CN114477979B - 一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法 - Google Patents

一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法 Download PDF

Info

Publication number
CN114477979B
CN114477979B CN202111607815.2A CN202111607815A CN114477979B CN 114477979 B CN114477979 B CN 114477979B CN 202111607815 A CN202111607815 A CN 202111607815A CN 114477979 B CN114477979 B CN 114477979B
Authority
CN
China
Prior art keywords
silicate
solid polymeric
aqueous slurry
continuous
microporous structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111607815.2A
Other languages
English (en)
Other versions
CN114477979A (zh
Inventor
徐小杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Lanri Biotechnology Co ltd
Original Assignee
Guangzhou Lanri Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Lanri Biotechnology Co ltd filed Critical Guangzhou Lanri Biotechnology Co ltd
Priority to CN202111607815.2A priority Critical patent/CN114477979B/zh
Priority to PCT/CN2022/070426 priority patent/WO2023115651A1/zh
Publication of CN114477979A publication Critical patent/CN114477979A/zh
Application granted granted Critical
Publication of CN114477979B publication Critical patent/CN114477979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明公开了一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法,涉及化学工程技术领域。本发明提供了一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法,其特征在于,包括如下步骤:(1)将分子粉体、去离子水搅拌均匀、加热至100℃以上,得到混合浆料;将稀释后的硅酸盐水合物分次加入沸腾的混合浆料中,得到共聚混合物;(2)将步骤(1)中制备得到的共聚混合物进行分离,得到沉淀物,将沉淀物洗涤后,摒弃上清液,得到水性浆料;其中,水性浆料中游离硅酸盐质量百分含量小于0.01%;(3)将步骤(2)中制备得到的水性浆料脱水后,得到待烧结坯材,烧结后得到所述具有连续微孔隙结构的实体聚合硅酸盐。

Description

一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法
技术领域
本发明涉及化学工程技术领域,尤其是一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法。
背景技术
硅酸盐类物质,是地表常见而大量存在的天然物质,硅酸盐工业也是现代社会的基础工业门类。硅酸盐类物质因常见而重要,硅酸盐工业因而不可或缺。天然沸石,是一类具有独特空间结构的硅酸盐类矿物,依据天然沸石的材料组分,人工合成了具有筛选分子作用的水合硅铝酸盐分子筛材料。该类材料的孔径在10nm以下,常用于分子吸附以及催化工况,是常用的工程材料。沸石类材料因为孔径限制,难以用于生物工程中的细胞处理。
细胞人工培养条件下,需要模拟细胞的生理环境,在水基培养液中给与细胞生长发育的温度、酸碱度、氧浓度、渗透压参数、营养与信号环境等条件,这一条件需要按照细胞生长发育的要求改变培养液环境,进行定期或不定期换液操作。沸石分子筛孔径小于细胞人工培养环境中需要移除的大分子、大直径外泌体等类成分,不适合作为细胞培养液换液操作的换液工具。
细胞快速玻璃化冻融操作,目前只适用于人工辅助生殖实验操作中的卵子冻融和受精卵、囊胚快速玻璃化冻融。快速玻璃化冻融细胞的操作,需要依据细胞对脱水速率的耐受度执行适当的脱水程序,梯次脱水并保留细胞活性;受精卵脱水的操作是单个细胞在不同渗透压液滴间梯次转移,逐步脱水和平衡,然后置入液氮环境,完成冷冻;普通细胞由于体积远小于受精卵,无法人工执行单细胞或者多细胞梯次转移和快速收集,目前不能执行对非卵子系列的普通细胞的快速玻璃化冻融操作。如果需要执行对普通细胞悬液的快速玻璃化冻融,首先要解决的工程问题是:如何对细胞悬液执行原位换液,即,不执行对细胞在不同渗透压环境的梯次转移,而是采用细胞悬液原位换液,更换细胞的环境,完成快速玻璃化冻融前的脱水和冷冻保护剂梯次载入。这一操作目标,需要首先获得能吸附细胞悬液中除去细胞之外的所有其他成分的过滤材料,该材料的孔径范围要能保证吸附细胞悬液中除细胞外的所有其他成分。
目前,有必要改进现有铝硅酸盐分子筛材料,将常规分子筛材料孔径增加到微米级别,获得适用于细胞处理的细胞筛。
发明内容
基于此,本发明的目的在于克服上述现有技术的不足之处而提供一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法。
为实现上述目的,本发明所采取的技术方案为:一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法,包括如下步骤:
(1)将分子粉体、去离子水搅拌均匀、加热至100℃以上,得到混合浆料;将稀释后的硅酸盐水合物分次加入沸腾的混合浆料中,得到共聚混合物;
(2)将步骤(1)中制备得到的共聚混合物进行分离,得到沉淀物,将沉淀物洗涤后,摒弃上清液,得到水性浆料;其中,水性浆料中游离硅酸盐质量百分含量小于0.01%;
(3)将步骤(2)中制备得到的水性浆料脱水后,得到待烧结坯材,烧结后得到所述具有连续微孔隙结构的实体聚合硅酸盐。
本发明采用特殊的制备工艺,制备得到了一种具有连续微孔隙结构的实体聚合硅酸盐。本发明将分子粉体、去离子水,在100℃以上的条件下混合均匀后,分次加入稀释后的硅酸盐水合物,发生热聚合反应,得到共聚混合物。
优选地,所述步骤(1)中,硅酸盐水合物的重量份为1-1.5份,分子粉体的重量份为1-1.5份,去离子水的重量份为20-30份;优选地,所述步骤(1)中,硅酸盐水合物的重量份为1份,分子粉体的重量份为1份,去离子水的重量份为20份。
优选地,所述步骤(1)中,稀释后的硅酸盐水合物中,硅酸盐水合物和水的重量比为:硅酸盐水合物:水=1:1-2。
优选地,所述步骤(1)中,所述硅酸盐水合物为水合硅酸钠、水合硅酸钾、水合硅酸锂中的至少一种;所述分子粉体为任何能与水互混的氧化物粉体;优选地,所述分子粉体为无定形氧化硅、无定形氧化铝、无定形氧化钛中的至少一种;优选地,所述硅酸盐水合物为水合硅酸钠;所述分子粉体为无定形氧化硅。
优选地,所述步骤(2)中,水性浆料中游离硅酸盐质量百分含量小于0.01%的控制方法为:将水性浆料置于吸水材料表面,脱去游离水后以水稀释,再次脱去游离水,重复操作,直至得到游离硅酸盐质量百分含量小于0.01%的水性浆料。
优选地,所述步骤(3)中,脱水需在特定容器进行;脱水容器为具有超疏水疏油涂层的容器,其中,涂层的疏水疏油性能参数为:水滴接触角>170°,油滴接触角>150°,滚动角<5°。
优选地,所述步骤(3)中,脱水的具体过程为:将水性浆料置于脱水容器中,脱气后置于50-80℃下烘干,干燥后得到待烧结坯材。脱气的具体过程为:脱气的压力为1000-10000Pa,脱气的时间为5-10min。
优选地,所述脱水容器为表面光滑平整的金属、玻璃、石英等容器。
优选地,所述步骤(3)中,脱水固化成型的温度为300-700℃。
本发明备得到的水性浆料含水量超过80%,脱水是一个极其困难的过程,需要特异的脱水工艺。该水性浆料中的水分子是结构分子,脱水过程伴随着材料体积缩小,普通材料表面承载的水性浆料容易皲裂,需要特异的脱水工艺和装备。本发明使用具有超疏水疏油涂层的容器,进行脱水成型。
另外,本发明提供了采用上述的具有连续微孔隙结构的实体聚合硅酸盐的制备方法制备得到的具有连续微孔隙结构的实体聚合硅酸盐。
进一步地,本发明提供了所述的具有连续微孔隙结构的实体聚合硅酸盐在生物工程领域中的应用。如在细胞原位培养、***优选、细胞快速玻璃化冻融与复苏等领域的应用。
相对于现有技术,本发明的有益效果为:本发明制备得到了一种新型具有连续微孔隙结构的实体聚合硅酸盐,该材料是具有连续规则孔径的实体材料,某些组分的单质材料透光性优良,并有较大的比表面积,可能具有较高的辐射功率;该类材料也可能是其他实体材料或多孔材料成型的互补模板,去除模板后,获得连续孔隙结构的石墨烯构件、多孔碳构件、金属合金构件,用于高效率光热催化、高功率辐射散热等工况;互补结构的金属材料,可能具有优良的传导散热功能,用于身管火器的高效率散热,也可以用于车辆、船舶、航空器红外特征的主动抑制。
附图说明
图1为实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐图;
图2为实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐的电镜图;
图3为实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐的光学性能展示图;
图4为实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐的红外谱图和XRD图;其中(a)为红外谱图,(b)为XRD图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。
本发明实施例采用的容器为石英盘,内径14厘米、型深1.5厘米的圆形,并不限于使用这一种;本发明实施例所用超疏水疏油涂层产品代码为CCP0003,购买自广州希森美克新材料科技有限公司。
实施例1
一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法,包括如下步骤:
(1)将无定形氧化硅(1份)、去离子水(20份)搅拌均匀后,加热至102℃,得到混合浆料;将稀释后的水合硅酸钠(1份)分次加入沸腾的混合浆料中,得到共聚混合物;硅酸盐水合物和水的重量比为:硅酸盐水合物:水=1:2;
(2)将步骤(1)中制备得到的共聚混合物进行分离,得到沉淀物,将沉淀物洗涤后,其中,洗涤过程中,沉淀物和水的体积比为:沉淀物:水=1:3;摒弃上清液,得到水性浆料;其中,水性浆料中游离硅酸钠质量百分含量小于0.01%;控制方法为:将水性浆料置于吸水材料表面,脱去游离水后以水稀释,再次脱去游离水,重复操作,直至得到游离硅酸钠质量百分含量小于0.01%的水性浆料;
(3)将步骤(2)中制备得到的水性浆料脱水后,得到待烧结坯材,烧结(烧结的温度为350℃)后得到所述具有连续微孔隙结构的实体聚合硅酸盐;其中,脱水容器为具有超疏水疏油涂层的石英盘,涂层的疏水疏油性能参数为:水滴接触角>170°,油滴接触角>150°,滚动角<5°;脱水的具体过程为:将水性浆料置于脱水容器中,脱气(脱气的压力为1000Pa,脱气的时间为8min)后置于50-80℃下烘干,干燥后得到待烧结坯材。
性能测试
将本发明实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐如图1所示,进行相关测试,具体测试过程及结果如下:
(1)将本发明实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐烧结到1320℃后,分别测试该材料在100℃水、酸(盐酸)、碱(氢氧化钠)中的溶解度;
结果表明,烧结到1320℃后,该材料在100℃水中溶解度约1.7%,常温下在5%盐酸中溶解度约为3.2%,常温下在5%氢氧化钠溶液中溶解度约为2.7%,均测试的是4小时的溶解情况,本发明制备得到的具有连续微孔隙结构的实体聚合硅酸盐是一种无机聚合材料。
(2)本发明实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐的电镜图如图2所示;
结果表明,该材料是具有连续孔隙的实体材料,孔径范围0.8-1.2微米。
(3)将本发明实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐进行亲水性、亲油性测试,该材料可以快速吸附纯净水,也可以吸附食用油,吸附结果是,水或油完全充满全部孔隙;结果表明,本发明实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐同时具有亲水性、亲油性。
(4)本发明实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐呈现为环境光的颜色,比环境明亮,全不透明,但透光,具体如图3所示。
(5)将本发明实施例1制备得到的具有连续微孔隙结构的实体聚合硅酸盐进行红外及XRD测试,具体如图4所示。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (7)

1.一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法,其特征在于,包括如下步骤:
(1)将分子粉体、去离子水搅拌均匀、加热至100℃以上,得到混合浆料;将稀释后的硅酸盐水合物分次加入沸腾的混合浆料中,得到共聚混合物;
所述步骤(1)中,硅酸盐水合物的重量份为1-1.5份,分子粉体的重量份为1-1.5份,去离子水的重量份为20-30份;
(2)将步骤(1)中制备得到的共聚混合物进行分离,得到沉淀物,将沉淀物洗涤后,摒弃上清液,得到水性浆料;其中,水性浆料中游离硅酸盐质量百分含量小于0.01%;
(3)将步骤(2)中制备得到的水性浆料脱水后,得到待烧结坯材,烧结后得到所述具有连续微孔隙结构的实体聚合硅酸盐;
所述步骤(3)中,脱水的具体过程为:将水性浆料置于脱水容器中,脱气后置于50-80℃下烘干,干燥后得到待烧结坯材;
所述步骤(3)中,脱水需在特定容器进行;脱水容器为具有超疏水疏油涂层的容器,其中,涂层的疏水疏油性能参数为:水滴接触角>170°,油滴接触角>150°,滚动角<5°。
2.如权利要求1所述的具有连续微孔隙结构的实体聚合硅酸盐的制备方法,其特征在于,所述步骤(1)中,硅酸盐水合物的重量份为1份,分子粉体的重量份为1份,去离子水的重量份为20份。
3.如权利要求1所述的具有连续微孔隙结构的实体聚合硅酸盐的制备方法,其特征在于,所述步骤(1)中,所述硅酸盐水合物为水合硅酸钠、水合硅酸钾、水合硅酸锂中的至少一种;所述分子粉体为无定形氧化硅、无定形氧化铝、无定形氧化钛中的至少一种。
4.如权利要求1所述的具有连续微孔隙结构的实体聚合硅酸盐的制备方法,其特征在于,所述步骤(2)中,水性浆料中游离硅酸盐质量百分含量小于0.01%的控制方法为:将水性浆料置于吸水材料表面,脱去游离水,得到游离硅酸盐质量百分含量小于0.01%的水性浆料。
5.如权利要求1所述的具有连续微孔隙结构的实体聚合硅酸盐的制备方法,其特征在于,脱气的具体过程为:脱气的压力为1000-10000Pa,脱气的时间为5-10min。
6.一种如权利要求1-5任一项所述的具有连续微孔隙结构的实体聚合硅酸盐的制备方法制备得到的具有连续微孔隙结构的实体聚合硅酸盐。
7.如权利要求6所述的具有连续微孔隙结构的实体聚合硅酸盐在生物工程领域中的应用。
CN202111607815.2A 2021-12-24 2021-12-24 一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法 Active CN114477979B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111607815.2A CN114477979B (zh) 2021-12-24 2021-12-24 一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法
PCT/CN2022/070426 WO2023115651A1 (zh) 2021-12-24 2022-01-06 具有连续微孔隙结构的实体聚合硅酸盐的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111607815.2A CN114477979B (zh) 2021-12-24 2021-12-24 一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法

Publications (2)

Publication Number Publication Date
CN114477979A CN114477979A (zh) 2022-05-13
CN114477979B true CN114477979B (zh) 2023-04-14

Family

ID=81496949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111607815.2A Active CN114477979B (zh) 2021-12-24 2021-12-24 一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法

Country Status (2)

Country Link
CN (1) CN114477979B (zh)
WO (1) WO2023115651A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE782974A (fr) * 1971-05-03 1972-09-01 Metastein Forschungs G M B H Procede et dispositif de fabrication de corps moules poreux
US4443357A (en) * 1981-01-12 1984-04-17 Economics Laboratory, Inc. Hydrophobic silica or silicate, compositions containing the same and methods for making and using the same
EP0310916A2 (de) * 1987-10-07 1989-04-12 Bayer Ag Verfahren zur Herstellung eines Zeolith-Pulvers
US5069816A (en) * 1988-01-11 1991-12-03 Mmii Incorporated Zirconium silica hydrogel compositions and methods of preparation
WO2009070854A1 (en) * 2007-12-04 2009-06-11 Xexos Limited Composition comprising a phosphate binder and its preparation
WO2013047717A1 (ja) * 2011-09-28 2013-04-04 株式会社クラレ スラリー組成物、セラミックグリーンシートおよび積層セラミックコンデンサ
CN103450867A (zh) * 2013-07-25 2013-12-18 中国科学院上海应用物理研究所 一种解决水锁效应的方法
CN107129157A (zh) * 2017-05-08 2017-09-05 浙江理工大学 一种三维多孔生物活性玻璃的制备方法
CN109095948A (zh) * 2018-08-06 2018-12-28 清华大学 一种利用中空微球制备具有连通孔壁泡沫陶瓷的方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB874117A (en) * 1959-06-19 1961-08-02 Unilever Ltd Processes for binding particulate solid materials and binders for use in such processes
DE1767001A1 (de) * 1967-03-22 1971-07-29 Grace W R & Co Verfahren zur Herstellung eines Aluminiumsilikat-Zeoliths
FR2094763A5 (zh) * 1970-09-08 1972-02-04 Villeneuve La Colette L
JPH0756011B2 (ja) * 1986-07-29 1995-06-14 株式会社資生堂 改質粉体
US4945074A (en) * 1987-06-01 1990-07-31 Blount David H Polymeric alkali metal silicate glass
DE3923284C2 (de) * 1989-07-14 1993-11-18 Giesemann Herbert Anorganischer Schaumstoffkörper und Verfahren zur Herstellung desselben
US5183704A (en) * 1991-02-11 1993-02-02 Armstrong World Industries, Inc. Highly microporous 2:1 layered silicate materials
US6375735B1 (en) * 1996-05-06 2002-04-23 Agritec, Inc. Precipitated silicas, silica gels with and free of deposited carbon from caustic biomass ash solutions and processes
WO2002070425A1 (en) * 2001-03-05 2002-09-12 James Hardie Research Pty Limited Low density calcium silicate hydrate strength accelerant additive for cementitious products
US6630016B2 (en) * 2002-01-31 2003-10-07 Koslow Technologies Corp. Microporous filter media, filtration systems containing same, and methods of making and using
US7579084B2 (en) * 2005-12-28 2009-08-25 Caroma Industries Limited Ceramic material, compositions and methods for manufacture thereof
WO2008017203A1 (en) * 2006-08-01 2008-02-14 Unilever Plc Biomaterials, their preparation and use
CN102795813B (zh) * 2012-07-04 2014-04-09 武汉理工大学 一种具有持续抗滑降噪功能的密级配沥青混凝土
EP3084037B1 (en) * 2013-12-20 2020-10-21 Colgate-Palmolive Company Core shell silica particles and uses thereof as an anti-bacterial agent
CA2951879A1 (en) * 2014-06-12 2015-12-17 Arizona Board Of Regents On Behalf Of Arizona State University Geopolymer aggregates
KR101767658B1 (ko) * 2014-10-20 2017-08-14 주식회사 엘지화학 다공성 알루미노실리케이트를 포함하는 진공 단열재용 심재와 이를 구비한 진공 단열재
ITUB20154006A1 (it) * 2015-09-30 2017-03-30 Consorzio Interuniversitario Naz Per La Scienza E Tecnologia Dei Materiali Materiale edilizio ottenuto da attivazione alcalina di minerali contenuti in prodotti e residui da attivita estrattiva e lavorativa e processo di produzione di un tale materiale edilizio.
CH713958A1 (de) * 2017-07-07 2019-01-15 Exentis Tech Ag System bestehend aus einem Träger mit Strömungskanälen und mindestens einer katalystisch wirksamen Substanz.
DE102018106260B4 (de) * 2018-03-16 2019-12-24 Siemens Aktiengesellschaft Verfahren zur Herstellung eines keramischen Absorbers, keramischer Absorber und Verwendung desselben
CN113620646B (zh) * 2021-08-17 2022-05-20 内蒙古汇方新型建材有限公司 一种高铝粉煤灰自保温蒸压加气混凝土砌块及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE782974A (fr) * 1971-05-03 1972-09-01 Metastein Forschungs G M B H Procede et dispositif de fabrication de corps moules poreux
US4443357A (en) * 1981-01-12 1984-04-17 Economics Laboratory, Inc. Hydrophobic silica or silicate, compositions containing the same and methods for making and using the same
EP0310916A2 (de) * 1987-10-07 1989-04-12 Bayer Ag Verfahren zur Herstellung eines Zeolith-Pulvers
US5069816A (en) * 1988-01-11 1991-12-03 Mmii Incorporated Zirconium silica hydrogel compositions and methods of preparation
WO2009070854A1 (en) * 2007-12-04 2009-06-11 Xexos Limited Composition comprising a phosphate binder and its preparation
WO2013047717A1 (ja) * 2011-09-28 2013-04-04 株式会社クラレ スラリー組成物、セラミックグリーンシートおよび積層セラミックコンデンサ
CN103450867A (zh) * 2013-07-25 2013-12-18 中国科学院上海应用物理研究所 一种解决水锁效应的方法
CN107129157A (zh) * 2017-05-08 2017-09-05 浙江理工大学 一种三维多孔生物活性玻璃的制备方法
CN109095948A (zh) * 2018-08-06 2018-12-28 清华大学 一种利用中空微球制备具有连通孔壁泡沫陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李笑涵 ; 李群艳 ; 朱庆强 ; 韦奇 ; .介孔SiO_2/Fe_3O_4中空微球孔径调控以及漆酶固定性能研究.人工晶体学报.2014,(第11期),第198-206页. *
王静 ; 刘爽 ; 张春 ; 徐辉碧 ; 杨祥良 ; .手性纳米二氧化硅的制备和应用.化学进展.2011,(第04期),第61-70页. *

Also Published As

Publication number Publication date
WO2023115651A1 (zh) 2023-06-29
CN114477979A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN109516458B (zh) 一种生物质基分级多孔碳及其制备方法
CN107369563B (zh) 一种硫化镍颗粒/纤维素基复合碳气凝胶材料的制备方法
WO2017004776A1 (zh) 多孔氧化铝陶瓷及其制备方法
CN111533531B (zh) 一种多孔莫来石及其制备方法
CN110510617B (zh) 一种大尺寸氧化铝-二氧化硅气凝胶的常压干燥制备方法
CN104130004A (zh) 高强度块状多孔氧化铝纳米陶瓷的制备方法
CN112408401A (zh) 利用工业固废粉煤灰制备二氧化硅气凝胶的方法以及由该方法制备的二氧化硅气凝胶
JP2024504492A (ja) 電波吸収材料を含有する複合a型分子篩原料粉末、オールゼオライト分子篩、これらの製造方法、及び使用
CN111995422A (zh) 一种蜂窝状陶瓷材料的制备方法
CN111573650B (zh) 一种制备高比表面积介孔碳粉末的方法
CN114477979B (zh) 一种具有连续微孔隙结构的实体聚合硅酸盐的制备方法
CN110817844B (zh) 一种氮硫共掺杂多孔碳纳米微球的制备方法
CN117143562A (zh) 一种复合吸波材料及其制备方法
CN104129983A (zh) 高强度块状多孔镁铝尖晶石纳米陶瓷的制备方法
CN116656318A (zh) 一种基于Co-ZIF-L的衍生吸波材料及制备方法
CN116328713A (zh) 一种制备锂离子筛吸附剂颗粒的方法和应用
CN107381591B (zh) 一种室温下花瓣状方钠石的制备方法
CN111203174B (zh) 一种无模板ZSM-5@SiO2微球分子筛的制备方法及其应用
CN113697849A (zh) 一种MXene/rGO/二氧化锡纳米复合材料及其制备方法和应用
WO2021151138A1 (en) A lithium-sulfur battery cathode material synthesized by using silica hollow spheres
CN108795378B (zh) 一种多级孔碳/磁性电磁波吸收材料及其制备方法与应用
CN115838184B (zh) 一种空心介孔碳球自组装多孔Al2O3微球的制备方法及应用
CN110642257A (zh) 一种利用硅微粉制备二氧化硅气凝胶的方法
KR101862612B1 (ko) 나노 폴리스티렌 비드를 이용한 다공성 감마-알루미나 제조방법
CN114213145B (zh) 一种泡沫状磷酸铝的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant