CN114220255B - 一种分布式声学设备同步控制***和方法 - Google Patents

一种分布式声学设备同步控制***和方法 Download PDF

Info

Publication number
CN114220255B
CN114220255B CN202111647972.6A CN202111647972A CN114220255B CN 114220255 B CN114220255 B CN 114220255B CN 202111647972 A CN202111647972 A CN 202111647972A CN 114220255 B CN114220255 B CN 114220255B
Authority
CN
China
Prior art keywords
underwater
water surface
acoustic equipment
time
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111647972.6A
Other languages
English (en)
Other versions
CN114220255A (zh
Inventor
姜婷
杨振宇
张吟
闫鹏
沈锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yichang Testing Technique Research Institute
Original Assignee
Yichang Testing Technique Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yichang Testing Technique Research Institute filed Critical Yichang Testing Technique Research Institute
Priority to CN202111647972.6A priority Critical patent/CN114220255B/zh
Publication of CN114220255A publication Critical patent/CN114220255A/zh
Application granted granted Critical
Publication of CN114220255B publication Critical patent/CN114220255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path
    • G08C15/06Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division
    • G08C15/12Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path successively, i.e. using time division the signals being represented by pulse characteristics in transmission link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electric Clocks (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种分布式声学设备同步控制***及方法,包括水面载体和水下载体,所述水面载体上设置有主节点和水面声学设备,所述主节点包括GPS设备、水面同步控制器和水面***;所述水下载体包括分节点和水下声学设备,所述分节点包括水下***和水下同步控制器;所述水面同步控制器接收GPS设备发送的脉冲信号,并通过水面***输出给分节点;所述水下***接收所述脉冲信号,并输出给水下同步控制器;所述水面同步控制器和水下同步控制器以所述脉冲信号为起点,根据对应的发射时间,产生同步的脉冲控制信号,控制水面声学设备和水下声学设备实现同步工作。本发明通过精准控制水上和水下声学设备同步发射时间,可有效避免设备间的相关干扰。

Description

一种分布式声学设备同步控制***和方法
技术领域
本发明涉及同步控制技术领域,更具体的说,特别涉及一种分布式声学设备同步控制***和方法。
背景技术
当前,海洋探测的主要手段是水声技术,分布式水声测量和多源测量数据融合将成为未来趋势,多平台搭载多种水声测量设备,在同一空间区域协同作业,将成为未来海上作业的重要方式之一。但是,该种工作方式将不可避免的带来多个声学设备之间的声兼容问题,若不采取有效措施,轻则影响各水声设备的工作性能,重则使其完全失效。
由于水面平台和水下平台在空间上存在较远距离,且水面平台和水下平台都分别安装有多套水声设备,使用传统单节点同步控制器,并以脉冲信号对各声学设备进行同步控制,在时间控制精度和接口数量上难以满足***使用要求。
发明内容
本发明的目的在于针对现有技术存在的技术问题,提供一种动态调节氢氧浓度的配气装置,其结构简单、功能可靠也易于实现,并能实现氢氧浓度的动态调节。
为了解决以上提出的问题,本发明采用的技术方案为:
分布式声学设备同步控制***和方法,解决水面和水下多平台上多种声学设备之间的同步发射问题,并可独立设置分布式声学设备的发射时间,有效解决声学设备之间的相互干扰问题。
为了解决以上提出的问题,本发明采用的技术方案为:
本发明提供一种分布式声学设备同步控制***,包括水面载体和水下载体,所述水面载体上设置有主节点和水面声学设备,所述主节点包括GPS设备、水面同步控制器和水面***;所述水下载体包括分节点和水下声学设备,所述分节点包括水下***和水下同步控制器,所述水面***与水下***之间进行通信;
所述水面同步控制器接收GPS设备发送的脉冲信号,并通过水面***输出给分节点;所述水下***接收所述脉冲信号,并输出给水下同步控制器;所述水面同步控制器和水下同步控制器以所述脉冲信号为起点,根据对应的发射时间,产生同步的脉冲控制信号,控制水面声学设备和水下声学设备实现同步工作。
本发明还提供一种分布式声学设备同步控制方法,该方法具体步骤包括如下:
***进行上电,使水面载体和水下载体两者进行通信;
主节点发送脉冲信号,分节点接收所述脉冲信号并产生脉冲应答信号,并将所述脉冲应答信号输出给主节点,计算主节点和分节点之间信号的传输链路时间t;
水面同步控制器接收所述水面声学设备和水下声学设备的工作参数,并将所述水下声学设的工作参数,通过水面***和水下***输出给水下同步控制器;其中工作参数包括工作频率和基准时间;
根据所述传输链路时间和基准时间,分别设置水面声学设备和水下声学设备的发射时间;
水面同步控制器和水下同步控制器分别根据水上声学设备和水下声学设备的工作参数和发射时间进行输出处理,产生脉冲控制信号;
根据所述脉冲控制信号,分别控制水上声学设备和水下声学设备进行同步工作。
进一步的,所述计算主节点和分节点之间信号的传输链路时间t,具体包括:
水面同步控制器接收GPS设备输入的脉冲信号,并通过水面***和水下***,向水下同步控制器发送所述脉冲信号,同时水面同步控制器内的定时器开始计时;
水下同步控制器接收到水面同步控制器发送的脉冲信号,记录发送链路时间t1,并生成脉冲应答信号,记录应答信号产生时间t2,立即向水面同步控制器返回脉冲应答信号;
水面同步控制器接收水下同步控制器返回的脉冲应答信号,记录接收链路时间t3,此时定时器停止计时,记录总的计时时间t4。
计算主节点到分节点之间单程的传输链路时间t等于发送链接时间t1等于接收链路时间t3,即t=t1=t3=(t4-t2)/2。
进一步的,所述设置水面声学设备和水下声学设备的发射时间,具体为:
所述水下声学设备的发射时间为基准时间,所述水面声学设备的发射时间为所述水下声学设备的发射时间+传输链路时间t。
进一步的,所述输出处理具体包括如下:
水面同步控制器以GPS设备输入的脉冲信号为输出基准信号,并根据工作频率和发射时间产生脉冲控制信号。
水下同步控制器以所述脉冲信号为输出基准信号,并根据工作频率和发射时间产生脉冲控制信号。
进一步的,所述水面***和水下***之间通过RS422C串口进行通信。
与现有技术相比,本发明的有益效果在于:
本发明提供的控制***通过设置主节点和分节点,并分别采用水面同步控制器和水下同步控制器来接收脉冲信号,并根据对应的发射时间,产生同步的脉冲控制信号,实现对水面声学设备和水下声学设备进行同步控制,结构简单且可靠。
本发明提供的控制方法,通过计算主节点和分节点之间的整个传输链路时间,在水上声学设备的基准时间上补偿单程的传输链路时间,精准控制水上和水下不同平台上声学设备同步发射时间,可有效避免设备间的相关干扰。
附图说明
为了更清楚地说明本发明中的方案,下面将对实施例描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1为本发明分布式声学设备同步控制***的组成图。
图2为本发明分布式声学设备同步控制方法的流程图。
图3为本发明中链路传输时间的计算流程图。
图4为本发明中链路传输时间的示意图。
附图标记说明如下:1-GPS设备、2-水面同步控制器、3-水面***、4-水面声学设备、5-水下***、6-水下同步控制器、7-水下声学设备。
具体实施方式
除非另有定义,本文所使用的所有技术和科学术语与属于本发明技术领域的技术人员通常理解的含义相同;本文在说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明,例如,术语“长度”、“宽度”、“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置为基于附图所示的方位或位置,仅是便于描述,不能理解为对本技术方案的限制。
本发明的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含;本发明的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。本发明的说明书和权利要求书及上述附图说明中,当元件被称为“固定于”或“安装于”或“设置于”或“连接于”另一个元件上,它可以是直接或间接位于该另一个元件上。例如,当一个元件被称为“连接于”另一个元件上,它可以是直接或间接连接到该另一个元件上。
此外,在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参阅图1所示,本发明提供一种分布式声学设备同步控制***,包括水面载体和水下载体,所述水面载体上设置有主节点和水面声学设备4,所述主节点包括GPS设备1、水面同步控制器2和水面***3;所述水下载体包括分节点和水下声学设备7,所述分节点包括水下***5和水下同步控制器6,所述主节点的水面***3通过光缆与分节点的水下***5连接,能够传输数据和脉冲信号。
所述主节点中的水面同步控制器2接收GPS设备1发送的1PPS秒脉冲信号后,作为控制水面声学设备4的基准信号,并通过水面***3由光缆输出给分节点;所述分节点中的水下***5接收所述脉冲信号,并输出给水下同步控制器6,作为控制水下声学设备7的基准信号。所述水面同步控制器2和水下同步控制器6以所述基准信号为起点,根据对应的发射时间,产生同步的脉冲控制信号,控制水面声学设备4和水下声学设备7实现同步工作。
本实施例中,所述水面载体置于水面舰船上,水下载体置于水下无人航行器上,水面载体与水下载体之间通过网络或串口进行通信。由于水面载体包括主节点和多个水面声学设备4,水下载体包括多个分节点,每个分节点连接多个水下声学设备7,通过水面同步控制器2和水下同步控制器6能够实现对不同的水面声学设备4和水下声学设备7进行同步控制,控制***整体结构可靠,并能解决水面和水下多平台上多种声学设备之间的同步发射问题。
本实施例中,1PPS秒脉冲是GPS设备1输出的标准信号,因此水面同步控制器2和水下同步控制器6分别以GPS设备1输出的1PPS秒脉冲信号,作为输出基准信号,方便进行同步控制。
参阅图2所示,本发明还提供一种分布式声学设备同步控制方法,该控制方法的具体步骤包括如下:
步骤S1:***进行上电,使水面载体和水下载体两者进行通信,并保证两者的通信正常。
步骤S2:水面载体上主节点发送脉冲信号,水下载体中分节点接收所述脉冲信号并产生脉冲应答信号,并将所述脉冲应答信号输出给主节点,计算主节点和分节点之间信号的传输链路时间t。
本步骤S2中,参阅图3和图4所示,所述计算主节点和分节点两者之间信号的单程传输链路时间t,具体包括如下:
步骤S21:水面同步控制器2接收GPS设备1输入的1PPS秒脉冲信号,并通过水面***3和水下***5,向水下同步控制器6发送所述脉冲信号,同时水面同步控制器2内的定时器开始计时;具体的,定时器从0开始计时,方便计算。
进一步的,所述水面***3和水下***5之间通过RS422C串口进行通信,两者之间通信方便且可靠。
步骤S22:水下同步控制器6接收到水面同步控制器2发送的1PPS秒脉冲信号,此过程所需时间为发送链路时间t1,并生成一个1PPS秒脉冲应答信号,此应答信号产生时间为t2,立即向水面同步控制器2返回所述脉冲应答信号;
具体的,应答信号产生时间t2由水下同步控制器6的时钟周期决定。
步骤S23:水面同步控制器2接收水下同步控制器6返回的1PPS秒脉冲应答信号,此过程所需时间为接收链路时间t3,接收到所述脉冲应答信号后定时器停止计时,并记录此时的计时时间t4。
步骤S24:由于脉冲信号和脉冲应答信号的发送和接收在同一光缆内完成,因此主节点到分节点之间信号单程传输链路时间t等于发送链接时间t1等于接收链路时间t3,计算传输链路时间t=t1=t3=(t4-t2)/2;其中,发送链接时间t1、接收链路时间t3和计时时间t4均由计时器直接获取。
步骤S3:水面同步控制器2接收所述水面声学设备4和水下声学设备7的工作参数,并将所述水下声学设备7的工作参数,通过水面***3和水下***5输出给水下同步控制器6;其中工作参数包括工作频率和基准时间。
具体的,外部设备在水面端通过串口或网络,向水面同步控制器2发送水面声学设备4和水下声学设备7的工作参数。为确保各声学设备同时工作时互不干扰,可采用同频延时或分频延时的方法输出同步脉冲去触发声学设备,使其发射频率错开,因此工作参数包括各个声学设备的工作频率和基准时间。
步骤S4:根据所述传输链路时间和基准时间,分别设置水面声学设备4和水下声学设备7的发射时间。
进一步的,所述水下声学设备7的发射时间为基准时间,所述水面声学设备4的发射时间为设置的水下声学设备7的发射时间+传输链路时间t。
本实施例中,由于水面载体与水下载体之间单程传输链路时间为t,即GPS设备1产生的1PPS秒脉冲信号从主节点传输到水分节点时间为传输链路时间t,因此水下输出基准信号比水面基准信号要延时时间t。为保证水面声学设备4与水下声学设备7发射同步,水面声学设备4的实际基准时间即发射应为设置的水下声学设备7的基准时间+传输链路时间t。
步骤S5:水面同步控制器2根据水上声学设备4的工作参数和发射时间进行输出处理,水下同步控制器6按水下声学设备7的工作参数和发射时间进行输出处理,分别产生脉冲控制信号。
进一步的,所述输出处理具体包括如下:
水面同步控制器2以GPS设备1输入的1PPS秒脉冲信号为输出基准信号,并根据水上声学设备4的工作频率和发射时间产生脉冲控制信号。
水下同步控制器6也以1PPS秒脉冲信号为输出基准信号,根据水下声学设备7的工作频率和发射时间产生脉冲控制信号。
步骤S6:水下同步控制器6输出脉冲控制信号至各水下声学设备7,水面同步控制器2输出脉冲控制信号至各水上声学设备4,完成声学设备的同步控制。
本实施例中,通过对分布式声学设备进行输出时间同步,尤其对于不同平台同时工作的不同声学设备,可设置不同声学设备的发射时间,即根据传输链路时间,在水上声学设备4的基准时间上补偿单程的传输链路时间,使水上声学设备4和水下声学设备7发射时间的起点同步,这样就使不同声学设备的发射时间同步;通过同频延时或分频延时的方法输出同步脉冲控制信号去触发声学设备,使其发射频率有效错开,避免不同声学设备间的相互干扰。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (2)

1.一种分布式声学设备同步控制***的控制方法,其特征在于:所述分布式声学设备同步控制***包括水面载体和水下载体,所述水面载体上设置有主节点和水面声学设备,所述主节点包括GPS设备、水面同步控制器和水面***;所述水下载体包括分节点和水下声学设备,所述分节点包括水下***和水下同步控制器,所述水面***与水下***之间进行通信;
所述水面同步控制器接收GPS设备发送的脉冲信号,并通过水面***输出给分节点;所述水下***接收所述脉冲信号,并输出给水下同步控制器;所述水面同步控制器和水下同步控制器以所述脉冲信号为起点,根据对应的发射时间,产生同步的脉冲控制信号,控制水面声学设备和水下声学设备实现同步工作;
该方法具体步骤包括如下:
***进行上电,使水面载体和水下载体两者进行通信;
主节点发送脉冲信号,分节点接收所述脉冲信号并产生脉冲应答信号,并将所述脉冲应答信号输出给主节点,计算主节点和分节点之间信号的传输链路时间t;
水面同步控制器接收所述水面声学设备和水下声学设备的工作参数,并将所述水下声学设备的工作参数,通过水面***和水下***输出给水下同步控制器;其中工作参数包括工作频率和基准时间;
根据所述传输链路时间和基准时间,分别设置水面声学设备和水下声学设备的发射时间;
水面同步控制器和水下同步控制器分别根据水上声学设备和水下声学设备的工作参数和发射时间进行输出处理,产生脉冲控制信号;
根据所述脉冲控制信号,分别控制水上声学设备和水下声学设备进行同步工作;
根据所述传输链路时间t,在水上声学设备的基准时间上补偿单程的传输链路时间,使水上声学设备和水下声学设备发射时间的起点同步,使不同声学设备的发射时间同步;通过同频延时或分频延时的方法输出同步脉冲控制信号去触发声学设备,错开不同声学设备的发射频率,避免不同声学设备间的相互干扰;
所述计算主节点和分节点之间信号的传输链路时间t,具体包括:
水面同步控制器接收GPS设备输入的脉冲信号,并通过水面***和水下***,向水下同步控制器发送所述脉冲信号,同时水面同步控制器内的定时器开始计时;
水下同步控制器接收到水面同步控制器发送的脉冲信号,记录发送链路时间t1,并生成脉冲应答信号,记录应答信号产生时间t2,立即向水面同步控制器返回脉冲应答信号;
水面同步控制器接收水下同步控制器返回的脉冲应答信号,记录接收链路时间t3,此时定时器停止计时,记录总的计时时间t4;
计算主节点到分节点之间单程的传输链路时间t等于发送链接时间t1等于接收链路时间t3,即t=t1=t3=(t4-t2)/2;
所述设置水面声学设备和水下声学设备的发射时间,具体为:
所述水下声学设备的发射时间为基准时间,所述水面声学设备的发射时间为所述水下声学设备的发射时间+传输链路时间t;
所述输出处理具体包括如下:
水面同步控制器以GPS设备输入的脉冲信号为输出基准信号,并根据工作频率和发射时间产生脉冲控制信号;
水下同步控制器以所述脉冲信号为输出基准信号,并根据工作频率和发射时间产生脉冲控制信号。
2.根据权利要求1所述的一种分布式声学设备同步控制***的控制方法,其特征在于:所述水面***和水下***之间通过RS422C串口进行通信。
CN202111647972.6A 2021-12-29 2021-12-29 一种分布式声学设备同步控制***和方法 Active CN114220255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111647972.6A CN114220255B (zh) 2021-12-29 2021-12-29 一种分布式声学设备同步控制***和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111647972.6A CN114220255B (zh) 2021-12-29 2021-12-29 一种分布式声学设备同步控制***和方法

Publications (2)

Publication Number Publication Date
CN114220255A CN114220255A (zh) 2022-03-22
CN114220255B true CN114220255B (zh) 2024-05-10

Family

ID=80706953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111647972.6A Active CN114220255B (zh) 2021-12-29 2021-12-29 一种分布式声学设备同步控制***和方法

Country Status (1)

Country Link
CN (1) CN114220255B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881421A (en) * 1952-11-17 1959-04-07 Philips Corp System comprising a plurality of pulse radar apparatus
CA1253254A (en) * 1985-11-07 1989-04-25 Craig F. Szczutkowski Method and apparatus for efficient digital time delay compensation in compressed bandwidth signal processing
CN1464666A (zh) * 2002-06-11 2003-12-31 华为技术有限公司 一种基于光纤拉远的软基站***及其同步方法
KR20100081035A (ko) * 2009-01-05 2010-07-14 삼성전자주식회사 전력 소모를 줄일 수 있는 클럭 신호 발생 회로
CN103259607A (zh) * 2012-02-21 2013-08-21 中兴通讯股份有限公司 时钟同步方法及装置
CN203204491U (zh) * 2012-12-29 2013-09-18 中国船舶重工集团公司第七一○研究所 一种自适应触发同步控制装置
CN103457686A (zh) * 2013-09-03 2013-12-18 天津大学 分布式地震信号采集节点中转换时钟的同步方法和装置
CN104849761A (zh) * 2015-05-21 2015-08-19 中国科学院声学研究所 一种声学深海拖曳探测***
CN105426121A (zh) * 2015-10-30 2016-03-23 山东科技大学 船载多传感器一体化测量数据实时存储方法
CN105846939A (zh) * 2016-03-24 2016-08-10 成都博思微科技有限公司 一种精确保持多模块同步的***与方法
CN106385707A (zh) * 2016-09-18 2017-02-08 广州市大喜通信技术有限公司 一种td‑lte自动时延调整方法及装置
CN207472954U (zh) * 2017-11-16 2018-06-08 国家电网公司 分布式同步采样测量装置
CN108601080A (zh) * 2018-05-09 2018-09-28 山东山大电力技术股份有限公司 一种基于无线通信的时间同步信号传输方法和装置
CN108809404A (zh) * 2018-04-26 2018-11-13 深圳鳍源科技有限公司 一种水下控制***
CN110247722A (zh) * 2019-04-27 2019-09-17 中国人民解放军海军工程大学 一种时间传递中的多项随机变化寄生噪声的测量方法
CN112383675A (zh) * 2020-11-16 2021-02-19 广东电网有限责任公司肇庆供电局 一种时间同步方法、装置及终端设备
CN113347699A (zh) * 2021-06-11 2021-09-03 四川泰富地面北斗科技股份有限公司 一种基于bd/gps双天线的基站光纤授时***

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193915B2 (en) * 2008-03-06 2012-06-05 GM Global Technology Operations LLC Multiple transceiver synchronous communication system
JP5310813B2 (ja) * 2011-09-28 2013-10-09 株式会社デンソー 表面弾性波センサを用いた無線遠隔センシングシステム

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2881421A (en) * 1952-11-17 1959-04-07 Philips Corp System comprising a plurality of pulse radar apparatus
CA1253254A (en) * 1985-11-07 1989-04-25 Craig F. Szczutkowski Method and apparatus for efficient digital time delay compensation in compressed bandwidth signal processing
CN1464666A (zh) * 2002-06-11 2003-12-31 华为技术有限公司 一种基于光纤拉远的软基站***及其同步方法
KR20100081035A (ko) * 2009-01-05 2010-07-14 삼성전자주식회사 전력 소모를 줄일 수 있는 클럭 신호 발생 회로
CN103259607A (zh) * 2012-02-21 2013-08-21 中兴通讯股份有限公司 时钟同步方法及装置
CN203204491U (zh) * 2012-12-29 2013-09-18 中国船舶重工集团公司第七一○研究所 一种自适应触发同步控制装置
CN103457686A (zh) * 2013-09-03 2013-12-18 天津大学 分布式地震信号采集节点中转换时钟的同步方法和装置
CN104849761A (zh) * 2015-05-21 2015-08-19 中国科学院声学研究所 一种声学深海拖曳探测***
CN105426121A (zh) * 2015-10-30 2016-03-23 山东科技大学 船载多传感器一体化测量数据实时存储方法
CN105846939A (zh) * 2016-03-24 2016-08-10 成都博思微科技有限公司 一种精确保持多模块同步的***与方法
CN106385707A (zh) * 2016-09-18 2017-02-08 广州市大喜通信技术有限公司 一种td‑lte自动时延调整方法及装置
CN207472954U (zh) * 2017-11-16 2018-06-08 国家电网公司 分布式同步采样测量装置
CN108809404A (zh) * 2018-04-26 2018-11-13 深圳鳍源科技有限公司 一种水下控制***
CN108601080A (zh) * 2018-05-09 2018-09-28 山东山大电力技术股份有限公司 一种基于无线通信的时间同步信号传输方法和装置
CN110247722A (zh) * 2019-04-27 2019-09-17 中国人民解放军海军工程大学 一种时间传递中的多项随机变化寄生噪声的测量方法
CN112383675A (zh) * 2020-11-16 2021-02-19 广东电网有限责任公司肇庆供电局 一种时间同步方法、装置及终端设备
CN113347699A (zh) * 2021-06-11 2021-09-03 四川泰富地面北斗科技股份有限公司 一种基于bd/gps双天线的基站光纤授时***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
水上水下一体化测绘关键技术研究;帅晨甫;《中国优秀硕士学位论文全文数据库基础科学辑》(第第03期期);第A008-100页 *

Also Published As

Publication number Publication date
CN114220255A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN101515831B (zh) 一种时间同步传递方法、***及装置
US8228757B2 (en) Synchronization of modules in a wireless array
CN104320238B (zh) 一种海底观测网大流量背景下的时间同步方法
JP2004279409A5 (zh)
CN104849761B (zh) 一种声学深海拖曳探测***
US8635041B2 (en) Synchronizing a seismic data acquisition network
CN103391114B (zh) 一种卫星通信中跳频通信的快速捕获方法
CN105634641B (zh) 基于交换架构可级联网络通信的精确校时***及方法
CN109921855B (zh) 一种基于小型蓝绿激光器的水下无线同步***及方法
WO2020043181A1 (zh) 时钟同步方法及装置、***、存储介质、电子装置
CN111934805B (zh) 一种适用于伪卫星增强***的地面站间时频传递方法
CN114220255B (zh) 一种分布式声学设备同步控制***和方法
CN111948685B (zh) 一种浮标基组合基线水声定位方法
CN107682074A (zh) 一种卫星上行信号发射时间补偿方法、装置及通信***
BRPI0318522B8 (pt) método e sistema para estimar a função de transferência de um canal de transmissão, e receptor para receber sinais digitais através de um canal de transmissão
CN101765199B (zh) 一种通信网络***及***内时间同步方法和otn设备
WO2005013537B1 (en) Systems and methods for the synchronization of a real-time scheduled packet network using relative timing
CN106877965A (zh) 一种微基站中心站的时间同步处理方法
KR100980091B1 (ko) 수중 음향 통신 시스템 및 통신 방법
CN109655917B (zh) 一种用于海洋地震勘探拖缆的长距离数据同步采集***
CN103684647A (zh) Ptp数据包在以太网与e1协议间转换的时延消除方法及装置
CN113055149B (zh) 一种射频收发机级联***下的时间同步和频率同步方法
CN108809469A (zh) 适用于雷达脉冲通信设备组网的时间比对同步算法
CN101465704B (zh) 脉冲信号异步装入同步通道和精确定位的方法
KR101371322B1 (ko) 수중 장거리 네트워크를 위한 시간분할 다중접속 매체접속제어 프로토콜의 시간 파라미터 결정방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant