CN114217434B - 一种高分辨率大视场成像方法 - Google Patents

一种高分辨率大视场成像方法 Download PDF

Info

Publication number
CN114217434B
CN114217434B CN202111389408.9A CN202111389408A CN114217434B CN 114217434 B CN114217434 B CN 114217434B CN 202111389408 A CN202111389408 A CN 202111389408A CN 114217434 B CN114217434 B CN 114217434B
Authority
CN
China
Prior art keywords
image
view
optical system
field
resolution large
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111389408.9A
Other languages
English (en)
Other versions
CN114217434A (zh
Inventor
徐婧
苏云
俞越
焦建超
吕红
王超
韩潇
马军
张牧尧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Space Research Mechanical and Electricity
Original Assignee
Beijing Institute of Space Research Mechanical and Electricity
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Space Research Mechanical and Electricity filed Critical Beijing Institute of Space Research Mechanical and Electricity
Priority to CN202111389408.9A priority Critical patent/CN114217434B/zh
Publication of CN114217434A publication Critical patent/CN114217434A/zh
Application granted granted Critical
Publication of CN114217434B publication Critical patent/CN114217434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0626Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors
    • G02B17/0636Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

本发明公开了一种高分辨率大视场成像方法,所述方法包括如下步骤:步骤一:设计高分辨率大视场计算成像光学***;步骤二:利用高分辨率大视场计算成像光学***对目标景物进行成像得到目标景物图像;步骤三:利用图像复原算法对目标景物图像进行图像复原,得到高分辨率大视场图像。本发明解决现有高分辨率大视场成像***设计复杂、体积重量大、成本高的问题,降低硬件部分的体积、重量、成本,使得设计的高分辨率大视场成像***更适用于对重量体积要求严格的高分辨率大视场空间光学成像***。

Description

一种高分辨率大视场成像方法
技术领域
本发明属于高分辨率大视场空间光学成像***技术领域,尤其涉及一种高分辨率大视场成像方法。
背景技术
高分辨率成像***一般具有大的口径,大口径成像***的边缘视场难以得到较好的像质。为解决传统设计方法所带来的高分辨率与大口径难以兼得的问题,常采用的方法有:多孔径成像***,整机或扫描镜摆扫,采用具有自由曲面的离轴反射光学***。这些方法可以有效的同时实现高分辨率与大视场。但是对于空间光学成像***具有重量体积稳定性等限制,上述几种方法,会增加空间光学相机设计装调的难度,增加相机的重量体积,降低相机工作时的稳定性,增加相机研制及发射成本。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提供了一种高分辨率大视场成像方法,解决现有高分辨率大视场成像***设计复杂、体积重量大、成本高的问题,降低硬件部分的体积、重量、成本,使得设计的高分辨率大视场成像***更适用于对重量体积要求严格的高分辨率大视场空间光学成像***。
本发明目的通过以下技术方案予以实现:一种高分辨率大视场成像方法,所述方法包括如下步骤:步骤一:设计高分辨率大视场计算成像光学***;步骤二:利用高分辨率大视场计算成像光学***对目标景物进行成像得到目标景物图像;步骤三:利用图像复原算法对目标景物图像进行图像复原,得到高分辨率大视场图像。
上述高分辨率大视场成像方法中,在步骤一中,高分辨率大视场计算成像光学***包括主镜、次镜、三镜、可编码面和探测器像面;其中,主镜为曲率半径为-11230mm的反射镜,次镜为曲率半径为-1908mm的反射镜,主镜和次镜之间的间距为4815mm,三镜为曲率半径为-2267mm的反射镜,次镜到三镜(5)的距离为7064mm,可编码面到三镜的距离为1324mm,可编码面到探测器像面的距离为1115mm。
上述高分辨率大视场成像方法中,可编码面为泽尼克面反射镜。
上述高分辨率大视场成像方法中,在步骤一中,可编码面的设计方法包括如下步骤:(11)设计一个同轴反射光学***,将设计好的光学***出瞳处加入可编码面;(12)对可编码面赋初值;(13)将同轴反射光学***的像面进行网格划分得到多个网格区域;(14)同轴反射光学***对预设目标进行成像得到中间像,以每个网格区域的区域点扩散函数作为去卷积核,对中间像进行去卷积复原得到复原后的图像;(15)以复原后的图像与原始图像间的差异最小为优化目标,以相邻区域点扩散函数差异性最小作为优化正则约束,对可编码面进行优化,直至复原后的图像与原始图像间的差异在预设范围内。
上述高分辨率大视场成像方法中,在步骤(12)中,对可编码面的各系数赋初值为0。
上述高分辨率大视场成像方法中,在步骤(15)中,复原后的图像与原始图像间的相似度达到90%以上则认为复原后的图像与原始图像间的差异在预设范围内。
本发明与现有技术相比具有如下有益效果:
(1)现有技术采用多孔径成像***,整机或扫描镜摆扫及采用具有自由曲面的离轴反射光学***来实现高分辨率大视场成像。本发明采用光学***结合图像复原联合优化的方法,实现高分辨率大视场成像***的设计,由于采用了图像复原方法,降低了对光学***硬件的设计需求,可以减小硬件***的重量体积,更适用于高分辨率大视场空间光学成像***。
(2)现有对高分辨大视场成像***的图像复原方法是独立于光学***的设计过程的。本发明采用光学***设计与图像复原联合优化的方式。可以降低在光学***部分对像质的要求及对复原算法性能的需求,提高了图像复原算法与光学***的匹配度,通过联合优化达到像质最优。
(3)现有高分辨率大视场图像分块复原算法在图像拼接、振铃效应上效果不理想,本发明在光学设计阶段即采用分块设计,并在目标优化过程中循环采用分块图像复原及各区域点扩散函数相似约束优化,使得设计的可编码面形过渡平滑,利于加工,同时减少图像复原后的振铃效应及拼接痕迹。
(4)现有计算光学成像***,需要对光学***及算法进行联合设计,即计算光学成像***与现有光学***有所区别,需要对计算光学***进行特殊设计。本发明通过在光学***中加入可编码面形,仅对编码面形进行优化,可以在现有的光学***中采用本发明方法提高成像的分辨率及视场,节约了重新全部加工光学***的成本。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是本发明实施例提供的高分辨率大视场计算成像光学***的示意图;
图2是本发明实施例提供的像面按视场划分示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
本发明基于计算成像思想,采用光学设计结合图像复原算法联合优化光学***中的可编码面形,实现对光学***的设计,其中图像复原算法采用分块去卷积的复原方法。在应用时,通过光学***成像,所成的像再经过设计时采用的图像复原算法进行复原,得到高分辨率大视场图像。
本实施例提供了一种高分辨率大视场成像方法,该方法包括如下步骤:
步骤一:设计高分辨率大视场计算成像光学***;
步骤二:利用高分辨率大视场计算成像光学***对目标景物进行成像得到目标景物图像;
步骤三:利用图像复原算法对目标景物图像进行图像复原,得到高分辨率大视场图像。
在步骤一中,如图1所示,高分辨率大视场计算成像光学***包括主镜2、次镜1、三镜5、可编码面3和探测器像面4;其中,
主镜为曲率半径为-11230mm的反射镜,次镜为曲率半径为-1908mm的反射镜,主次镜之间的间距为4815mm,三镜为曲率半径为-2267mm的反射镜,次镜到三镜的距离为7064mm,可编码面此处采用泽尼克面反射镜,其中各项系数如下表1所示,可编码面到三镜的距离为1324mm,可编码面到像面的距离为1115mm。
表1泽尼克面反射镜泽尼克系数
Zernike1 Zernike2 Zernike3 Zernike4 Zernike5 Zernike6
0 9.3697e-3 0.9489 2.5783e-4 -1.587e-4 -1.140e-4
Zernike7 Zernike8 Zernike9 Zernike10 Zernike11 Zernike12
1.472e-4 4.3116e-7 -9.202e-5 1.7003e-4 -9.210e-5 -5.513e-5
Zernike13 Zernike14 Zernike15 Zernike16 Zernike17 Zernike18
-1.169e-4 3.8637e-5 9.1242e-5 -1.361e-5 -2.851e-4 -1.705e-4
Zernike19 Zernike20 Zernike21 Zernike22 Zernike23 Zernike24
4.6647e-5 -8.401e-6 -3.282e-5 -4.275e-5 -1.114e-5 5.8094e-6
Zernike25 Zernike26 Zernike27 Zernike28 Zernike29 Zernike30
-4.382e-6 2.647e-5 7.0277e-5 -1.332e-5 -3.733e-5 8.7547e-6
在步骤一中,可编码面的设计方法包括如下步骤:
(11)设计一个同轴反射光学***,将设计好的光学***出瞳处加入可编码面;
(12)对可编码面赋初值;
(13)将同轴反射光学***的像面进行网格划分得到多个网格区域;
(14)同轴反射光学***对预设目标进行成像得到中间像,以每个网格区域的区域点扩散函数作为去卷积核,对中间像进行去卷积复原得到复原后的图像;
(15)以复原后的图像与原始图像间的差异最小为优化目标,以相邻区域点扩散函数差异性最小作为优化正则约束,对可编码面进行优化,直至复原后的图像与原始图像间的差异在预设范围内。
本实施例通过本发明将0.3°×0.3°的光学***视场提高到0.6°×0.6°。具体设计实现步骤如下:
第一步:首先初步设计一个同轴反射光学***,光学***视场角为0.3°×0.3°,初始设计的光学***如图1所示。将初始设计的光学***出瞳处反射镜面形改为泽尼克面,作为光学***中的可编码面形;需要理解的是,同轴反射光学***为高分辨率大视场计算成像光学***去除可编码面。
第二步:对泽尼克面形各系数赋初值,本例中给定各项系数初值为0;
第三步:将光学***的视场扩大到0.6°×0.6°,将像面按网格进行划分,其中中心网格间隔大,边缘网格间隔小,本例中,以0°视场为中心,中心区域视场宽度为0.1°×0.1°从中心到两边视场区域依次递减0.05°,视场划分示意图如图2所示;
第四步:选取一张清晰图像,经过光学***成像,按第三步的视场划分方法,对光学***所成图像进行分区域去卷积复原,此时的去卷积核为泽尼克面形在当前系数下对应的各区域的点扩散函数;
第五步:以复原后的图像与原始图像间的图像结构相似度差异最小为优化目标,对泽尼克面形的泽尼克系数进行优化;
第六步:以相邻区域点扩散函数结构相似度最小作为优化正则约束,对泽尼克面形的泽尼克系数进行优化;
第七步:重复步骤五和步骤六,直至复原后的图像与原始图像间的结构相似度在可接受范围内,本例中,当复原图像与原始图像结构相似度达到90%时,即更换另一张原始图像,重复优化步骤,更换10张原始图像后,采用不同的20张图像进行测试,复原图像与原始图像的结构相似度均可达到90%以上。此时停止优化。
本发明采用光学***结合图像复原联合优化的方法,实现高分辨率大视场成像***的设计,由于采用了图像复原方法,降低了对光学***硬件的设计需求,可以减小硬件***的重量体积,更适用于高分辨率大视场空间光学成像***;本发明采用光学***设计与图像复原联合优化的方式。可以降低在光学***部分对像质的要求及对复原算法性能的需求,提高了图像复原算法与光学***的匹配度,通过联合优化达到像质最优;本发明在光学设计阶段即采用分块设计,并在目标优化过程中循环采用分块图像复原及各区域点扩散函数相似约束优化,使得设计的可编码面形过渡平滑,利于加工,同时减少图像复原后的振铃效应及拼接痕迹;本发明通过在光学***中加入可编码面形,仅对编码面形进行优化,可以在现有的光学***中采用本发明方法提高成像的分辨率及视场,节约了重新全部加工光学***的成本。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (4)

1.一种高分辨率大视场成像方法,其特征在于,所述方法包括如下步骤:
步骤一:设计高分辨率大视场计算成像光学***;
步骤二:利用高分辨率大视场计算成像光学***对目标景物进行成像得到目标景物图像;
步骤三:利用图像复原算法对目标景物图像进行图像复原,得到高分辨率大视场图像;
在步骤一中,高分辨率大视场计算成像光学***包括主镜(2)、次镜(1)、三镜(5)、可编码面(3)和探测器像面(4);其中,
主镜(2)为曲率半径为-11230mm的反射镜,次镜(1)为曲率半径为-1908mm的反射镜,主镜(2)和次镜(1)之间的间距为4815mm,三镜(5)为曲率半径为-2267mm的反射镜,次镜(1)到三镜(5)的距离为7064mm,可编码面(3)到三镜(5)的距离为1324mm,可编码面(3)到探测器像面(4)的距离为1115mm;
可编码面(3)为泽尼克面反射镜。
2.根据权利要求1所述的高分辨率大视场成像方法,其特征在于:在步骤一中,可编码面(3)的设计方法包括如下步骤:
(11)设计一个同轴反射光学***,将设计好的光学***出瞳处加入可编码面;
(12)对可编码面(3)赋初值;
(13)将同轴反射光学***的像面进行网格划分得到多个网格区域;
(14)同轴反射光学***对预设目标进行成像得到中间像,以每个网格区域的区域点扩散函数作为去卷积核,对中间像进行去卷积复原得到复原后的图像;
(15)以复原后的图像与原始图像间的差异最小为优化目标,以相邻区域点扩散函数差异性最小作为优化正则约束,对可编码面(3)进行优化,直至复原后的图像与原始图像间的差异在预设范围内。
3.根据权利要求2所述的高分辨率大视场成像方法,其特征在于:在步骤(12)中,对可编码面(3)的各系数赋初值为0。
4.根据权利要求2所述的高分辨率大视场成像方法,其特征在于:在步骤(15)中,复原后的图像与原始图像间的相似度达到90%以上则认为复原后的图像与原始图像间的差异在预设范围内。
CN202111389408.9A 2021-11-22 2021-11-22 一种高分辨率大视场成像方法 Active CN114217434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111389408.9A CN114217434B (zh) 2021-11-22 2021-11-22 一种高分辨率大视场成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111389408.9A CN114217434B (zh) 2021-11-22 2021-11-22 一种高分辨率大视场成像方法

Publications (2)

Publication Number Publication Date
CN114217434A CN114217434A (zh) 2022-03-22
CN114217434B true CN114217434B (zh) 2024-03-29

Family

ID=80697944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111389408.9A Active CN114217434B (zh) 2021-11-22 2021-11-22 一种高分辨率大视场成像方法

Country Status (1)

Country Link
CN (1) CN114217434B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102662238A (zh) * 2012-05-03 2012-09-12 中国科学院长春光学精密机械与物理研究所 一种具有在轨自诊断和补偿功能的空间光学相机
CN103064171A (zh) * 2012-09-29 2013-04-24 北京空间机电研究所 一种新型高分辨率大视场光学成像***
CN104834079A (zh) * 2015-04-24 2015-08-12 中国科学院西安光学精密机械研究所 长焦距大口径大f数望远成像***
CN113066021A (zh) * 2021-03-15 2021-07-02 中国科学院长春光学精密机械与物理研究所 基于图像特征匹配的空间望远镜在轨像差补偿方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004017235D1 (de) * 2004-12-15 2008-11-27 Europ Agence Spatiale Sserachsenspiegeln

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102662238A (zh) * 2012-05-03 2012-09-12 中国科学院长春光学精密机械与物理研究所 一种具有在轨自诊断和补偿功能的空间光学相机
CN103064171A (zh) * 2012-09-29 2013-04-24 北京空间机电研究所 一种新型高分辨率大视场光学成像***
CN104834079A (zh) * 2015-04-24 2015-08-12 中国科学院西安光学精密机械研究所 长焦距大口径大f数望远成像***
CN113066021A (zh) * 2021-03-15 2021-07-02 中国科学院长春光学精密机械与物理研究所 基于图像特征匹配的空间望远镜在轨像差补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
位相差异波前传感技术在大型空间光学相机中的应用;赵惠 等;《光子学报》;第46卷(第1期);第0111001-1页至第0111001-10页 *

Also Published As

Publication number Publication date
CN114217434A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
US8594277B2 (en) Grazing incidence collector optical systems for EUV and X-ray applications
CN110927964B (zh) 用于离轴自由曲面成像光学***中自由曲面的设计方法
CN113126289B (zh) 一种基于高斯径向基函数曲面的成像***设计方法
CN104977789A (zh) 照明光学***和具有该照明光学***的图像投影设备
US20030038931A1 (en) Illumination optical apparatus, exposure apparatus and method of exposure
CN110031969B (zh) 自由曲面离轴成像***的设计方法
US20190025574A1 (en) Method for Designing Imaging Objective Lens System of Anamorphic Magnification
CN111487766B (zh) 自由曲面离轴三反成像***的设计方法
CN113424103B (zh) 具有自由形式折叠镜的背投模拟器
US11025841B2 (en) Method for designing a freeform surface reflective imaging system
CN104460242B (zh) 一种基于自由曲面式光阑复眼的极紫外光刻照明***
CN114217434B (zh) 一种高分辨率大视场成像方法
CN114128250A (zh) 设计具有有意畸变的小型透镜的方法
CN114624876B (zh) 一种反射式同时偏振超分辨率成像***及设计方法
US4572659A (en) Illuminating apparatus
CN113419407B (zh) 一种复眼照明***的匹配方法
KR20020033160A (ko) 조명시스템을 위한 다중 거울 시스템
CN109856807B (zh) 一种基于透镜阵列的二次分像方法
CN113741028A (zh) 自由曲面成像***的设计方法
CN114371548B (zh) 一种二维大视场成像平面对称自由曲面光学***
CN109491063A (zh) 双面共体自由曲面光学***
CN109557647A (zh) 一种自由曲面光学***
CN103278935A (zh) 一种应用自由曲面分色片进行像差补偿的分色方法
CN114859524A (zh) 一种超短焦光学***及投影设备
CN103092000A (zh) 极紫外光刻复眼匀光离轴照明***及实现离轴照明的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant