CN114409917A - 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用 - Google Patents

一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用 Download PDF

Info

Publication number
CN114409917A
CN114409917A CN202210093719.9A CN202210093719A CN114409917A CN 114409917 A CN114409917 A CN 114409917A CN 202210093719 A CN202210093719 A CN 202210093719A CN 114409917 A CN114409917 A CN 114409917A
Authority
CN
China
Prior art keywords
moisture
mil
based metal
preparation
metal organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210093719.9A
Other languages
English (en)
Other versions
CN114409917B (zh
Inventor
王金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central China Normal University
Original Assignee
Central China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central China Normal University filed Critical Central China Normal University
Priority to CN202210093719.9A priority Critical patent/CN114409917B/zh
Publication of CN114409917A publication Critical patent/CN114409917A/zh
Application granted granted Critical
Publication of CN114409917B publication Critical patent/CN114409917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • B01D53/8675Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用,属于环境保护技术领域,该方法将铁盐与有机配体溶解在N,N‑二甲基甲酰胺中,搅拌溶解;所得溶液进行溶剂热反应;反应完成后,所得产物用N,N‑二甲基甲酰胺洗涤,再置于甲醇中连续搅拌,之后离心收集、烘干,获得所述抗湿性铁基金属有机框架材料;本发明方法解决了传统MnO2材料存在的催化分解臭氧效率高但抗湿性差、易失活的问题,同时利用铁基金属有机框架材料的良好分解性能,使所述复合材料能在室温下高效净化室内空气中的臭氧,且该复合材料的制备方法简单,成本低,不引入其他污染物。

Description

一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料 及其制备方法和应用
技术领域
本发明涉及环境保护技术领域,特别是涉及一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用。
背景技术
近地面臭氧是影响环境空气质量的重要污染物,臭氧污染已经逐渐超越PM2.5成为影响空气质量的污染源之一。挥发性有机污染物(VOCs)是臭氧产生的重要前体物质,虽然目前已经进行了一系列控制VOCs的措施,但短期内臭氧在大气环境仍会维持较高的浓度。
由于人们近70%-90%的时间是在室内环境中度过的,因此应立即加强对室内O3污染的关注。一方面,室外O3可以通过新风***直接进入室内;另一方面,室内狭窄空间也会有O3产生,如室内静电通风***、打印机旁、飞机客舱内、医院以及水处理厂等。研究人员尝试了各种方法来控制O3的排放,包括物理和化学吸附、热分解、催化分解。其中催化法是一种高效、经济地消除室内空气O3的简便方法。研究表明,锰基催化剂具有较高的催化效率,然而传统MnO2材料存在抗湿性差、易失活的问题,使其不适于室内湿润空气的处理。
金属有机框架材料(Metal-Organic Frameworks,MOFs)是一种新兴的多孔功能材料,MOFs材料是由无机金属离子或无机簇单元和有机配体通过配位键自组装形成的具有周期性立体网络结构晶体。与传统的无机材料相比,MOFs材料具有极高的孔隙率、超大的比表面积和有序的孔道结构,在传感、吸附、药物缓释及气体的储存等领域都有广泛的应用。MOFs材料在催化领域也显示出巨大的应用前景:(1)由于具有大的比表面积和孔隙率,有利于对反应底物的吸附,提高催化活性;(2)由于MOFs材料在结构及组成上多样,结构可剪裁性、可设计性、易调变等特点,从而可以根据实际需要来设计MOFs的结构、组成、孔道形状和大小,这是传统材料所无法比拟的;(3)高密度的金属位点,完全暴露在表面/孔道的金属离子可以提供100%的可利用率。基于以上特点可知MOFs材料是一类有潜力的催化剂,但是目前MOFs材料在臭氧催化分解领域方面的应用报道并不多。
发明内容
本发明的目的是提供一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用,以解决目前催化臭氧分解的纳米材料在高湿度下容易失活的问题,该铁基金属有机框架材料(Fe-MOFs)为MIL-53(Fe)系列材料,具有活性高、成本低、抗湿性好的优点,便于实际应用,且该纳米材料的制备方法简单,不会引入其他污染物,对于有效去除室内空气中的臭氧污染具有重要的实用价值。
为实现上述目的,本发明提供了如下方案:
本发明提供一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料的制备方法,以铁盐与有机配体为原料,经过溶剂热法制备而成;所述有机配体包括对苯二甲酸、2-氨基对苯二甲酸、硝基对苯二甲酸或2-羟基对苯二甲酸。
进一步地,所述制备方法具体包括以下步骤:
(1)将铁盐与有机配体溶解在N,N-二甲基甲酰胺中,搅拌溶解;
(2)将步骤(1)所得溶液进行溶剂热反应;
(3)反应完成后,所得产物用N,N-二甲基甲酰胺洗涤,再置于甲醇中连续搅拌,之后离心收集、烘干,获得所述抗湿性铁基金属有机框架材料。
进一步地,所述铁盐为FeCl3·6H2O或Fe(NO3)3·9H2O。
进一步地,在步骤(1)中,所述铁盐、有机配体和N,N-二甲基甲酰胺的质量比为1:1:130;所述搅拌溶解的时间为10-30min。
进一步地,在步骤(2)中,所述溶剂热反应在聚四氟乙烯内衬的反应釜中进行,反应温度为150℃,反应时间为6-24h。
进一步地,在步骤(3)中,所述甲醇与步骤(1)中N,N-二甲基甲酰胺的体积比为1:4-10;所述连续搅拌的时间为24h;所述烘干为60℃条件下真空干燥12h。
本发明还提供一种上述的制备方法制备得到的具有催化臭氧分解能力的抗湿性铁基金属有机框架材料。
本发明还提供一种上述的具有催化臭氧分解能力的抗湿性铁基金属有机框架材料在催化分解室内空气中臭氧的应用。
进一步地,所述室内空气的相对湿度为3.1-66.6%。
进一步地,所述室内空气中臭氧的初始浓度为4-5ppm,空气相对湿度为66.6%。
本发明公开了以下技术效果:
(1)本发明合成的MIL-53(Fe)系列材料,包括铁盐和有机配体,其以金属离子Fe3+为节点(Nodes),以有机配体为连接子(Links),形成拓扑结构,其制备工艺简单,生产成本低,易于大规模生产。
(2)与传统MnO2材料相比,MIL-53(Fe)系列材料在催化分解臭氧中具有活性高、抗湿性好的优点,更经济实用。
(3)本发明的MIL-53(Fe)系列材料可以在室温潮湿环境下快速去除臭氧,简单方便。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1-4合成的MIL-53(Fe)系列材料的XRD谱图;
图2为实施例1-4合成的MIL-53(Fe)系列材料的FTIR谱图;
图3为实施例1-4合成的MIL-53(Fe)系列材料的扫描电镜照片(SEM图);其中,(a)MIL-53(Fe);(b)NH2-MIL-53(Fe);(c)NO2-MIL-53(Fe);(d)OH-MIL-53(Fe);
图4为实施例1-4合成的MIL-53(Fe)系列材料的吡啶红外光谱(Py-FTIR);其中,(a)MIL-53(Fe);(b)NH2-MIL-53(Fe);(c)NO2-MIL-53(Fe);(d)OH-MIL-53(Fe);
图5为实施例1-4合成的MIL-53(Fe)系列材料的性能测试图;其中,(a)MIL-53(Fe);(b)NH2-MIL-53(Fe);(c)NO2-MIL-53(Fe);(d)OH-MIL-53(Fe);
图6为NH2-MIL-53(Fe)的催化反应机理测试;其中,(a)为MIL-53(Fe)系列材料原位红外测试图:NH2-MIL-53(Fe)的干、湿空气不同时段;(b)为NH2-MIL-53(Fe)反应前后XRD谱图及其结构对比。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1
将FeCl3·6H2O、对苯二甲酸(H2BDC)和DMF按摩尔比1:1:130混合,其中FeCl3·6H2O为1.3515g,H2BDC为0.821g,DMF为50mL,搅拌15min至溶液透明,将溶液转移至聚四氟乙烯内衬的反应釜中,采用溶剂热法,将反应釜密封后置于烘箱中,150℃下反应24h。待反应釜冷却至室温后,将含样品的沉淀物离心分离,用DMF清洗至少3遍以去除样品中可能残留的杂质成分。然后将样品于200mL甲醇中搅拌24h后离心收集,最后,所得样品在真空干燥箱60℃条件下干燥12h,记录样品为MIL-53(Fe)。
实施例2
将Fe(NO3)3·9H2O、2-氨基对苯二甲酸(H2BDC-NH2)和DMF按摩尔比1:1:130混合,其中Fe(NO3)3·9H2O为0.8g,H2BDC-NH2为0.359g,DMF为20mL,搅拌30min,将溶液转移至聚四氟乙烯内衬的反应釜中,采用溶剂热法,将反应釜密封后置于烘箱中,150℃下反应24h。待反应釜冷却至室温后,将含样品的沉淀物离心分离,用DMF清洗至少3遍以去除样品中可能残留的杂质成分。然后将样品于200mL甲醇中搅拌24h后离心收集,最后,所得样品需在真空干燥箱60℃条件下干燥12h,记录样品为NH2-MIL-53(Fe)。
实施例3
将Fe(NO3)3·9H2O、硝基对苯二甲酸(H2BDC-NO2)和DMF按摩尔比1:1:130混合,其中Fe(NO3)3·9H2O为0.8g,H2BDC-NO2为0.418g,DMF为20mL,搅拌30min,将溶液转移至聚四氟乙烯内衬的反应釜中,采用溶剂热法,将反应釜密封后置于烘箱中,150℃下反应24h。待反应釜冷却至室温后,将含样品的沉淀物离心分离,用DMF清洗至少3遍以去除样品中可能残留的杂质成分。然后将样品于200mL甲醇中搅拌24h后离心收集,最后,所得样品需在真空干燥箱60℃条件下干燥12h,记录样品为NO2-MIL-53(Fe)。
实施例4
将Fe(NO3)3·9H2O、2-羟基对苯二甲酸(H2BDC-OH)和DMF按摩尔比1:1:130混合,其中Fe(NO3)3·9H2O为0.8g,H2BDC-OH为0.361g,DMF为20mL,搅拌30min,将溶液转移至聚四氟乙烯内衬的反应釜中,采用溶剂热法,将反应釜密封后置于烘箱中,150℃下反应6h。待反应釜冷却至室温后,将含样品的沉淀物离心分离,用DMF清洗至少3遍以去除样品中可能残留的杂质成分。然后将样品于200mL甲醇中搅拌24h后离心收集,最后,所得样品需在真空干燥箱60℃条件下干燥12h,记录样品为OH-MIL-53(Fe)。
对实施例1-4中合成的MIL-53(Fe)系列材料进行表征,结果如图1-4,其中:
图1为实施例1-4中合成的MIL-53(Fe)系列材料的XRD谱图,可见其材料具有清晰可分辨和锐化的特征衍射峰,表明制备的MIL-53(Fe)系列材料具有良好的结晶性。
图2为MIL-53(Fe)系列材料的FTIR谱图,氨基、硝基、羟基(NH2、NO2、OH)官能团的特征峰证明所合成的MIL-53(Fe)系列材料具有明显的官能团特性。
图3为MIL-53(Fe)系列材料的扫描电镜照片(SEM图):(a)MIL-53(Fe);(b)NH2-MIL-53(Fe);(c)NO2-MIL-53(Fe);(d)OH-MIL-53(Fe);微观形貌分析表明,MIL-53(Fe)的形貌显示为不规则结构;NH2-MIL-53(Fe)形貌则类似分布均匀的米粒状,长度约1μm,分布密度较大,表明所合成样品纯度较高,杂质成分较少,与其较好的催化性能有直接的联系;NO2-MIL-53(Fe)、OH-MIL-53(Fe)两种材料具有不寻常的簇状结构。
图4为MIL-53(Fe)系列材料的吡啶红外光谱(Py-FTIR),(a)MIL-53(Fe);(b)NH2-MIL-53(Fe);(c)NO2-MIL-53(Fe);(d)OH-MIL-53(Fe);分别通过40,150和250℃下的吡啶吸收峰温度确定峰(1068cm-1)的总酸,中酸和强酸位点。如表1吡啶红外光谱测定的不同Fe-MOFs材料表面Lewis酸中心(LAS)的含量所示,就总酸位而言,MIL-53(Fe)系列四种材料的酸度可按以下顺序排列:MIL-53(Fe)>NH2-MIL-53(Fe)>OH-MIL-53(Fe)>NO2-MIL-53(Fe)。结合MIL-53(Fe)系列材料的臭氧分解性能测试,推断样品在不同湿度对臭氧的分解效率受催化剂上LAS的影响,而且并不是酸位越多越好,而是要适中才能达到较好的效果。
表1用Py-FTIR光谱测定了不同Fe-MOFs表面LAS的含量
Figure BDA0003490261290000061
试验例1
MIL-53(Fe)系列样品催化臭氧分解的性能测试将在自组装的测试装置中完成,整体采用固定床连续流反应器,由空气泵提供气体来源,经过分子筛、活性炭和硅胶净化管得到清洁的空气。质量流量计调节气路中的气体流量为1000mL/min,加湿瓶调节气路中的相对湿度(3.1%-66.6%),以8w紫外灯作为臭氧发生器用以产生臭氧,初始臭氧浓度为4-5ppm。在室温下测定实施例1~4所获得的样品催化臭氧分解实验,称取0.1g(颗粒大小范围在40-60目),装填于反应炉中的石英管(内径6mm)中,通过臭氧分析仪对气路中的臭氧浓度进行实时监测。催化剂分解臭氧的性能可以通过臭氧转化率展现。
图5为MIL-53(Fe)系列材料的性能测试图,从图中可以看出,MIL-53(Fe)系列四种材料对臭氧的去除率都有随相对湿度的增加而升高的趋势,在各个相对湿度下均存在四种材料的效果对比:NH2-MIL-53(Fe)>NO2-MIL-53(Fe)>MIL-53(Fe)>OH-MIL-53(Fe)。当臭氧初始浓度约5ppm,相对湿度为66.6%时,NH2-MIL-53(Fe)对臭氧的去除效果最好,去除率一直维持在较高水平,反应时间9h,仍在95.4%左右。
图6(a)为NH2-MIL-53(Fe)的干、湿空气不同时段原位红外测试图,可以看出在2min内湿空气下,900cm-1左右的峰强度稍弱,表明湿空气下臭氧与NH2-MIL-53(Fe)一经接触立即反应,除此之外,红外吸收峰的形状和位置几乎没有变化;图6(b)为NH2-MIL-53(Fe)反应前后XRD谱图及其结构对比;可以看出,湿空气下衍射峰由干空气条件下的10.7°移动到了8.5°,表明水分在NH2-MIL-53(Fe)催化臭氧分解过程起到一定的作用,并给出了水分存在与否时NH2-MIL-53(Fe)的结构模型差异,我们称之为“呼吸效应”。潮湿空气下NH2-MIL-53(Fe)因为水的加入分子间结构打开,变得饱满立体,会暴露出更多的活性位点,从而促进臭氧分解,而干空气下NH2-MIL-53(Fe)则因失去水分子而皱缩。
根据上述方法制备出的复合净化材料,MIL-53(Fe)系列材料,可以应用于需要净化室内臭氧的空间内,不仅成本低廉,而且可以达到非常好的分解空气中臭氧的效果。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料的制备方法,其特征在于,以铁盐与有机配体为原料,经过溶剂热法制备而成;所述有机配体包括对苯二甲酸、2-氨基对苯二甲酸、硝基对苯二甲酸或2-羟基对苯二甲酸。
2.根据权利要求1所述的制备方法,其特征在于,具体包括以下步骤:
(1)将铁盐与有机配体溶解在N,N-二甲基甲酰胺中,搅拌溶解;
(2)将步骤(1)所得溶液进行溶剂热反应;
(3)反应完成后,所得产物用N,N-二甲基甲酰胺洗涤,再置于甲醇中连续搅拌,之后离心收集、烘干,获得所述抗湿性铁基金属有机框架材料。
3.根据权利要求1所述的制备方法,其特征在于,所述铁盐为FeCl3·6H2O或Fe(NO3)3·9H2O。
4.根据权利要求2所述的制备方法,其特征在于,在步骤(1)中,所述铁盐、有机配体和N,N-二甲基甲酰胺的质量比为1:1:130;所述搅拌溶解的时间为10-30min。
5.根据权利要求2所述的制备方法,其特征在于,在步骤(2)中,所述溶剂热反应在聚四氟乙烯内衬的反应釜中进行,反应温度为150℃,反应时间为6-24h。
6.根据权利要求2所述的制备方法,其特征在于,在步骤(3)中,所述甲醇与步骤(1)中N,N-二甲基甲酰胺的体积比为1:4-10;所述连续搅拌的时间为24h;所述烘干为60℃条件下真空干燥12h。
7.一种权利要求1-6任一项所述的制备方法制备得到的具有催化臭氧分解能力的抗湿性铁基金属有机框架材料。
8.一种权利要求7所述的具有催化臭氧分解能力的抗湿性铁基金属有机框架材料在催化分解室内空气中臭氧的应用。
9.根据权利要求8所述的应用,其特征在于,所述室内空气的相对湿度为3.1-66.6%。
10.根据权利要求9所述的应用,其特征在于,所述室内空气中臭氧的初始浓度为4-5ppm,空气相对湿度为66.6%。
CN202210093719.9A 2022-01-26 2022-01-26 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用 Active CN114409917B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210093719.9A CN114409917B (zh) 2022-01-26 2022-01-26 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210093719.9A CN114409917B (zh) 2022-01-26 2022-01-26 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114409917A true CN114409917A (zh) 2022-04-29
CN114409917B CN114409917B (zh) 2023-05-23

Family

ID=81276890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210093719.9A Active CN114409917B (zh) 2022-01-26 2022-01-26 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114409917B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106068A (zh) * 2022-06-28 2022-09-27 盐城工学院 一种合成铁基金属有机框架材料的制备方法及应用
CN115232325A (zh) * 2022-09-06 2022-10-25 盐城工学院 一种低结晶铁锰双金属有机框架材料的制备方法及应用
CN117886629A (zh) * 2024-03-14 2024-04-16 蒙娜丽莎集团股份有限公司 克服建筑陶瓷底面疏水/超疏水导致荷珠的处理剂及制备方法和使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152001A1 (ja) * 2014-04-03 2015-10-08 東ソー株式会社 金属錯体およびその製造方法
CN107163259A (zh) * 2017-05-31 2017-09-15 福州大学 一种氨基功能化的MOFs材料的制备及其应用
CN111253351A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 一种mil材料的可控制备及其在呋喃化合物的分离富集中的应用
CN111715294A (zh) * 2020-07-01 2020-09-29 浙江理工大学 一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用
WO2021208596A1 (zh) * 2020-04-13 2021-10-21 中国科学院生态环境研究中心 一种用于臭氧分解的催化剂及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152001A1 (ja) * 2014-04-03 2015-10-08 東ソー株式会社 金属錯体およびその製造方法
CN107163259A (zh) * 2017-05-31 2017-09-15 福州大学 一种氨基功能化的MOFs材料的制备及其应用
CN111253351A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 一种mil材料的可控制备及其在呋喃化合物的分离富集中的应用
WO2021208596A1 (zh) * 2020-04-13 2021-10-21 中国科学院生态环境研究中心 一种用于臭氧分解的催化剂及其制备方法和用途
CN111715294A (zh) * 2020-07-01 2020-09-29 浙江理工大学 一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
葛金龙: "《金属有机骨架材料制备及其应用》", 30 September 2019, 中国科学技术大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106068A (zh) * 2022-06-28 2022-09-27 盐城工学院 一种合成铁基金属有机框架材料的制备方法及应用
CN115232325A (zh) * 2022-09-06 2022-10-25 盐城工学院 一种低结晶铁锰双金属有机框架材料的制备方法及应用
CN117886629A (zh) * 2024-03-14 2024-04-16 蒙娜丽莎集团股份有限公司 克服建筑陶瓷底面疏水/超疏水导致荷珠的处理剂及制备方法和使用方法

Also Published As

Publication number Publication date
CN114409917B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
Zhang et al. Enhanced adsorption performance of gaseous toluene on defective UiO-66 metal organic framework: equilibrium and kinetic studies
CN114409917B (zh) 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用
Huang et al. In situ synthesis of TiO2@ NH2-MIL-125 composites for use in combined adsorption and photocatalytic degradation of formaldehyde
Zhang et al. The preparation of defective UiO-66 metal organic framework using MOF-5 as structural modifier with high sorption capacity for gaseous toluene
Gupta et al. Fabrication of Cu (BDC) 0.5 (BDC-NH2) 0.5 metal-organic framework for superior H2S removal at room temperature
Zheng et al. Highly improved adsorption performance of metal-organic frameworks CAU-1 for trace toluene in humid air via sequential internal and external surface modification
Ezugwu et al. Efficient transformative HCHO capture by defective NH 2-UiO-66 (Zr) at room temperature
Ma et al. Ammonia-treated porous carbon derived from ZIF-8 for enhanced CO2 adsorption
Wang et al. MOFs-based coating derived Me-ZIF-67@ CuOx materials as low-temperature NO-CO catalysts
CN108671892A (zh) 一种金属有机骨架UiO-66吸附剂及其改性材料
CN109317210B (zh) 一种双金属有机骨架材料及其制备方法与应用
CN107362807A (zh) 一种Mn/Co基低温SCO催化剂及其制备方法
CN106861626B (zh) 一种吸附-光催化双功能材料及其制备方法与在挥发性有机气体治理工艺的应用
CN110732308B (zh) 一种MOFs基固体酸氨气吸附剂的制备方法
CN111468147A (zh) 一种多孔碳复合二氧化钛-卤氧化物光催化剂及其制备方法
CN113926443B (zh) 用于可见光催化除醛的多元复合材料、制备方法及空气净化器
Lan et al. Conjugated porous polymers for gaseous toluene adsorption in humid atmosphere
CN114849665B (zh) 可吸附空气中二氧化碳的胺基金属有机骨架吸附剂及其制备和应用
CN112642487B (zh) 一种UiO-67封装金属纳米颗粒催化剂及其制备方法和应用
Zhang et al. In-situ confined growth of defective MIL-100 (Fe) in macroporous polyacrylate spherical substrate at room temperature for high-efficient toluene removal
Zhang et al. Water-stable composite of HKUST-1 with its pyrolysis products for enhanced CO2 capture capacity
WO2021223901A1 (en) Adsorbent material on the basis of a metal-organic framework, method for the production and use of the same
CN110354892B (zh) 氧化物改性mcm-48分子筛的制备方法及其在脱硝协同脱汞中的应用
CN114797888B (zh) 一种室内除甲醛的空气净化剂及其制备方法
Jafari et al. Removal of toluene from air by zeolitic imidazolate framework-8: Synthesis, characterization, and experimental breakthrough curve

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant