CN114458516B - 一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法 - Google Patents

一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法 Download PDF

Info

Publication number
CN114458516B
CN114458516B CN202210194300.2A CN202210194300A CN114458516B CN 114458516 B CN114458516 B CN 114458516B CN 202210194300 A CN202210194300 A CN 202210194300A CN 114458516 B CN114458516 B CN 114458516B
Authority
CN
China
Prior art keywords
impeller
blade
generator
pitch angle
measuring module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210194300.2A
Other languages
English (en)
Other versions
CN114458516A (zh
Inventor
顾亚京
李海涛
刘宏伟
林勇刚
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210194300.2A priority Critical patent/CN114458516B/zh
Publication of CN114458516A publication Critical patent/CN114458516A/zh
Priority to PCT/CN2022/130979 priority patent/WO2023165159A1/zh
Application granted granted Critical
Publication of CN114458516B publication Critical patent/CN114458516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/008Measuring or testing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法。包括来流流速测量模块、发电机转速测量模块、桨距角测量模块和计算机;来流流速测量模块测量叶轮中心处流速;发电机转速测量模块测量发电机转速;桨距角测量模块测量各叶片的桨距角;计算机接收流速、转速和桨距角信号,通过在线计算得到发电机组的俯仰力矩和偏航力矩,并将测量和计算数据实时显示和存储。本发明实现发电机组可靠的俯仰与偏航力矩在线测量,为机组实时运行状态监测以及机组主动载荷控制提供关键数据,提高整机运行的安全性和可靠性,并为机组优化设计过程提供可靠数据参考,降低机组设计成本;测量***及方法的实现难度小、成本低、可靠性高。

Description

一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量 ***及方法
技术领域
本发明属于新能源发电装备领域,具体涉及一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法。
背景技术
作为新兴的可再生能源装备,风能发电装备已经实现了大规模应用,潮流能发电装备已经完成了从原理验证到工业化样机的发展阶段。目前,装备运行可靠性和成本成为风能、潮流能发电行业发展的瓶颈问题。其中,机组俯仰力矩和偏航力矩等非对称载荷的在线测量技术是一项关键技术。
非对称载荷在线测量的准确性会影响机组实时运行状态监测以及机组主动载荷控制,关系到整机运行的安全性和可靠性;同时,非对称载荷测量的准确性也会间接影响机组设计过程中的安全裕量问题,从而影响设计和运维成本。
对于风能或潮流能发电装备,现有技术多采用直接测量方法,例如安装应变片或光纤光栅传感器等,进行载荷测量。例如,中国专利《一种海上风电机组载荷测试装置及方法》,公开号CN113250915A,其特征在于,将多个应变片传感器分别布置在风电机组的叶根、叶中、主轴、塔筒等位置,各应变片传感器通过数据采集器与工控机相连接,工控机获取各传感器的应力统计平均值,计算得到不同位置处载荷;中国专利《一种基于FBG的风机叶片载荷测量方法及应用》,公开号CN112665766A,其特征在于,在风电机组的每个叶片上设置对应的光纤光栅传感器组,测量传感器组输出波长变化值,通过计算得到叶片实时载荷。此类直接测量方法存在以下缺点:在机组的旋转部件如叶片、主轴等位置安装传感器,安装、供电、电缆走线、信号传输等的实现难度大;被测部件的高刚度影响传感器的准确性。对于潮流能发电装备,由于水下环境的复杂性,其非对称载荷的直接测量面临更大的难题,且水流和泥沙冲击会使传感器寿命降低。
本发明提出一种基于间接测量的***及方法进行风能或潮流能发电机组俯仰与偏航力矩在线测量,降低实施难度,提高测量的可靠性和可推广性。
发明内容
为了解决背景技术中的问题,本发明提供了一种能对风能或潮流能发电机组俯仰力矩与偏航力矩进行在线间接测量、可靠性高、成本低的***。该测量***的测量方法能够实时获取风能或潮流能发电机组的俯仰力矩与偏航力矩,实现难度小。
本发明采用的技术方案如下:
一、一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***
包括来流流速测量模块、发电机转速测量模块、桨距角测量模块和计算机;来流流速测量模块用于测量发电机组叶轮中心处的流速,发电机转速测量模块用于测量发电机组的发电机转速,桨距角测量模块用于测量发电机组各叶片的桨距角;来流流速测量模块、发电机转速测量模块和桨距角测量模块均通过通信线缆与计算机实现串口通信连接,分别将流速信号、转速信号和桨距角信号传输至计算机。
所述计算机根据接收到的流速信号、转速信号和桨距角信号在线计算风能或潮流能发电机组的俯仰力矩和偏航力矩,并将流速信号、转速信号、桨距角信号、俯仰力矩和偏航力矩进行实时显示和存储。
对于风能发电机组:所述来流流速测量模块采用测风仪,固定于发电机组机舱外的顶部;所述发电机转速测量模块安装于发电机组机舱内的齿轮箱高速轴处;所述桨距角测量模块布置于发电机组叶轮轮毂内部的变桨装置处。
对于潮流能发电机组:所述来流流速测量模块采用流速流向仪,布置于发电机组叶轮中心点沿潮流方向正前方的位置处;所述发电机转速测量模块安装于发电机组机舱内的齿轮箱高速轴处;所述桨距角测量模块布置于发电机组叶轮轮毂内部的变桨装置处。
二、采用上述***的风能或潮流能发电机组俯仰与偏航力矩的在线间接测量方法
包括以下步骤:
步骤1)根据三维建模软件构建发电机组的叶片三维模型,通过三维仿真分析,得到叶片受力等效作用点的位置坐标,并计算叶片受力等效作用点与叶轮中心的距离;
如图4所示,根据叶片的翼型、质量分布等特征,通过三维仿真分析,得到叶片的受力等效作用点位置坐标,计算叶片受力等效作用点与叶轮中心的距离;
步骤2)来流流速测量模块、发电机转速测量模块、桨距角测量模块分别将测量得到的流速信号、转速信号、桨距角信号传输至计算机;
步骤3)计算机将接收到的流速信号、转速信号、桨距角信号进行滤波处理,去除噪声干扰;根据步骤1)中仿真得到的叶片受力等效作用点和叶轮中心的距离,以及滤波后得到的叶轮中心处流速、发电机转速和各叶片的桨距角数据,实时计算得到风能或潮流能发电机组的俯仰力矩和偏航力矩;
步骤4)计算机将步骤2)中实测得到的流速、发电机转速和各叶片的桨距角数据,以及步骤3)中计算得到的俯仰力矩和偏航力矩,通过监控界面进行实时显示,并全部存储。
所述步骤3)具体为:
3.1)对发电机转速ω进行积分运算,与各叶片初始方位角θi'相加,得到各叶片的当前方位角θi,其中i=1,2,…,N,N为叶片总数,具体公式为:
Figure GDA0003876084800000031
其中,t为时间。
3.2)根据叶轮中心处流速vs、各叶片当前方位角θi和叶片受力等效作用点与叶轮中心的距离rc,基于流剪切公式计算每个叶片在受力等效作用点处的流速vi,具体为:
Figure GDA0003876084800000032
其中,vi为受力等效作用点处的流速,zh为受力等效作用点距离地面(风能发电机组)或海床平面(潮流能发电机组)的高度,zs为叶轮中心距离地面或海床平面的高度,vs为叶轮中心的流速,α为剪切系数;
在已知叶片受力等效作用点与叶轮中心的距离、叶轮中心距离地面的高度、各叶片当前方位角θi的情况下,通过三角变换得到受力等效作用点距离地面的高度zh
3.3)根据发电机转速ω和叶轮中心处流速vs,计算得到叶尖速比λ,具体公式为:
Figure GDA0003876084800000033
其中,R为叶尖与叶轮中心处的距离;
根据叶尖速比λ和桨距角测量模块测得的各叶片桨距角βi,通过叶素-动量理论计算得到叶轮推力系数CT;根据叶轮推力系数CT和叶轮中心处流速vs,计算叶轮推力T,具体计算公式为:
Figure GDA0003876084800000034
式中,ρ为空气密度(风能发电机组)或海水密度(潮流能发电机组),s为叶轮扫掠面积;
3.4)计算每个叶片的非轴向力矩Myi,具体计算公式为:
Figure GDA0003876084800000041
3.5)将所有叶片的非轴向力矩Myi沿俯仰方向和偏航方向分解并分别求和,得到叶轮的俯仰力矩Mtilt和偏航力矩Myaw,具体计算公式为:
Figure GDA0003876084800000042
所述步骤3.1)中,以叶轮轮毂为原点构建二维坐标系,其中,x轴和y轴均位于叶轮旋转平面上,x轴为叶轮旋转平面上的水平轴,y轴为叶轮旋转平面上的竖直轴;叶片的方位角为叶片相对于x轴的旋转角。
本发明的有益效果是:
1、使用间接测量方法进行俯仰与偏航力矩的在线测量,避免直接测量方法难度大、成本高、可靠性低的问题,来流流速、发电机转速和桨距角的测量模块可靠性高,***易于构建,方法易于实现。
2、实现可靠的俯仰与偏航力矩在线测量和实时反馈,为机组实时运行状态监测以及机组主动载荷控制提供关键数据,提高整机运行的安全性和可靠性。
3、记录机组运行全周期的俯仰与偏航力矩数据,为机组优化设计过程提供可靠数据参考,避免由于缺乏机组俯仰与偏航力矩实测数据导致的冗余设计,降低机组设计成本。
附图说明
图1为本发明***的结构示意图。
图2为本发明方法的流程示意图。
图3为本发明***在风电机组上的一种实施例的布置位置图。
图4为本发明发电机组叶片三维模型结构示意图。
图5为本发明***在潮流能发电机组上的一种实施例的布置位置图。
图中:1、来流流速测量模块,2、发电机转速测量模块,3、桨距角测量模块,4、计算机,5、通信线缆,6、风电机组机舱,7、风电机组轮毂,8、潮流能发电机组机舱,9、潮流能发电机组轮毂。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明,但并不将本发明局限于以下具体实施方式。
实施例一
参照图1和图3,本实施例提供了一种风电机组俯仰与偏航力矩的在线间接测量***,包括来流流速测量模块1、发电机转速测量模块2、桨距角测量模块3和计算机4。其中,所述来流流速测量模块1用于测量风电机组叶轮中心处的风速;所述发电机转速测量模块2用于测量机组的发电机转速;所述桨距角测量模块3用于测量机组各叶片的桨距角;所述计算机4用于接收流速信号、转速信号和桨距角信号,通过在线实时计算处理,得到风电机组的俯仰力矩和偏航力矩,并将测量和计算数据实时显示和存储。
所述来流流速测量模块1使用测风仪,其布置于风电机组外部,固定在机舱顶部。
所述发电机转速测量模块2布置于机组机舱6内部的齿轮箱高速轴处;所述桨距角测量模块3布置于机组轮毂7内部的变桨装置处。发电机转速测量模块2和桨距角测量模块3的布置位置均位于机组内部,且相对保持静止,安装难度小,测量可靠性高。
所述来流流速测量模块1、发电机转速测量模块2和桨距角测量模块3均通过通信线缆5与计算机4实现串口通信连接,分别将流速信号、转速信号和桨距角信号传输至计算机4。
参照图2,本实施例提供了一种风电机组俯仰与偏航力矩的在线间接测量方法,采用了上述的风电机组俯仰与偏航力矩的在线间接测量***,其步骤如下:
步骤1)根据风电机组叶片设计参数,在计算机4的三维建模软件ANSYS Workbench中,建立风电机组的叶片三维模型,如图4所示,根据叶片的翼型、质量分布等特征,通过三维仿真分析,得到叶片的受力等效作用点位置坐标,计算叶片受力等效作用点与叶轮中心的距离;
步骤2)来流流速测量模块1、发电机转速测量模块2、桨距角测量模块3分别与计算机4建立串口通信连接,在机组实际运行过程中,分别对叶轮中心处的风速、发电机转速和各叶片的桨距角进行实时测量,并将风速信号、转速信号、桨距角信号传输至计算机4;
步骤3)计算机4接收步骤2)中各模块传输的风速信号、转速信号、桨距角信号并进行滤波处理,去除噪声干扰;根据步骤1中仿真得到的叶片受力等效作用点和叶轮中心的距离,以及滤波后得到的风速、发电机转速和各叶片的桨距角数据,实时计算得到风电机组的俯仰力矩和偏航力矩;
所述俯仰力矩和偏航力矩的计算过程如下:
3.1)对发电机转速测量模块1测得的发电机转速ω进行积分运算,与各叶片初始方位角θi0相加,得到各叶片的当前方位角θi;本实施例的风电机组为三叶片设计,i的取值范围为{1,2,3};
Figure GDA0003876084800000061
以轮毂为原点构建二维坐标系,x轴,y轴位于叶轮旋转平面上,x轴为叶轮旋转平面上的水平轴,y轴为叶轮旋转平面上的竖直轴。叶片的方位角为叶片相对于x轴的旋转角。
3.2)根据来流流速测量模块2测得的叶轮中心处风速vs,以及各叶片当前方位角θi和叶片受力等效作用点与叶轮中心的距离rc,计算各叶片等效作用点处的风速vi,计算方法基于流剪切公式:
Figure GDA0003876084800000062
式中,zh为待求位置离地面的高度,vi为待求位置的风速,zs为叶轮中心离地面的高度,vs为叶轮中心风速,α为剪切系数;待求位置为待求叶片的受力等效作用点;
在叶片受力等效作用点与叶轮中心的距离、叶轮中心距离地面的高度、各叶片当前方位角θi已知的情况下,通过三角变换可以得到受力等效作用点距离地面的高度zh
3.3)根据发电机转速ω和叶轮中心处风速vs,计算得到叶尖速比λ,具体公式为:
Figure GDA0003876084800000063
其中,R为叶尖与叶轮中心处的距离。
根据叶尖速比λ和桨距角测量模块3测得的各叶片桨距角βi,通过叶素-动量理论计算得到叶轮推力系数CT;根据推力系数CT和叶轮中心处风速vs,计算叶轮推力T,计算公式为:
Figure GDA0003876084800000064
式中,ρ为空气密度,s为叶轮扫掠面积;
3.4)计算叶片i的非轴向力矩Myi,计算公式为:
Figure GDA0003876084800000071
3.5)将三只叶片的非轴向力矩Myi沿俯仰方向和偏航方向分解并分别求和,得到叶轮的俯仰力矩Mtilt和偏航力矩Myaw,计算公式为:
Figure GDA0003876084800000072
步骤4)计算机4将步骤2)中实测得到的风速、发电机转速和各叶片的桨距角数据,以及步骤3中计算得到的俯仰力矩和偏航力矩,通过监控界面进行实时显示,并全部存储。
实施例二
参照图1、图2和图5,本实施例提供了一种潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法。
本实施例提供的一种潮流能发电机组俯仰与偏航力矩的在线间接测量***与实施例一中的基本相同,所不同的是:所述来流流速测量模块1用于测量潮流能发电机组叶轮中心处的潮流流速;所述来流流速测量模块1使用流速流向仪,其布置于潮流能发电机组叶轮中心点沿潮流方向正前方的适当距离处。
本实施例提供的一种潮流能发电机组俯仰与偏航力矩的在线间接测量方法与实施例一中的基本相同,所不同的是:建立潮流能发电机组的叶片三维模型进行仿真分析;读取、计算、显示、存储的风速更换为潮流流速;计算过程中,zh为待求位置离海床平面的高度,zs为叶轮中心离海床平面的高度,ρ为海水密度。
以上仅描述了本发明的基本原理和优选实施方式,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均包含在本发明的保护范围之内。

Claims (2)

1.一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量方法,
所述方法采用风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***,***包括来流流速测量模块(1)、发电机转速测量模块(2)、桨距角测量模块(3)和计算机(4);来流流速测量模块(1)用于测量发电机组叶轮中心处的流速,发电机转速测量模块(2)用于测量发电机组的发电机转速,桨距角测量模块(3)用于测量发电机组各叶片的桨距角;来流流速测量模块(1)、发电机转速测量模块(2)和桨距角测量模块(3)均通过通信线缆(5)与计算机(4)实现串口通信连接,分别将流速信号、转速信号和桨距角信号传输至计算机(4);
其特征在于:包括以下步骤:
步骤1)根据三维建模软件构建发电机组的叶片三维模型,通过三维仿真分析,得到叶片受力等效作用点的位置坐标,并计算叶片受力等效作用点与叶轮中心的距离;
步骤2)来流流速测量模块(1)、发电机转速测量模块(2)、桨距角测量模块(3)分别将测量得到的流速信号、转速信号、桨距角信号传输至计算机(4);
步骤3)计算机(4)将接收到的流速信号、转速信号、桨距角信号进行滤波处理,去除噪声干扰;根据步骤1)中仿真得到的叶片受力等效作用点和叶轮中心的距离,以及滤波后得到的叶轮中心处流速、发电机转速和各叶片的桨距角数据,实时计算得到风能或潮流能发电机组的俯仰力矩和偏航力矩;
步骤4)计算机(4)将步骤2)中实测得到的流速、发电机转速和各叶片的桨距角数据,以及步骤3)中计算得到的俯仰力矩和偏航力矩,通过监控界面进行实时显示,并全部存储;
所述步骤3)具体为:
3.1)对发电机转速ω进行积分运算,与各叶片初始方位角θi'相加,得到各叶片的当前方位角θi,其中i=1,2,…,N,N为叶片总数,具体公式为:
Figure FDA0003881668370000011
其中,t为时间;
3.2)根据叶轮中心处流速vs、各叶片当前方位角θi和叶片受力等效作用点与叶轮中心的距离rc,基于流剪切公式计算每个叶片在受力等效作用点处的流速vi,具体为:
Figure FDA0003881668370000021
其中,vi为受力等效作用点处的流速,zh为受力等效作用点距离地面或海床平面的高度,zs为叶轮中心距离地面或海床平面的高度,vs为叶轮中心的流速,α为剪切系数;
3.3)根据发电机转速ω和叶轮中心处流速vs,计算得到叶尖速比λ,具体公式为:
Figure FDA0003881668370000022
其中,R为叶尖与叶轮中心处的距离;
根据叶尖速比λ和桨距角测量模块(3)测得的各叶片桨距角βi,通过叶素-动量理论计算得到叶轮推力系数CT;根据叶轮推力系数CT和叶轮中心处流速vs,计算叶轮推力T,具体计算公式为:
Figure FDA0003881668370000023
式中,ρ为空气密度或海水密度,s为叶轮扫掠面积;
3.4)计算每个叶片的非轴向力矩Myi,具体计算公式为:
Figure FDA0003881668370000024
3.5)将所有叶片的非轴向力矩Myi沿俯仰方向和偏航方向分解并分别求和,得到叶轮的俯仰力矩Mtilt和偏航力矩Myaw,具体计算公式为:
Figure FDA0003881668370000025
2.根据权利要求1所述的风能或潮流能发电机组俯仰与偏航力矩的在线间接测量方法,其特征在于:所述步骤3.1)中,以叶轮轮毂为原点构建二维坐标系,其中,x轴和y轴均位于叶轮旋转平面上,x轴为叶轮旋转平面上的水平轴,y轴为叶轮旋转平面上的竖直轴;叶片的方位角为叶片相对于x轴的旋转角。
CN202210194300.2A 2022-03-01 2022-03-01 一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法 Active CN114458516B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210194300.2A CN114458516B (zh) 2022-03-01 2022-03-01 一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法
PCT/CN2022/130979 WO2023165159A1 (zh) 2022-03-01 2022-11-09 一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210194300.2A CN114458516B (zh) 2022-03-01 2022-03-01 一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法

Publications (2)

Publication Number Publication Date
CN114458516A CN114458516A (zh) 2022-05-10
CN114458516B true CN114458516B (zh) 2022-11-29

Family

ID=81415590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210194300.2A Active CN114458516B (zh) 2022-03-01 2022-03-01 一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法

Country Status (2)

Country Link
CN (1) CN114458516B (zh)
WO (1) WO2023165159A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114458516B (zh) * 2022-03-01 2022-11-29 浙江大学 一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9303626B2 (en) * 2012-12-18 2016-04-05 General Electric Company Control system and method for mitigating loads during yaw error on a wind turbine
US9372201B2 (en) * 2014-03-31 2016-06-21 Alstom Renewable Technologies Yaw and pitch angles
WO2018157897A1 (en) * 2017-03-01 2018-09-07 Vestas Wind Systems A/S Yaw system monitor for a multi-rotor wind turbine system
CN209354294U (zh) * 2018-12-04 2019-09-06 中海石油(中国)有限公司 一种用于实海况测量的潮流能水轮机叶尖比速测量装置
JP2020139427A (ja) * 2019-02-27 2020-09-03 株式会社日立製作所 風力発電システム、風量発電システムの制御方法
CN110863958B (zh) * 2019-11-25 2020-11-06 明阳智慧能源集团股份公司 一种风力发电机组偏航***关键参数测试方法
CN114458516B (zh) * 2022-03-01 2022-11-29 浙江大学 一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法

Also Published As

Publication number Publication date
CN114458516A (zh) 2022-05-10
WO2023165159A1 (zh) 2023-09-07

Similar Documents

Publication Publication Date Title
CN108953060B (zh) 基于激光雷达测风仪的风电场场级偏航控制方法
CN111120205B (zh) 基于激光雷达的风电场区域化控制方法
CN109376389A (zh) 一种基于2D_k Jensen模型的三维尾流数值模拟方法
US11680556B2 (en) Methods and systems of advanced yaw control of a wind turbine
CN111173686B (zh) 确定配备有LiDAR传感器的风力涡轮机的感应因子的方法
CN115544883A (zh) 一种漂浮式海上风电机组载荷和平台变形的在线测量方法及***
CN215370120U (zh) 一种海上风电机组智能综合状态监测***
CN113033009B (zh) 一种在役海上风电场尾流损失实时计算方法
CN115758942A (zh) 基于大气-海浪-海洋-结构物耦合作用的海上风电机组桩基荷载计算方法及***
CN114458516B (zh) 一种风能或潮流能发电机组俯仰与偏航力矩的在线间接测量***及方法
Cermelli et al. Experimental measurements of WindFloat 1 prototype responses and comparison with numerical model
CN115544884A (zh) 一种基于数据驱动的大型风电场尾流快速计算方法及***
Cao et al. Experimental and numerical analysis of wind field effects on the dynamic responses of the 10 MW SPIC floating wind turbine concept
Cao et al. Experimental investigation on the dynamic response of an innovative semi-submersible floating wind turbine with aquaculture cages
CN110440965B (zh) 一种漂浮式海流能机组载荷的在线测量***及方法
CN104215849A (zh) 一种潮流能发电装置模拟测试平台及测试方法
CN114186407A (zh) 一种参数可自适应调整的风电场尾流速度场计算方法及***
Wang et al. Experimental investigation of motion response and mooring load of semi-submersible tidal stream energy turbine under wave-current interactions
CN115560796A (zh) 一种基于数字孪生和环境试验的浮式风机实时监控与智能控制***
CN114295320A (zh) 测风点确定方法、***和可读存储介质
CN114485414A (zh) 一种风电机组叶片弯曲位移测试及净空可靠性评估方法
Wang et al. Research on rapid calculation method of wind turbine blade strain for digital twin
CN219012777U (zh) 一种漂浮式海上风力机多场测试***
Niu et al. Wind Speed Influence Analysis on Performance of Fish-Bionic Wind Wheel
CN117291030A (zh) 海上浮式风机混合模型试验装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant