CN114216388B - Displacement correction method for dual-path nano sensor - Google Patents

Displacement correction method for dual-path nano sensor Download PDF

Info

Publication number
CN114216388B
CN114216388B CN202111419454.9A CN202111419454A CN114216388B CN 114216388 B CN114216388 B CN 114216388B CN 202111419454 A CN202111419454 A CN 202111419454A CN 114216388 B CN114216388 B CN 114216388B
Authority
CN
China
Prior art keywords
displacement
path
sensor
displacement data
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111419454.9A
Other languages
Chinese (zh)
Other versions
CN114216388A (en
Inventor
陈晓斌
吕鑫龙
王风栋
尔罗土土木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202111419454.9A priority Critical patent/CN114216388B/en
Publication of CN114216388A publication Critical patent/CN114216388A/en
Application granted granted Critical
Publication of CN114216388B publication Critical patent/CN114216388B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

The invention discloses a displacement correction method of a double-path nano sensor, and provides a double-path method for correcting measured displacement based on a nano sensor and an earth surface displacement monitoring sensor. The slope displacement curve is corrected by innovatively combining the two paths, compared with the traditional scheme, the method has the advantages that data come from two sensors of different types, data sources are diversified, and the reliability is high. Under the condition that the sensor cannot accurately measure under the bad working condition (working condition two), the error generated by the sensor when the displacement is measured by the sensor can be corrected to the greatest extent, a slope deformation displacement curve can be provided, and the measuring efficiency and the reliability of the sensor are greatly improved. Meanwhile, a special indoor test device is designed for simulation experiment verification, and the accuracy of correcting and measuring displacement data is verified.

Description

Displacement correction method for dual-path nano sensor
Technical Field
The invention relates to the field of slope deformation monitoring, in particular to a displacement correction method of a double-path nano sensor.
Background
With the rapid development of national economic and technological levels, human engineering activities are more and more frequent, and the scale is larger and larger. In recent years, the construction of infrastructure is vigorously developed in China, and a series of construction problems such as dam foundations of dams, expressways, high-speed railways, long-span bridges, high-difficulty tunnels and the like are solved by engineers in China one by one. The problem of slope stability almost appears in all engineering construction, slope instability has the characteristics of being sudden and large in destructiveness and the like, how to achieve real-time continuous monitoring on a large-range slope and adopt proper early warning measures when deformation exceeds a threshold value, a field safety responsible person is informed to timely carry out emergency work such as evacuation and the like, property loss and casualties are reduced to the lowest degree to be undoubtedly the importance of the problem of slope stability, meanwhile, many scholars are contributing one own force for slope deformation monitoring, and the problem is expected to be solved in the early days.
As is known to all, the local overlarge deformation of the side slope is a precursor of occurrence of geological disasters such as landslide and the like, and the monitoring efficiency can be greatly improved by using engineering technologies such as sensors and the like, the labor force is saved, workers can know the deformation condition of the side slope under various working conditions in real time, and the intelligent and automatic inevitable development trend of side slope monitoring is realized.
No matter the slope deformation is monitored by using a traditional total station or a sensor, errors caused by errors of the instrument, environmental factors and the like exist, and meanwhile, based on the all-weather condition of monitoring the slope, more and more data can be stored and processed, so that larger errors are gradually generated in recording and predicting of the slope deformation, and the accuracy of the sensor measurement cannot be guaranteed.
The Natt sensor is a sensor for monitoring slope displacement based on a geomagnetic field, a chip capable of sensing the change of the geomagnetic field is arranged in the sensor, the displacement change quantities delta x, delta y and delta z of the Natt sensor in the x direction, the y direction and the z direction can be calculated by measuring the change quantities of the geomagnetic field in the x direction, the y direction and the z direction, then the displacement of the slope can be reflected by superposing the displacements of a plurality of Natt sensors and connecting displacement points, and the safety early warning work on the slope is well done. The sensor has the characteristics of 24-hour real-time monitoring, high operability and the like, and is widely applied to actual engineering construction.
The method has the advantages of high instantaneity and operability based on the nano sensor, and is widely applied to engineering construction such as slope and tunnel deformation monitoring.
In the monitoring of slope deformation, the displacement of slope is reflected by the displacement of a plurality of nano-sensors, because there is measuring error in the sensor itself, in addition under adverse factor influences such as rock mass disturbance, natural environment, electromagnetic signal, the influence that the error caused the data precision can further aggravate, cause measuring accuracy not enough, to the prediction of deformation influence such as inaccurate. Secondly, the displacement data only comes from one sensor, and the data source is single, lacks the contrast, and is difficult to rectify, and the credibility is difficult to satisfy the requirement.
Disclosure of Invention
In order to solve the technical problem, the invention provides a double-path nano sensor displacement correction method aiming at two embedding position working conditions that a nano sensor in an actual side slope penetrates through the inside of the side slope to reach a bedrock and is positioned on a sliding surface.
The invention adopts the following technical scheme:
a dual-path nano sensor displacement correction method is characterized by comprising the following steps:
s1, aiming at the first working condition that the nano sensor penetrates through the inner part of the side slope to the bedrock:
a1, determining the bottom of the sensor to be in a fixed state, and superposing the displacement in the x, y and z directions obtained by each nano sensor in series from the deep part of the side slope to the surface of the side slope to obtain the displacement data of the surface layer of the side slope, which is a calculation path A, and obtain the displacement data of the path A;
a2, connecting a surface displacement sensor on the surface of the side slope with a nano sensor to obtain the displacement data of the surface layer of the side slope, and carrying out displacement superposition on the surface displacement sensor along the reverse direction of the path A in the same way to obtain the displacement data of the part deep into the bedrock, which is used for calculating the path B and obtaining the displacement data of the path B;
a3, combining the displacement data of the path A and the path B to carry out error average processing on the displacement of each nano sensor to obtain corrected displacement data;
a4, enabling the nano sensor to generate accurate displacement through an indoor test device to simulate the displacement generated by the nano sensor due to slope deformation in an actual slope, and obtaining simulated actual measurement displacement data;
a5, arranging the obtained path A displacement data, path B displacement data, corrected displacement data and simulated actual measurement displacement data, drawing the data in a displacement graph to obtain four deformation curves, verifying the similarity between the path A displacement data deformation curve, the path B displacement data deformation curve and the corrected displacement data deformation curve and the simulated actual measurement displacement data deformation curve respectively through the similarity calculation of the deformation curves, and verifying the accuracy of the corrected displacement data through the similarity;
s2, aiming at the second working condition that the nano sensor is positioned on the sliding surface;
b1, because the whole sensor moves along with the landslide body, the accuracy of bottom displacement data cannot meet the requirement at the moment, and the calculated path A cannot be accurately measured; calculating the path B and continuing to use, superposing the displacements in the x, y and z directions obtained by each nano sensor along the path B based on the displacement data measured by the earth surface displacement sensors to obtain the displacement data of the path B,
b2, enabling the nano sensor to generate accurate displacement through an indoor test device to simulate the displacement generated by the nano sensor due to slope deformation in an actual slope, and obtaining simulated actual measurement displacement data;
b3, arranging the obtained path B displacement data and the simulated actual measurement displacement data, drawing the path B displacement data and the simulated actual measurement displacement data in a displacement graph to obtain two deformation curves, verifying the similarity of the path B displacement data deformation curve and the simulated actual measurement displacement data deformation curve through the similarity calculation of the deformation curves, and verifying the accuracy of the corrected displacement data through the similarity.
Preferably, the indoor test device includes fixed cross beam, the rope, a spring, movable cross beam, a track, the nano sensor, fixed pipe clamp, a fastener, pedestal and support column, both sides difference fixedly connected with support column on the pedestal, difference fixedly connected with track on the support column, two track top fixedly connected with fixed cross beam, movable cross beam passes through the fastener and fixes the rail fastening sliding connection on the support column, can slide adjusting position from top to bottom on the track through the fastener, a plurality of nano sensors establish ties each other, the nano sensor lower extreme of bottom is fixed with the mesa through fixed pipe clamp, the nano sensor upper end and the spring coupling of top, then be connected with the fixed crossbeam in indoor test device upper end with the rope, be provided with the recess in the movable cross beam, the nano sensor of series connection freely passes the recess.
Preferably, the movable cross beam is fixedly connected with the fastener through a bolt hole.
Preferably, a spring is arranged between the buckling claws at the back of the fastener, so that the fastener can be conveniently buckled into the clamping track.
Preferably, the plurality of nano-sensors are connected in series by a gimbal.
The invention has the beneficial effects that: the invention provides a method for correcting measurement displacement by double paths, namely a method based on a nano sensor and an earth surface displacement monitoring sensor. The slope displacement curve is corrected by innovatively combining the two paths, compared with the traditional scheme, the method has the advantages that data come from two sensors of different types, data sources are diversified, and the reliability is high. Under the condition that the sensor cannot accurately measure under the bad working condition (working condition two), the error generated by the sensor when the displacement is measured by the sensor can be corrected to the greatest extent, a slope deformation displacement curve can be provided, and the measuring efficiency and the reliability of the sensor are greatly improved. Meanwhile, a special indoor test device is designed for simulation experiment verification, and the accuracy of correcting and measuring displacement data is verified.
Drawings
FIG. 1 is a schematic diagram of an embodiment of the present invention;
FIG. 2 is a schematic diagram of a laboratory test apparatus for the validation of the present invention;
FIG. 3 is a rear view of FIG. 2;
FIG. 4 is a left side view of FIG. 2;
FIG. 5 is an enlarged view of one of the layouts of FIG. 2;
FIG. 6 is a schematic view of a bottom Natt sensor and a fixed tube clamp in a laboratory testing apparatus for performing the assay of the present invention;
FIG. 7 is an enlarged view of a portion of a rail in a laboratory testing apparatus for the verification of the present invention;
FIG. 8 is a schematic view of a fastener of the laboratory test apparatus for verification according to the present invention;
FIG. 9 is a rear view of a fastener in a laboratory test fixture for use in the verification of the invention;
FIG. 10 is an enlarged fragmentary view of the fastener and rail attachment of the verification lab scale of the present invention;
FIG. 11 is a graph of displacement deformation for four data sets in accordance with the present invention;
in the figure: 1. fixed beam, 2, rope, 3, spring, 4, movable beam, 5, universal joint, 6, track, 7, nano-sensor, 8, fixed pipe clamp, 9, fastener, 10, pedestal, 11, support column.
Detailed Description
The technical scheme of the invention is further described in detail by the following specific embodiments in combination with the attached drawings:
example (b): as shown in fig. 1, a method for calibrating the displacement of a dual-path nano-sensor is characterized by comprising the following steps:
s1, aiming at the first working condition that the nano sensor penetrates through the inner part of the side slope to the bedrock:
a1, determining the bottom of the sensor to be in a fixed state, and superposing the displacement in the x, y and z directions obtained by each nano sensor in series from the deep part of the side slope to the surface of the side slope to obtain the displacement data of the surface layer of the side slope, which is a calculation path A, and obtain the displacement data of the path A;
a2, connecting a surface displacement sensor on the surface of the side slope with a nano sensor to obtain surface displacement data of the side slope, and similarly, carrying out displacement superposition on the surface displacement sensor along the opposite direction of the path A to obtain displacement data deep into the bedrock, which is used for calculating the path B to obtain displacement data of the path B;
a3, combining the displacement data of the path A and the path B to carry out error average processing on the displacement of each nano sensor to obtain corrected displacement data;
a4, enabling the nano sensor to generate accurate displacement through an indoor test device to simulate the displacement generated by the nano sensor due to slope deformation in an actual slope, and obtaining simulated actual measurement displacement data;
a5, arranging the obtained path A displacement data, path B displacement data, corrected displacement data and simulated actual measurement displacement data, drawing the data in a displacement graph to obtain four deformation curves, verifying the similarity between the path A displacement data deformation curve, the path B displacement data deformation curve and the corrected displacement data deformation curve and the simulated actual measurement displacement data deformation curve respectively through the similarity calculation of the deformation curves, and verifying the accuracy of the corrected displacement data through the similarity;
s2, aiming at the second working condition, namely that the nano sensor is positioned on the sliding surface;
b1, because the whole sensor moves along with the landslide body, the accuracy of bottom displacement data cannot meet the requirement at the moment, and the calculated path A cannot be accurately measured; calculating the path B and continuing to use, superposing the displacements in the x, y and z directions obtained by each nano sensor along the path B based on the displacement data measured by the earth surface displacement sensors to obtain the displacement data of the path B,
b2, enabling the nano sensor to generate accurate displacement through an indoor test device to simulate the displacement generated by the nano sensor due to slope deformation in an actual slope, and obtaining simulated actual measurement displacement data;
b3, arranging the obtained path B displacement data and the simulated actual measurement displacement data, drawing the path B displacement data and the simulated actual measurement displacement data in a displacement graph to obtain two deformation curves, verifying the similarity of the path B displacement data deformation curve and the simulated actual measurement displacement data deformation curve through the similarity calculation of the deformation curves, and verifying the accuracy of the corrected displacement data through the similarity.
As shown in figures 2-10, the indoor testing device for verification of the invention comprises a fixed beam 1, a rope 2, a spring 3, a movable beam 4, a track 6, a Natt sensor 7, a fixed pipe clamp 8, a fastener 9, a pedestal 10 and a support column 11, wherein the support column is respectively and fixedly connected with two sides of the pedestal, the track is respectively and fixedly connected with the support column, the top ends of the two tracks are fixedly connected with the fixed beam, the movable beam is fixedly and slidably connected with the track fixed on the support column through the fastener, the position of the movable beam and the fastener can be adjusted up and down on the track through the fastener, the spring is arranged at the buckling claw position at the back of the fastener, so that the fastener can be conveniently buckled into the clamping track, a plurality of Natt sensors are mutually connected in series, the lower end of the Natt sensor at the bottom is fixed with a table board through the fixed pipe clamp, the upper end of the Natt sensor above is connected with the spring, and then connected with a beam fixed at the upper end of the indoor test device by a rope. A plurality of nano-sensors are connected in series by a gimbal 5. The groove arranged in the movable cross beam can realize that the sensor can freely move on a fixed plane, the multi-degree-of-freedom movement better simulates the condition of an actual side slope, and the scientificity and the reliability of an indoor test are improved.
In the experiment, the caliper can be used for enabling the sensor to generate accurate displacement to simulate the displacement generated by the sensor due to slope deformation in an actual slope.
As shown in fig. 11, four kinds of deformation curves can be drawn in the displacement graph by rounding the measured displacement data of the nano sensor and the indoor test data obtained by the method of the present invention, and through calculation of the similarity of the deformation curves, the similarity of the path a deformation curve, the path B deformation curve, the corrected deformation curve and the simulated measured deformation curve is 71%, 77.8% and 89%, respectively, and the similarity of the corrected deformation curve and the simulated measured deformation curve is improved by 18% and 11.2% respectively compared with the similarity of the path a and the path B and the simulated measured deformation curve, and it can be seen that the corrected deformation curve is more fitted to the simulated actual curve, which proves that the method has good applicability and accuracy for correction of the displacement of the nano sensor.
The invention provides a method for correcting measurement displacement based on a 'dual-path' sensor and a ground surface displacement monitoring sensor. The slope displacement curve is corrected by innovatively combining the two paths, compared with the traditional scheme, the method has the advantages that data come from two sensors of different types, data sources are diversified, and the reliability is high. Under the condition that the sensor cannot accurately measure under the bad working condition (working condition two), the error generated by the sensor when the displacement is measured by the sensor can be corrected to the greatest extent, a slope deformation displacement curve can be provided, and the measuring efficiency and the reliability of the sensor are greatly improved.
The above-described embodiments are only preferred embodiments of the present invention, and are not intended to limit the present invention in any way, and other variations and modifications may be made without departing from the spirit of the invention as set forth in the claims.

Claims (5)

1. A displacement correction method of a dual-path nano sensor is characterized by comprising the following steps:
s1, aiming at the first working condition that the nano sensor penetrates through the inner part of the side slope to the bedrock:
a1, determining the bottom of the sensor to be in a fixed state, and superposing the displacement in the x, y and z directions obtained by each nano sensor in series from the deep part of the side slope to the surface of the side slope to obtain the displacement data of the surface layer of the side slope, which is a calculation path A, and obtain the displacement data of the path A;
a2, connecting a surface displacement sensor on the surface of the side slope with a nano sensor to obtain surface displacement data of the side slope, and similarly, carrying out displacement superposition on the surface displacement sensor along the opposite direction of the path A to obtain displacement data deep into the bedrock, which is used for calculating the path B to obtain displacement data of the path B;
a3, combining the displacement data of the path A and the path B to carry out error average processing on the displacement of each nano sensor to obtain corrected displacement data;
a4, enabling the nano sensor to generate accurate displacement through an indoor test device to simulate the displacement generated by the nano sensor due to slope deformation in an actual slope, and obtaining simulated actual measurement displacement data;
a5, arranging the obtained path A displacement data, path B displacement data, corrected displacement data and simulated actual measurement displacement data, drawing the data in a displacement graph to obtain four deformation curves, verifying the similarity between the path A displacement data deformation curve, the path B displacement data deformation curve and the corrected displacement data deformation curve and the simulated actual measurement displacement data deformation curve respectively through the similarity calculation of the deformation curves, and verifying the accuracy of the corrected displacement data through the similarity;
s2, aiming at the second working condition, namely that the nano sensor is positioned on the sliding surface;
b1, because the whole sensor moves along with the landslide body, the accuracy of bottom displacement data cannot meet the requirement at the moment, and the calculated path A cannot be accurately measured; calculating the path B and continuing to use, superposing the displacements in the x, y and z directions obtained by each nano sensor along the path B based on the displacement data measured by the earth surface displacement sensors to obtain the displacement data of the path B,
b2, enabling the nano sensor to generate accurate displacement through an indoor test device to simulate the displacement generated by the nano sensor due to slope deformation in an actual slope, and obtaining simulated actual measurement displacement data;
b3, arranging the obtained path B displacement data and the simulated actual measurement displacement data, drawing the path B displacement data and the simulated actual measurement displacement data in a displacement graph to obtain two deformation curves, verifying the similarity of the path B displacement data deformation curve and the simulated actual measurement displacement data deformation curve through the similarity calculation of the deformation curves, and verifying the accuracy of the corrected displacement data through the similarity.
2. The method as claimed in claim 1, wherein the indoor testing device comprises a fixed beam, a rope, a spring, a movable beam, a rail, a Natt sensor, a fixed pipe clamp, a fastener, a pedestal and a support column, wherein the support column is fixedly connected to two sides of the pedestal, the rail is fixedly connected to the support column, the fixed beam is fixedly connected to the top ends of the two rails, the movable beam is connected to the rail fixed to the support column through the fastener, the position of the movable beam can be adjusted on the rail by sliding up and down through the fastener, the Natt sensors are connected in series, the lower end of the Natt sensor at the bottom is fixed to the platform through the fixed pipe clamp, the upper end of the Natt sensor at the upper part is connected to the spring and then connected to the beam fixed to the upper end of the indoor testing device through the rope, and a groove is formed in the movable beam, the series of nano-sensors passes freely through the grooves.
3. The method of claim 2, wherein the movable beam is fixedly connected to the fastener by a bolt hole.
4. The method as claimed in claim 2, wherein a spring is provided between the back and the latch of the fastener to facilitate the fastening of the fastener to the clamping rail.
5. The method of claim 2, wherein the plurality of nano-sensors are connected in series by a gimbal.
CN202111419454.9A 2021-11-26 2021-11-26 Displacement correction method for dual-path nano sensor Active CN114216388B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111419454.9A CN114216388B (en) 2021-11-26 2021-11-26 Displacement correction method for dual-path nano sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111419454.9A CN114216388B (en) 2021-11-26 2021-11-26 Displacement correction method for dual-path nano sensor

Publications (2)

Publication Number Publication Date
CN114216388A CN114216388A (en) 2022-03-22
CN114216388B true CN114216388B (en) 2022-08-16

Family

ID=80698487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111419454.9A Active CN114216388B (en) 2021-11-26 2021-11-26 Displacement correction method for dual-path nano sensor

Country Status (1)

Country Link
CN (1) CN114216388B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855741B (en) * 2022-04-18 2022-12-30 中南大学 Intelligent monitoring method for long-term deformation of railway and station yard subgrade space on complex accumulation body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107218976A (en) * 2017-07-19 2017-09-29 中国铁路设计集团有限公司 Automatic Synthesis railway slope monitoring system
JP2020012362A (en) * 2018-07-13 2020-01-23 浙江大学Zhejiang University Dynamic response time space reconstruction device
CN111105600A (en) * 2019-12-30 2020-05-05 中国公路工程咨询集团有限公司 Cutting slope stability dynamic monitoring and early warning system and method based on rainfall condition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2984475B1 (en) * 2013-04-10 2021-02-17 Sentek Pty Ltd. Tapered soil moisture sensor arrangement and method of installation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107218976A (en) * 2017-07-19 2017-09-29 中国铁路设计集团有限公司 Automatic Synthesis railway slope monitoring system
JP2020012362A (en) * 2018-07-13 2020-01-23 浙江大学Zhejiang University Dynamic response time space reconstruction device
CN111105600A (en) * 2019-12-30 2020-05-05 中国公路工程咨询集团有限公司 Cutting slope stability dynamic monitoring and early warning system and method based on rainfall condition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
边坡深部位移监测孔测斜装置埋设方法探究;叶咸等;《公路》;20190418;第64卷(第04期);第6-11页 *

Also Published As

Publication number Publication date
CN114216388A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
CN106458235B (en) The method and apparatus for determining the structural parameters of railroad track
CN114216388B (en) Displacement correction method for dual-path nano sensor
CN107479078A (en) Geodetic coordinates is converted to the method and system of separate planes coordinate in railroad survey
CN112833807A (en) Surrounding rock deformation monitoring method and prediction method suitable for double-shield TBM
Costa Filho Measurement of axial strains in triaxial tests on London Clay
CN106197306A (en) The measurement apparatus of a kind of shield tunnel segment joint deformation and method
CN108931175A (en) Digital display wedge-shaped feeler gauge, flatness test method and gap size test method
CN111473770A (en) Slope condition evaluation method based on comprehensive attribute measurement
CN112629478A (en) Space monitoring method for deformation and deflection of existing underground structure during subway station construction
CN104567771A (en) Vertical-displacement measurement device for unconfined oil and gas pipeline in transverse motion process
CN213335939U (en) Detection apparatus for bridge beam supports
CN106088171B (en) A kind of prefabricated pile Horizontal Displacement and pile body stress joint test method
CN102346027A (en) Method for testing the horizontal displacement of CRTS-II type plate ballastless rail bridge abutment of high-speed railway
CN210718877U (en) Measuring scale for civil engineering detection
CN112781656A (en) Method for monitoring safety of intersected existing tunnel during construction of underpass high-speed railway tunnel
Franklin et al. The monitoring of rock slopes
CN103410135B (en) Riverbed level measurement method based on network drill rod detection
CN205748238U (en) A kind of architectural engineering detection rule for verticality assay device
FROESE et al. 25 Characterization and management of rockslide hazard at Turtle Mountain, Alberta, Canada
Wyczałek et al. Monitoring of the static and dynamic displacements of railway bridges with the use of the total station and set of the electronic devices
CN109323684A (en) A kind of inclination measurement system and its tilt measurement
CN115618457A (en) Bedding rock slope three-dimensional geological model building and stability evaluation method
CN110274570A (en) Monitoring system for the deformation of rock-fill dams intercalated dislocation
CN208920996U (en) Bridge jacking auxiliary positioning monitoring device
CN111664832B (en) Method for establishing independent elevation system for bridge construction in area with abnormal and significant gravity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant