231652B (zh) 一种基于密度的含噪声应用空间聚类的地震相提取方法
CN107133670A (zh) 一种基于决策树数据挖掘算法的复杂岩性识别方法及***
CN105093306A (zh) 一种地球物理勘探中储层自动解释与厚度求取方法
CN109541685A (zh) 一种河道砂体识别方法
CN107829731A (zh) 一种黏土蚀变的火山岩孔隙度校正方法
CN116168224A (zh) 基于成像砾石含量的机器学习岩相自动识别方法
CN112698399A (zh) 一种砂砾岩井测震联动约束高效储层定量预测方法与***
CN109143399B (zh) 一种识别碳酸盐岩层序界面的方法
Bohling et al. An integrated application of neural network and Markov chain techniques to the prediction of lithofacies from well logs: Kansas Geological Survey Open-File Report 2003-50, 6 p
CN114482995B (zh) 一种细粒沉积物泥质含量精细确定方法
Obafemi et al. Characterization of deep water turbidite channels and submarine fan lobes using artificial intelligence; Case study of Frem field deep offshore Niger Delta
CN115857047B (zh) 一种地震储层综合预测方法
Iltaf et al. Facies and petrophysical modeling of Triassic Chang 6 tight sandstone reservoir, Heshui oil field, Ordos basin, China
Rush et al. Geostatistical facies modeling trends for oolitic tidal sand shoals
George et al. Estimation of aquifer hydraulic parameters via complementing surfacial geophysical measurement by laboratory measurements on the aquifer core samples
Rotimi et al. Reservoir characterization and modeling of lateral heterogeneity using multivariate analysis
CN105259576B (zh) 一种利用地震统计特征的油气藏识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant