CN114437861A - 一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂 - Google Patents

一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂 Download PDF

Info

Publication number
CN114437861A
CN114437861A CN202011206826.5A CN202011206826A CN114437861A CN 114437861 A CN114437861 A CN 114437861A CN 202011206826 A CN202011206826 A CN 202011206826A CN 114437861 A CN114437861 A CN 114437861A
Authority
CN
China
Prior art keywords
cutting
water vapor
cooling lubricant
cutter
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202011206826.5A
Other languages
English (en)
Inventor
郝兆朋
胡翔
范依航
林洁琼
张鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN202011206826.5A priority Critical patent/CN114437861A/zh
Publication of CN114437861A publication Critical patent/CN114437861A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Lubricants (AREA)

Abstract

一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂,它涉及一种切削用绿色冷却润滑剂的成份和作用机制,可有效解决目前切削用乳化液作为冷却润滑剂对人体的伤害和对环境的污染,且资源丰富,制备简单,是一种可持续发展产品,采用水蒸汽+空气作为冷却润滑剂时,水蒸汽+空气能增加刀‑屑界面间的化学反应速率,形成的Cr2O3、Fe2O3、Fe3O4等氧化物形成不稳定化学膜,具有一定的固体润滑作用,能有效抑制刀‑屑间的粘结与磨料磨损;由于这些氧化物是刀‑屑间主要的温度载体,它的不断形成与脱落又能有效减少切削温度向刀具内部的传递,起到间接冷却作用;与干切相比,采用水蒸汽+空气作为冷却润滑剂时,刀具磨损机理为W与Co微弱的氧化磨损代替严重的粘结与磨料磨损,从而提高刀具的使用寿命。

Description

一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂
技术领域
本发明涉及一种切削用水蒸汽混合空气绿色冷却润滑剂及应用。
背景技术
镍基高温合金是多组元复杂合金,具有良好的热疲劳性能、热稳定性能和热强性能,是燃气轮机和航空航天发动机的轮盘、叶片等零部件主要原材料。但由于导热性差、基体硬质点多等特点,导致切削温度高、刀具磨损严重,切削加工在需使用冷却润滑液,目前,在使用乳化液作为切削液的过程中,存在对人体健康有伤害,污染环境的问题,随着科技的快速发展,资源和环境问题开始受到重视,为实现绿色制造,切削过程中的新型冷却润滑技术一直是企业界关注的焦点。
发明内容
本发明的目的是有效解决目前切削用乳化液作为冷却润滑剂对人体的伤害和对环境的污染问题,实现绿色制造,提供了一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂。
为实现以上目的,本发明采取的技术方案是:
一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂,包括以下步骤:
步骤 1 本发明涉及的冷却润滑剂为水蒸汽混合空气,水蒸汽供气***内部包括01饱和水蒸汽发生器、02空气输入管道、03二次加热器、04压力表、05温控仪;
步骤2 本发明涉及的冷却润滑剂在金属切削中的应用,金属材料为镍基高温合金及多元素合金钢;
步骤 3 本发明机理分析涉及相关设备,观测设备:扫描电镜(SEM),光电子能谱仪(XPS),能谱分析仪(EDS)。
测温***:采用自然热电偶法测量切削温度。
切削力测量***: Kistler 9257B测力仪。
所述步骤3中所述,采用扫描电镜分别观察干切和使用所发明冷却润滑剂的刀具磨损形貌;采用光电子能谱仪(XPS)和能谱分析仪(EDS)分析干切和使用所发明冷却润滑剂的刀具磨损表面化成份和化学反应物情况;采用自然热电偶法和Kistler 9257B测力仪分别测量干切和使用所发明冷却润滑剂时的切削温度和切削力。
本发明的优势
1、本发明提出的切削用水蒸汽混合空气绿色冷却润滑剂,对人体的无伤害,对环境的无污染,原材料为水和空气,资源丰富,制备简单,是一种可持续发展产品;
2、当采用相同切削参数时(V c =45m/min),干切时刀具磨损的主要原因为粘结磨损与磨料磨损,而水蒸汽+空气作为冷却润滑介质时,刀具磨损的主要原因为氧化磨损;
3、水蒸汽+空气作为冷却润滑剂能够提高刀-工件元素的氧化速率,促使刀具表面形成化学膜,能有效地抑制刀具与工件材料间的粘结;
4、水蒸汽+空气作为冷却润滑剂时,促使生成的化合膜,是由工件与刀具材料中多种元素的氧化物组合;由于Fe2O3、Fe3O4氧化物具有疏松的性质,具一定界面润滑的作用,且它的脱落将带走部走切削热,从而能够降低切削力和切削温度,提高刀具寿命。
附图说明
附图1 水蒸汽混合空气绿色冷却润滑剂制备***;
附图2 干切时刀具磨损形貌;
附图3 水蒸汽混合空气冷却润滑时刀具磨损形貌;
附图4 刀具磨料磨损与粘结磨损形貌;
附图5 水蒸汽混合空气冷却润滑时刀具磨损表面XPS分析;
附图6 切削力对比曲线;
附图7 切削温度对比曲线;
附图8 刀具寿命对比曲线。
具体实施方式
下面结合附图和具体实施方法对本发明内容进一步详细说明:一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂,主要包括水蒸汽混合空气绿色冷却润滑剂制备,机理分析和冷却润滑效果三个方面。
所述水蒸汽混合空气绿色冷却润滑剂制备,结合附图1,本实施方式中水蒸汽混合空气绿色冷却润滑剂制备方法是; 水蒸汽供气***内部包括01饱和水蒸汽发生器、02空气输入管道、03二次加热器、04压力表、05温控仪,保证出口气体为温合气态。
所述机理分析主要分以下步骤:
步骤1:刀具磨损形貌分析
切削参数V c =45m/min,f=0.1mm/r,ap=1mm,t=300s时,在干切的情况下刀具磨损形貌见附图2,可以看出切削刃附有大量的粘结物,有清晰的犁沟现象,从放大的图中可看到刀具材料裸露,属磨料磨损;切削参数V c =45m/min、 f=0.1mm/r,ap=1mm, t=300s时,在水蒸汽+空气做为冷却润滑剂的情况下刀具磨损形貌见附图3,刀具磨损较为均匀,且切削刃粘结物和犁沟明显减小,磨损表面附大量深灰色膜态物质,从局部放大图片中可以看出,深灰色膜态物质呈多形态相互联接附着在磨损表面,阻碍了切屑与刀具表面的直接接触,抑制了刀具磨损;
步骤2:刀-屑界面状态
干切的情况下,由于刀具磨损表面与切屑直接接触,形成不稳定粘结物以及刀-工件之间的扩散作用,使刀具基体材料呈片层状磨损碎片脱落,而造成严重的磨料磨损与粘结磨损,同附图4。
采用水蒸汽+空气作为冷却润滑条件下形成了化合膜,为研究各元素的存在状态以及形成化合膜的特点,对图磨损表面进行了光电子能谱分析(XPS),见附图5。这表明发生了以下的化学反应:
2Fe+3H2O→Fe2O3+3H2
2Ni+O2→2NiO
4Cr+3O2→2Cr2O3
2Fe+3H2O→Fe2O3+3H2
Fe2O3+ 4Cr+ 5H2O→2FeCr2O4+5H2
2Fe+O2→2FeO
4Fe+3O2→2Fe2O3
3Fe+2O2→Fe3O4
化合膜具有边界润滑层的作用,在一定程度上能减弱刀具-工件间接触时的粘结与扩散,使摩擦系数减小,降低切削力和切削温度(见附图6,7所示),对刀具能够起到保护作用。
所述冷却润滑效果实施方式参照国家标准GB/T16461-1996《单刃车削刀具寿命试验》进行刀具磨损试验。所用机床为可实现无级调速CA6140普通车床,工件材料为镍基高温合金GH4169,其化学成分及物理力学性能分别见附表1、附表2。刀具材料为PVD-TiAlN涂层硬质合金刀具,刀具几何参数为γ 0 = 6°、α 0 = 7°、λ= -4°、κ r =κ’ r = 45°。
附表1 GH4169的化学成分
Figure 39776DEST_PATH_IMAGE002
附表2 GH4169的物理力学性能
Figure 19233DEST_PATH_IMAGE004
在干切与水蒸汽+空气冷却润滑条件下,切削用量在V c =30、35、40、45m/min,f=0.1mm/r,ap=1mm时,以后刀面磨钝标准VB=0.3mm为标准,刀具使用寿命T与切削速度V c 的关系曲线见附图8所示。从图可以看出:在水蒸汽+空气冷却润滑条件条件下与干切相比可以显著地提高切削寿命。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (6)

1.一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂其成份特征在于:冷却润滑剂组成为70%-100%水蒸汽混合空气。
2.根据权利要求1所述的一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂其特征在于其成份比例:冷却润滑剂成份比例为90%水蒸汽混合10%空气。
3.根据权利要求1所述的一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂其特征在于其成份比例:冷却润滑剂成份比例为80%水蒸汽混合20%空气。
4.根据权利要求1所述的一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂其特征在于其成份比例:冷却润滑剂成份比例为70%水蒸汽混合30%空气。
5.一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂其应用特征在于:水蒸汽混合空气在金属切削过程中作为冷却润滑剂。
6.根据权利要求5所述的一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂其应用特征在于:金属材料为镍基高温合金或多元素合金钢。
CN202011206826.5A 2020-11-03 2020-11-03 一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂 Withdrawn CN114437861A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011206826.5A CN114437861A (zh) 2020-11-03 2020-11-03 一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011206826.5A CN114437861A (zh) 2020-11-03 2020-11-03 一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂

Publications (1)

Publication Number Publication Date
CN114437861A true CN114437861A (zh) 2022-05-06

Family

ID=81361943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011206826.5A Withdrawn CN114437861A (zh) 2020-11-03 2020-11-03 一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂

Country Status (1)

Country Link
CN (1) CN114437861A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103833A (ja) * 2005-10-07 2007-04-19 Disco Abrasive Syst Ltd 切削装置
CN102029551A (zh) * 2010-11-18 2011-04-27 长沙理工大学 一种对切削加工进行润滑和冷却的方法及其装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103833A (ja) * 2005-10-07 2007-04-19 Disco Abrasive Syst Ltd 切削装置
CN102029551A (zh) * 2010-11-18 2011-04-27 长沙理工大学 一种对切削加工进行润滑和冷却的方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIHANG FAN等: "New observations on tool wear mechanism in machining Inconel 718 under water vapor þ air cooling lubrication cutting conditions", 《JOURNAL OF CLEANER PRODUCTION》 *

Similar Documents

Publication Publication Date Title
Pal et al. Experimental investigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable-oil-based cutting fluid
Wang et al. Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials
Maruda et al. Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication
Malkin et al. Thermal analysis of grinding
Şirin et al. Effects of mono/hybrid nanofluid strategies and surfactants on machining performance in the drilling of Hastelloy X
De Oliveira et al. Influence of multilayer graphene platelet concentration dispersed in semi-synthetic oil on the grinding performance of Inconel 718 alloy under various machining conditions
Huang et al. Study on friction characterization and wear-resistance properties of Si3N4 ceramic sliding against different high-temperature alloys
Makhesana et al. Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625
Virdi et al. Performance Evaluation of Inconel 718 under vegetable oils based nanofluids using Minimum Quantity Lubrication Grinding
Zhang et al. Probing the effect of abrasive grit size on rail grinding behaviors
Balitskii et al. Hydrogen effect on the high-nickel surface steel properties during machining and wear with lubricants
Su et al. Wear characteristics of nano TiAlN-coated carbide tools in ultra-high speed machining of AerMet100
Dang et al. Surface modification of ultrahigh strength 300M steel under supercritical carbon dioxide (scCO2)-assisted grinding process
Jadam et al. Machinability of Ti–6Al–4V superalloy: performance of dry cutting and nanofluid MQL (MWCNT-added rice bran oil)
Leadebal Jr et al. Effects of cryogenic cooling on the surface integrity in hard turning of AISI D6 steel
de Souza Ruzzi et al. Study on grinding of inconel 625 and 718 alloys with cutting fluid enriched with multilayer graphene platelets
Jamil et al. Thermophysical, tribological, and machinability characteristics of newly developed sustainable hybrid lubri-coolants for milling Ti-6Al-4V
Cinca et al. Cold Gas Sprayed Stellite-6 Coatings andtheir Wear Resistance
Bertolini et al. Graphene nanoplatelets-assisted minimum quantity lubrication in turning to enhance Inconel 718 surface integrity
Virdi et al. A review on minimum quantity lubrication technique application and challenges in grinding process using environment-friendly nanofluids
CN114437861A (zh) 一种基于机理分析的切削用水蒸汽混合空气绿色冷却润滑剂
Mahata et al. Exploring grind ability of Inconel 718 using small quantity cooling and lubrication technique
Nurul Adlina et al. A Study of Surface Roughness & Surface Integrity in Drilling Process Using Various Vegetable–Oil Based Lubricants In Minimum Quantity Lubrication
Liu et al. FeCrMnVSix high entropy alloy coatings with improved high temperature tribological properties via synergistic effect of in situ-formed SiO2 and bimetallic oxides
Suhaimi et al. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20220506

WW01 Invention patent application withdrawn after publication