CN114420925A - 一种n型磷化亚铜的制备方法 - Google Patents

一种n型磷化亚铜的制备方法 Download PDF

Info

Publication number
CN114420925A
CN114420925A CN202210057770.4A CN202210057770A CN114420925A CN 114420925 A CN114420925 A CN 114420925A CN 202210057770 A CN202210057770 A CN 202210057770A CN 114420925 A CN114420925 A CN 114420925A
Authority
CN
China
Prior art keywords
cuprous phosphide
copper foil
phosphide
corundum
cuprous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210057770.4A
Other languages
English (en)
Other versions
CN114420925B (zh
Inventor
彭雪
吕燕飞
蔡庆锋
席俊华
傅力
陈飞
张睿
赵士超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202210057770.4A priority Critical patent/CN114420925B/zh
Publication of CN114420925A publication Critical patent/CN114420925A/zh
Application granted granted Critical
Publication of CN114420925B publication Critical patent/CN114420925B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • C01G9/03Processes of production using dry methods, e.g. vapour phase processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种n型磷化亚铜的制备方法,包括如下步骤:S1、制备表面生长有磷化亚铜的铜箔;S2、将表面生长有磷化亚铜的铜箔作为基底,在其表面沉积氧化锌薄膜;S3、将步骤S2制备的产物在惰性气体中加热,热处理温度为650‑750℃,保温时长60‑300min。采用上述技术方案,在铜箔表面生长磷化亚铜连续薄膜,使用磁控溅射在磷化亚铜表面沉积氧化锌薄膜,高温下氧化锌与磷化亚铜相互作用,锌、氧元素扩散进入磷化亚铜晶格,形成n型掺杂磷化亚铜,该制备方法简单,重复性好,成本低,并且电阻率低、温差电动势高和光电响应快。

Description

一种n型磷化亚铜的制备方法
技术领域
本发明涉及半导体材料技术领域,具体指一种n型磷化亚铜的制备方法。
背景技术
磷化亚铜是一种半导体材料,在锂离子电池电极材料、光催化分解有机物和电催化制氢等领域均有应用。半导体材料通过掺杂可改变载流子浓度、导电类型和其它性能,比如研究发现硼、硫、钴、氧掺杂能够提高其催化性能。但是目前市面上只有p型磷化亚铜,以及对p型磷化亚铜的研究和改善。至今还尚未有n型磷化亚铜的相关报道。
发明内容
本发明根据现有技术的不足,提出一种n型磷化亚铜的制备方法,通过掺杂制备了n型磷化亚铜,具有电阻率低、温差电动势高和光电反应快的优点。
本发明的技术方案为:
一种n型磷化亚铜制备方法,包括如下步骤:
S1、制备表面生长有磷化亚铜的铜箔;
S2、将表面生长有磷化亚铜的铜箔作为基底,在其表面沉积氧化锌薄膜;
S3、将步骤S2制备的产物在惰性气体中加热,热处理温度为650-750℃,保温时长60-300min。
作为优选,所述步骤S2中,所述表面生长有磷化亚铜的铜箔表面通过磁控溅射法沉积氧化锌薄膜。
作为优选,所述磁控溅射法所用设备的真空度0.1-1.0Pa,氧气流量1-5sccm,氩气流量20-50sccm,溅射电压300-450V,电流30-60mA,溅射时间20-40min,靶材为金属锌靶。
作为优选,所述磁控溅射法制备的氧化锌薄膜厚度为50-200nm。
作为优选,所述步骤S1的制备方法如下:
S1-1、将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖1-5平方厘米,厚度为250-1000微米的铜箔;
S1-2、将步骤S1-1的刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
S1-3、将步骤S1-2刚玉管通过管式炉加热至280-300℃,升温速率10℃/min;温度升至280-300℃后保温,保温时间为30-60min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物表面生长有磷化亚铜的铜箔。
作为优选,所述铜箔的厚度为600微米。
本发明具有以下的特点和有益效果:
采用上述技术方案,在铜箔表面沉积生长磷化亚铜连续薄膜,使用磁控溅射在磷化亚铜表面沉积氧化锌薄膜,高温下氧化锌与磷化亚铜相互作用,锌、氧元素扩散进入磷化亚铜晶格,形成n型掺杂磷化亚铜,该制备方法简单,重复性好,循环性能优异,稳定性好,成本低,并且电阻率低、温差电动势高和光电反应快,电化学性能整体有了明显的改善。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例所制备的n型磷化亚铜的X光衍射图;
图2为本发明实施例所制备的磷化亚铜温差电势随加热情况的变化图。
具体实施方式
实施例1
本实施例提供了一种n型磷化亚铜的制备方法,包括如下步骤:
S1、制备表面生长有磷化亚铜的铜箔;
S1-1、将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖1平方厘米,厚度为250微米的铜箔;
S1-2、将步骤S1-1的刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
S1-3、将步骤S1-2刚玉管通过管式炉加热至280℃,升温速率10℃/min;温度升至280℃后保温,保温时间为30min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物表面生长有磷化亚铜的铜箔;
S2、将步骤S1产物作为基底,通过磁控溅射法沉积氧化锌薄膜;磁控溅射设备真空度0.1Pa,氧气流量1sccm,氩气流量20sccm,溅射电压300V,电流30mA,溅射时间20min,靶材为金属锌靶;制备的氧化锌薄膜厚度50nm;
S3、将步骤S2的产物在惰性气体中加热,形成n型半导体磷化亚铜;热处理温度为650℃,保温时间120min。
上述技术方案中,在铜箔表面沉积生长磷化亚铜连续薄膜,使用磁控溅射在磷化亚铜表面沉积氧化锌薄膜,高温下氧化锌与磷化亚铜相互作用,锌、氧元素扩散进入磷化亚铜晶格,形成n型掺杂磷化亚铜,该制备方法简单,重复性好,循环性能优异,稳定性好,成本低,并且电阻率低、温差电动势高和光电反应快,电化学性能整体有了明显的改善。
需要说明的是,本实施例中的铜箔基底也可以为硅基底。
本实施例中采用磁控溅射法在磷化亚铜表面沉积氧化锌,也可以为溶胶凝胶法,化学气相沉积法,激光脉冲沉积法等物理方法。
实施例2
本实施例与实施例1的区别在于,包括如下步骤:
S1、制备表面生长有磷化亚铜的铜箔;
S1-1、将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖3平方厘米,厚度为500微米的铜箔;
S1-2、将步骤S1-1的刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
S1-3、将步骤S1-2刚玉管通过管式炉加热至290℃,升温速率10℃/min;温度升至290℃后保温,保温时间为40min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物表面生长有磷化亚铜的铜箔;
S2、将步骤S1产物作为基底,通过磁控溅射法沉积氧化锌薄膜;磁控溅射设备真空度0.6Pa,氧气流量3sccm,氩气流量40sccm,溅射电压400V,电流40mA,溅射时间30min,靶材为金属锌靶;制备的氧化锌薄膜厚度120nm;
S3、将步骤S2的产物在惰性气体中加热,最后形成n型半导体磷化亚铜;热处理温度为700℃,保温时间180min。
实施例3
本实施例与实施例1的区别在于,包括如下步骤:
S1、制备表面生长有磷化亚铜的铜箔;
S1-1、将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖5平方厘米,厚度为1000微米的铜箔;
S1-2、将步骤S1-1的刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
S1-3、将步骤S1-2刚玉管通过管式炉加热至300℃,升温速率10℃/min;温度升至300℃后保温,保温时间为60min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物表面生长有磷化亚铜的铜箔;
S2、将步骤S1产物作为基底,通过磁控溅射法沉积氧化锌薄膜;磁控溅射设备真空度1.0Pa,氧气流量5sccm,氩气流量50sccm,溅射电压450V,电流60mA,溅射时间40min,靶材为金属锌靶;制备的氧化锌薄膜厚度200nm;
S3、将步骤S2的产物在惰性气体中加热,形成n型半导体磷化亚铜;热处理温度为750℃,保温时间300min。
结合实施例1-3制备的n型磷化亚铜,如图1所示,可以明显看出,通过实施例1-3制备n型磷化亚铜的X光衍射峰,其中43、74、90°为铜晶体的衍射峰,其他位置衍射峰来自n型磷化亚铜,由此可见本实施例所提供的技术方案制备出n型磷化亚铜,制备方法简单,重复性好,成本低,并且电阻率低、温差电动势高和光电响应快。
另外,通过图2可知,制备的n型磷化亚铜温差电动势随着加热时间的变化,图中,横坐标表示时间,纵坐标表示电势数值。正极加热后,电势为正值,表明掺杂后的磷化亚铜为n型半导体,即n型磷化亚铜。

Claims (6)

1.一种n型磷化亚铜的制备方法,其特征在于,包括如下步骤:
S1、制备表面生长有磷化亚铜的铜箔;
S2、将表面生长有磷化亚铜的铜箔作为基底,在其表面沉积氧化锌薄膜;
S3、将步骤S2制备的产物在惰性气体中加热,热处理温度为650-750℃,保温时长60-300min。
2.根据权利要求1所述的n型磷化亚铜的制备方法,其特征在于,所述步骤S2中,所述表面生长有磷化亚铜的铜箔表面通过磁控溅射法沉积氧化锌薄膜。
3.根据权利要求2所述的n型磷化亚铜的制备方法,其特征在于,所述磁控溅射法所用设备的真空度0.1-1.0Pa,氧气流量1-5sccm,氩气流量20-50sccm,溅射电压300-450V,电流30-60mA,溅射时间20-40min,靶材为金属锌靶。
4.根据权利要求2所述的n型磷化亚铜的制备方法,其特征在于,所述磁控溅射法制备的氧化锌薄膜厚度为50-200nm。
5.根据权利要求1所述的n型磷化亚铜的制备方法,其特征在于,所述步骤S1的制备方法如下:
S1-1、将次磷酸钠放入刚玉舟中,然后在刚玉舟表面覆盖1-5平方厘米,厚度为250-1000微米的铜箔;
S1-2、将步骤S1-1的刚玉舟放入刚玉管中,抽真空后,充入1个大气压的氩气,然后刚玉管两端密封;
S1-3、将步骤S1-2刚玉管通过管式炉加热至280-300℃,升温速率10℃/min;温度升至280~300℃后保温,保温时间为30-60min;然后自然冷却至室温,刚玉管抽真空去除管内残留气体,然后取出产物表面生长有磷化亚铜的铜箔。
6.根据权利要求1所述的n型磷化亚铜的制备方法,其特征在于,所述铜箔的厚度为600微米。
CN202210057770.4A 2022-01-19 2022-01-19 一种n型磷化亚铜的制备方法 Active CN114420925B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210057770.4A CN114420925B (zh) 2022-01-19 2022-01-19 一种n型磷化亚铜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210057770.4A CN114420925B (zh) 2022-01-19 2022-01-19 一种n型磷化亚铜的制备方法

Publications (2)

Publication Number Publication Date
CN114420925A true CN114420925A (zh) 2022-04-29
CN114420925B CN114420925B (zh) 2023-11-10

Family

ID=81273914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210057770.4A Active CN114420925B (zh) 2022-01-19 2022-01-19 一种n型磷化亚铜的制备方法

Country Status (1)

Country Link
CN (1) CN114420925B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979556A (zh) * 2015-05-15 2015-10-14 三峡大学 一种氮掺杂Cu3P/C-Cu锂离子电池负极材料及其制备方法
CN111564610A (zh) * 2020-04-03 2020-08-21 华南师范大学 一种碳纳米管修饰的碳包覆磷化亚铜-铜复合颗粒及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979556A (zh) * 2015-05-15 2015-10-14 三峡大学 一种氮掺杂Cu3P/C-Cu锂离子电池负极材料及其制备方法
CN111564610A (zh) * 2020-04-03 2020-08-21 华南师范大学 一种碳纳米管修饰的碳包覆磷化亚铜-铜复合颗粒及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIXIN HUA等: ""Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, vol. 240 *
魏杰顶;徐小丽;: "Cu_3P纳米阵列的低温合成及其影响因素", 广东化工, no. 01 *

Also Published As

Publication number Publication date
CN114420925B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
AU2002349822B2 (en) A process for large-scale production of CdTe/CdS thin film solar cells
CN100499182C (zh) 用于不使用CdCl2大规模生产CdTe/CdS薄膜太阳能电池的方法
WO2007129097A2 (en) Manufacture of cdte photovoltaic cells using mocvd
US8257561B2 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
US4650921A (en) Thin film cadmium telluride solar cell
CN105668559A (zh) 一种批量多衬底制备石墨烯薄膜的方法
US4734381A (en) Method of making a thin film cadmium telluride solar cell
Dang et al. The optimum fabrication condition of p-type antimony tin oxide thin films prepared by DC magnetron sputtering
CN108666358B (zh) 过渡金属硫属化合物与氮化硼或石墨烯异质结的制备方法
EP2402478B1 (en) Method of forming a conductive transparent oxide film.
EP2403016B1 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
CN102208485A (zh) 基于碲化镉的薄膜光伏器件所用的导电透明氧化物膜层的形成方法
CN114420925B (zh) 一种n型磷化亚铜的制备方法
CN104733547A (zh) 基于石墨烯的柔性碲化镉薄膜太阳能电池及其制备方法
CN108588713B (zh) 一种二维磷化钼薄膜的制备方法
CN103572243A (zh) 一种锑化锌基热电薄膜及其制备方法
US8119513B1 (en) Method for making cadmium sulfide layer
WO2014074982A2 (en) Methods of annealing a conductive transparent oxide film layer for use in a thin film photovoltaic device
CN110970523A (zh) 一种硅基异质结太阳能电池及制造方法
CN105576049B (zh) CdTe薄膜太阳电池的背接触结构、其制备方法与CdTe薄膜太阳电池
CN114284384B (zh) 一种基于氧化锌-磷化亚铜光电探测器的制备方法
CN110359022B (zh) 一种优化载流子传导层电荷分离效率的方法
KR101281330B1 (ko) 태양전지 및 이의 제조방법
JPH11195658A (ja) 硫化カドミウム膜の製造方法、製造装置およびこの膜を用いた太陽電池
Kim et al. Influence of Annealing Temperature on Crystal Orientation of Electrodeposited Sb 2 Se 3 Thin-Film Photovoltaic Absorbers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant