CN114192148A - 基于3d打印脱合金工艺的制氢催化剂、制备方法及应用 - Google Patents

基于3d打印脱合金工艺的制氢催化剂、制备方法及应用 Download PDF

Info

Publication number
CN114192148A
CN114192148A CN202111589351.7A CN202111589351A CN114192148A CN 114192148 A CN114192148 A CN 114192148A CN 202111589351 A CN202111589351 A CN 202111589351A CN 114192148 A CN114192148 A CN 114192148A
Authority
CN
China
Prior art keywords
printing
hydrogen production
dealloying
porous structure
catalyst based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111589351.7A
Other languages
English (en)
Inventor
于新海
李传东
姚馨淇
张汝行
涂善东
袁帅帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202111589351.7A priority Critical patent/CN114192148A/zh
Publication of CN114192148A publication Critical patent/CN114192148A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/02Alloys based on zinc with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于3D打印脱合金工艺的制氢结构催化剂、制备方法及应用,步骤(1)、将合金原料进行熔炼,得到合金材料,制备3D打印用预合金粉末,并进行预合金粉末筛选;步骤(2)、对预合金粉末进行3D打印,制备宏观的网格多孔结构骨架;步骤(3)、对3D打印网格多孔结构骨架进行退火处理;步骤(4)、将退火后的3D打印网格多孔结构骨架置于碱性或酸性溶液中进行化学脱合金;步骤(5)、用去离子水和无水乙醇反复清洗脱合金后的3D打印网格多孔结构骨架;步骤(6)、将3D打印网格多孔结构骨架在管式炉中用H2还原后,得到甲醇重整制氢用的催化剂。本发明的制氢催化剂传质传热好,无需涂覆,转化率高,CO选择性好且具有规模化生产优势。

Description

基于3D打印脱合金工艺的制氢催化剂、制备方法及应用
技术领域
本发明属于甲醇重整制氢领域,具体涉及一种基于3D打印脱合金工艺的制氢结构催化剂、制备方法及应用。
背景技术
在目前能源供应紧张和大气环境持续恶化的情况下,发展高效、无污染、可再生能源技术已成为必然趋势。质子交换膜燃料电池(PEMFC)具有高能源利用率、低污染排放和低工作温度等优点,被认为是最有前途的便携式电源之一。
近年来,质子交换膜燃料电池技术被应用在许多领域,如汽车电源、分布式发电站、便携式电子设备、和住宅能源。目前,主要通过三种直接氢气存储方式为车载PEMFC提供氢气,分别为高压气体存储、低温液体存储和金属氢化物存储方式。但这些氢气存储方法存在着存储密度低、成本高、安全性低等问题。因此,氢气供应方式仍然是阻碍车载PEMFC商业化发展的关键问题之一。目前,解决这一问题的方法之一是采用合适的高能量密度液体燃料进行重整制氢。甲醇被认为是车载制氢的理想选择,因为它不含硫,而且由于它不含必须打破的碳-碳键,因此可以在比其他燃料更低的温度(200-350℃)下进行蒸汽重整反应。
制备高活性、选择性和稳定的甲醇重整制氢催化剂仍然是车载制氢的一个关键性问题。甲醇重整制氢的催化剂主要有铜基、和贵金属催化剂。贵金属催化剂包括Co、Ni、Ru、Pd、Ir和Pt基催化剂,镍基催化剂相比铜基催化剂,其在甲醇重整反应中有较高的CO选择性,这对后续PEMFC燃料电池的Pt电极有毒化作用,必须加入CO净化装置。贵金属催化剂包括Pt和Pd基催化剂具有较高的抗氧化性和长时稳定性,但也存在着CO选择性较高,且制备成本高昂限制其商业化发展。
铜基催化剂具有较高的活性和选择性,例如,中国专利CN108607564B公开了一种甲醇重整催化剂及其制备和应用具有较高的甲醇转化率。总之,铜基催化剂具有活性高,CO2选择性高,反应温度低,制备价格低等优势,在甲醇重整制氢催化剂领域具有巨大的发展潜力和应用前景。
目前,甲醇重整制氢催化剂在制氢应用中主要由颗粒状和涂层两种形式存在,对应的反应器有固定床反应器和微通道反应器,固定床反应器中颗粒状催化剂存在着压降大,催化剂易粉化等缺陷。相对于固定床反应器,微通道反应器壁上的催化剂涂层具有不易粉化、强化传质传热的优点,但由于受到催化剂涂覆量的限制,微通道反应器的甲醇转化率很难进一步提升,同时,催化剂涂层容易发生脱落。因此,针对以上催化剂和反应器存在的问题,亟需一种传质传热好,无需涂覆,转化率高,CO选择性好且具有规模化生产优势的结构催化剂。
3D打印结合脱合金工艺能够实现这一需求,选择性激光熔化(SLM)是一种很有前途的用于制造具有复杂几何形状的三维金属构件的3D打印技术,SLM技术打印的三维连通多孔结构能够消除径向反应物和产物扩散限制,3D打印基体内部的涡流混合还能够强化传质传热,其几何构型设计灵活,便于规模化生产。脱合金工艺能够将二元三元合金中的活性金属去除,剩下的金属自由组合成具有纳米孔隙的多孔结构,3D打印结合脱合金生成的纳米多孔铜催化剂能够实现催化剂自负载,无需涂覆,传质传热优异且具有较高的比表面积,在车载甲醇重整制氢领域应用前景巨大,然而,相关技术研究未见公开。
发明内容
本发明的一个目的是解决至少上述问题,并提供至少后面将说明的优点。
鉴于目前现有颗粒状甲醇重整制氢催化剂存在着压降大,装填带来的传质传热差等问题,微通道涂覆催化剂存在的径向传质受限,催化剂涂覆量少且易脱落等问题,本发明旨在提出一种基于3D打印脱合金工艺的制氢催化剂、制备方法及应用,以解决以上问题。
本发明开发了一种3D打印脱合金工艺制备甲醇重整制氢结构催化剂的方法,所述催化剂由3D打印网格多孔骨架和脱合金纳米多孔铜表层组成,其3D打印的网格多孔骨架具有优异的传质传热和低压降性能,其表层的纳米多孔铜催化剂能够自负载,无需涂覆,且具有较高的比表面积。实验结果显示该结构催化剂,具有97%以上的甲醇转化率和低于0.5%的CO含量。
为了实现根据本发明的这些目的和其它优点,提供了一种基于3D打印脱合金工艺的制氢结构催化剂制备方法,包括:
步骤(1)、将合金原料进行熔炼,得到合金材料,制备3D打印用预合金粉末,并进行预合金粉末筛选;
步骤(2)对预合金粉末进行3D打印,制备宏观的网格多孔结构骨架;
步骤(3)对3D打印网格多孔结构骨架进行退火处理;
步骤(4)将退火后的3D打印网格多孔结构骨架置于碱性或酸性溶液中进行化学脱合金;
步骤(5)用去离子水和无水乙醇反复清洗脱合金后的3D打印网格多孔结构骨架;
步骤(6)将3D打印网格多孔结构骨架在管式炉中用H2还原后,得到甲醇重整制氢用的催化剂。
优选的,所述步骤(1)中,利用气雾化技术制备3D打印用预合金粉末,气雾化预合金技术采用真空感应气雾化、电极感应气雾化、等离子旋转电极雾化或等离子雾化中的至少一种。
优选的,所述步骤(1)中的合金原料包括以下质量百分比的组分:铜37~62%,锌0~80%,铝0~63%,锆0~70%,铬0~1%,锰0~70%,铁0~10%,钛0~13%,硅0~2%。
优选的,所述步骤(1)中的预合金粉末为球形或类球形粉末,直径在15--150μm。
优选的,所述步骤(2)中,设计多孔结构材料参数并使用选择性激光熔化技术对预合金粉末进行3D打印,多孔结构为体心立方点阵结构、面心立方点阵结构以及二十四面螺旋体结构中的一种,单元尺寸在2~10mm,孔隙率在30~80%,选择性激光熔化参数为:激光功率300~1200W,扫描速度为200~1200mms-1,铺粉厚度为0.02~0.08mm。
优选的,所述步骤(3)中3D打印网格多孔结构的退火温度在350~800摄氏度,退火时间在1~3h,以去除打印结构件内残余应力,稳定结构。
优选的,所述步骤(4)中碱性溶液为KOH、NaOH溶液中的一种或两种,溶液质量浓度在5~30%;
酸性溶液为盐酸、硫酸、氢氟酸中的至少一种,溶液质量浓度在5~50%;
控制脱合金温度,脱合金温度在10~60摄氏度;控制脱合金时间,脱合金时间在2~36h。
优选的,所述步骤(6)中氢气浓度在2~30%,还原温度在240~350摄氏度,还原时间在1~4h。
一种基于3D打印脱合金工艺的制氢催化剂,该催化剂由3D打印多孔骨架和脱合金纳米多孔铜表层组成,所述3D打印多孔骨架通过选择性激光熔化预合金粉末打印,所述纳米多孔铜表层通过在碱性或酸性溶液中脱合金3D打印多孔骨架获得。
一种基于3D打印脱合金工艺的制氢催化剂的应用,将制得的基于3D打印脱合金工艺的制氢催化剂应用在甲醇重整制氢过程中,重整制氢反应温度为250~330摄氏度,使用的甲醇水溶液的水醇比摩尔比为0.8~3,质量空速在5~80h-1
本发明至少包括以下有益效果:
1、本发明制备的3D打印脱合金甲醇重整制氢结构催化剂相比于浸渍法、共沉淀法等传统催化剂制备方法具有更高的比表面积,可以控制在100-400m2/g之间的BET比表面积,而现有铜系催化剂比表面积很难突破200m2/g。
2、本发明属于催化剂自负载,催化剂负载量大,且纳米多孔铜厚度可以达到0.5~1.5mm,远远高于涂层催化剂微米级的涂覆厚度,例如微通道甲醇重整反应器达到的50微米厚度涂层。内部平均孔隙在100nm左右,大大减小了内扩散阻力。因此,获得了更高的甲醇转化效率,一氧化碳浓度进一步降低。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1是本发明一种实施方式中所用3D打印预合金粉末SEM表征图;
图2是本发明一种实施方式中所打印的多孔结构骨架实物图;
图3是本发明一种实施方式中所打印的多孔结构骨架脱合金后的表面纳米多孔铜催化SEM表征。
图4是不同合金的3D打印结构催化剂甲醇转化率对比图;
图5是不同合金的3D打印结构催化剂一氧化碳在干气中含量的对比图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本专利所使用的诸如“具有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
实施例1
Zn-70%Cu-29.5%Fe-0.5%(质量比)3D打印脱合金结构催化剂的制备:
准备原料质量百分比组分为70%的锌、29.5%的铜、0.5%的铁,将合金原料进行真空悬浮熔炼得到了合金材料,并用气雾化技术制备3D打印用球形预合金粉末,筛选出粒径在15-53微米的粉末。设计多孔结构为体心立方点阵结构,尺寸为8×8mm,单元尺寸为4mm,孔隙率为60%。然后进行3D打印,选择性激光熔化参数:激光功率为400W,扫描速度为800mms-1,铺粉厚度为0.05mm,打印结果如图2所示。打印后对多孔结构骨架进行退火处理,退火温度为400摄氏度,退火时间为1时,结构稳定后将多孔结构70Zn29.5Cu0.5Fe骨架置于15%的HCl中进行化学脱合金,脱合金温度为55摄氏度,时间为6h。清洗干燥后得到了表层含有纳米多孔铜的3D结构催化剂,最后进行氢气还原处理用于甲醇重整制氢反应,还原的氢气浓度为5%,温度为280摄氏度,还原时间为2h。
性能验证1
将上述制备的3D打印脱合金结构催化剂应用于甲醇蒸汽重整反应中,取8×8mm结构催化剂,与相同质量的30~60目石英砂混合填充于直径为12mm床层厚度为10cm的固定床管式反应器中,质量空速为40h-1,水醇摩尔比为1.5/1,实验结果如图4、5所示,在220℃~340℃范围内观察甲醇的转化率和CO在干气中的浓度,随着温度的升高3D打印脱合金结构催化剂的甲醇转化率持续升高,CO的浓度略有升高,在340℃下转化率为90.1%,此时CO的浓度为0.3%。
实施例2
Zn-80%Cu-19.8%Si-0.2%(质量比)3D打印脱合金结构催化剂的制备:
准备原料质量百分比组分为80%的锌、19.8%的铜、0.2%的硅,将合金原料进行真空电弧熔炼得到了合金材料,并用气雾化技术制备3D打印用球形预合金粉末,筛选出粒径在53~105微米的粉末。设计多孔结构为面心立方点阵结构,尺寸为8×8mm,单元尺寸为4mm,孔隙率为70%。然后进行3D打印,选择性激光熔化参数:激光功率为300W,扫描速度为900mms-1,铺粉厚度为0.05mm。打印后对多孔结构骨架进行退火处理,退火温度为350摄氏度,退火时间为2时,结构稳定后将多孔结构80Zn19.8Cu0.2Si骨架置于20%的硝酸中进行化学脱合金,脱合金温度为40摄氏度,时间为5h。清洗干燥后得到了表层含有纳米多孔铜的3D结构催化剂,最后进行氢气还原处理用于甲醇重整制氢反应,还原的氢气浓度为10%,温度为300摄氏度,还原时间为2h。
性能验证2
将上述制备的3D打印脱合金结构催化剂应用于甲醇蒸汽重整反应中,取8×8mm结构催化剂,与相同质量的30~60目石英砂混合填充于直径为12mm床层厚度为10cm的固定床管式反应器中,质量空速为40h-1,水醇摩尔比为1.5/1,实验结果如图4、5所示,在220℃~340℃范围内观察甲醇的转化率和CO在干气中的浓度,随着温度的升高3D打印脱合金结构催化剂的甲醇转化率持续升高,CO的浓度略有升高,在340℃下转化率为87.6%,此时CO的浓度为0.32%。
实施例3
Al-50%Cu-40%Zn-10%(质量比)3D打印脱合金结构催化剂的制备:
准备原料质量百分比组分为50%的铝、40%的铜、10%的锌,将合金原料进行真空感应熔炼得到了合金材料,并用气雾化技术制备3D打印用球形预合金粉末,筛选出粒径在15-53微米的粉末。设计多孔结构为体心立方点阵结构,尺寸为8×8mm,单元尺寸为4mm,孔隙率为50%。然后进行3D打印,选择性激光熔化参数:激光功率为800W,扫描速度为1000mms-1,铺粉厚度为0.05mm。打印后对多孔结构骨架进行退火处理,退火温度为600摄氏度,退火时间为2时,结构稳定后将多孔结构50Al40Cu10Zn骨架置于15%的KOH中进行化学脱合金,脱合金温度为25摄氏度,时间为3h。清洗干燥后得到了表层含有纳米多孔铜的3D结构催化剂,最后进行氢气还原处理用于甲醇重整制氢反应,还原的氢气浓度为5%,温度为300摄氏度,还原时间为3h。
性能验证3
将上述制备的3D打印脱合金结构催化剂应用于甲醇蒸汽重整反应中,取8×8mm结构催化剂,与相同质量的30~60目石英砂混合填充于直径为12mm床层厚度为10cm的固定床管式反应器中,质量空速为80h-1,水醇摩尔比为2/1,实验结果如图4、5所示,在220℃~340℃范围内观察甲醇的转化率和CO在干气中的浓度,随着温度的升高3D打印脱合金结构催化剂的甲醇转化率持续升高,CO的浓度略有升高,在320℃下转化率为98.4%,此时CO的浓度为0.21%.
实施例4
Zr-67.1%Cu-25.5%Fe-3.8%Al-3.6%(质量比)3D打印脱合金结构催化剂的制备:
准备原料质量百分比组分为67.1%的锆、25.5%的铜、3.8%的铁和3.6%的铝,将合金原料进行真空电弧熔炼得到了合金材料,并用气雾化技术制备3D打印用球形预合金粉末,筛选出粒径在15-53微米的粉末。设计多孔结构为面心立方点阵结构,尺寸为8×8mm,单元尺寸为4mm,孔隙率为60%。然后进行3D打印,选择性激光熔化参数:激光功率为1000W,扫描速度为1200mms-1,铺粉厚度为0.05mm。打印后对多孔结构骨架进行退火处理,退火温度为450摄氏度,退火时间为2时,结构稳定后将多孔结构67.1Zr 25.5Cu 3.8Fe 3.6Al骨架置于10%的氢氟酸中进行化学脱合金,脱合金温度为20摄氏度,时间为4h。清洗干燥后得到了表层含有纳米多孔铜的3D结构催化剂,最后进行氢气还原处理用于甲醇重整制氢反应,还原的氢气浓度为10%,温度为300摄氏度,还原时间为3h。
性能验证4
将上述制备的3D打印脱合金结构催化剂应用于甲醇蒸汽重整反应中,取8×8mm结构催化剂,与相同质量的30~60目石英砂混合填充于直径为12mm床层厚度为10cm的固定床管式反应器中,质量空速为60h-1,水醇摩尔比为1.8/1,实验结果如图4、5所示,在220℃~350℃范围内观察甲醇的转化率和CO在干气中的浓度,随着温度的升高3D打印脱合金结构催化剂的甲醇转化率持续升高,CO的浓度略有升高,在320℃下转化率为96.1%,此时CO的浓度为1.1%
综上所述,实施例3相对应的合金和工艺制备的3D打印脱合金甲醇重整制氢结构催化剂具有较高的甲醇转化率和较低的CO含量,在320℃下转化率为98.4%,此时CO的浓度为0.21%,因此实施例3对应的材料组分和工艺参数相对较好。
本发明制备的3D打印脱合金甲醇重整制氢结构催化剂相比于浸渍法、共沉淀法等传统催化剂制备方法具有更高的比表面积,可以控制在100-400m2/g之间的BET比表面积,而现有铜系催化剂比表面积很难突破200m2/g。本发明属于催化剂自负载,催化剂负载量大,且纳米多孔铜厚度可以达到0.5~1.5mm,远远高于涂层催化剂微米级的涂覆厚度,例如微通道甲醇重整反应器达到的50微米厚度涂层。内部平均孔隙在100nm左右,大大减小了内扩散阻力。因此,获得了更高的甲醇转化效率,一氧化碳浓度进一步降低。
本专利公开了3D打印脱合金制备甲醇重整制氢结构催化剂的工艺,该工艺主要采用了气雾化预合金粉末技术、3D打印SLM技术和三元及以上合金脱合金技术,现有技术中,专利号:CN 113290242 A,名称:一种微纳多孔功能器件、其增材制造方法和应用,该专利中涉及的3D打印Cu催化剂是做污水处理的,本发明与对比专利的主要差别在于1.本发明技术应用于甲醇重整制氢领域;2.本发明采用气雾化预合金粉末技术制备了三元及以上合金粉末,而不是采用混合粉末打印;3.本发明脱合金材料针对甲醇重整制氢催化设计,脱合金后获得的含有CuZn、CuFe、CuZrFe合金的纳米多孔结构是提高甲醇转化率的关键,而不是单一的惰性金属。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (10)

1.一种基于3D打印脱合金工艺的制氢催化剂制备方法,其特征在于,包括以下步骤:
步骤(1)、将合金原料进行熔炼,得到合金材料,制备3D打印用预合金粉末,并进行预合金粉末筛选;
步骤(2)、对筛选后的预合金粉末进行3D打印,制备宏观的网格多孔结构骨架;
步骤(3)、对3D打印网格多孔结构骨架进行退火处理;
步骤(4)、将退火后的3D打印网格多孔结构骨架置于碱性或酸性溶液中进行化学脱合金;
步骤(5)、清洗脱合金后的3D打印网格多孔结构骨架;
步骤(6)、将3D打印网格多孔结构骨架在管式炉中用H2还原,得到甲醇重整制氢用的催化剂。
2.如权利要求1所述的基于3D打印脱合金工艺的制氢催化剂制备方法,其特征在于,所述步骤(1)中,利用气雾化技术制备3D打印用预合金粉末,气雾化预合金技术采用真空感应气雾化、电极感应气雾化、等离子旋转电极雾化或等离子雾化中的至少一种。
3.如权利要求2所述的基于3D打印脱合金工艺的制氢催化剂制备方法,其特征在于,所述步骤(1)中的合金原料包括以下质量百分比的组分:铜37~62%,锌0~80%,铝0~63%,锆0~70%,铬0~1%,锰0~70%,铁0~10%,钛0~13%,硅0~2%。
4.如权利要求3所述的基于3D打印脱合金工艺的制氢催化剂制备方法,其特征在于,所述步骤(1)中的预合金粉末为球形或类球形粉末,直径在15--150μm。
5.如权利要求4所述的基于3D打印脱合金工艺的制氢催化剂制备方法,其特征在于,所述步骤(2)中,设计多孔结构材料参数并使用选择性激光熔化技术对预合金粉末进行3D打印,多孔结构为体心立方点阵结构、面心立方点阵结构以及二十四面螺旋体结构中的一种,单元尺寸在2~10mm,孔隙率在30~80%,选择性激光熔化参数为:激光功率300~1200W,扫描速度为200~1200mms-1,铺粉厚度为0.02~0.08mm。
6.如权利要求5所述的基于3D打印脱合金工艺的制氢催化剂制备方法,其特征在于,所述步骤(3)中3D打印网格多孔结构的退火温度在350~800摄氏度,退火时间在1~4h,以去除打印结构件内残余应力,稳定结构。
7.如权利要求6所述的基于3D打印脱合金工艺的制氢催化剂制备方法,其特征在于,所述步骤(4)中碱性溶液为KOH、NaOH溶液中的一种或两种,溶液质量浓度在5~30%;
酸性溶液为盐酸、硫酸、氢氟酸中的至少一种,溶液质量浓度在5~50%;
控制脱合金温度在10~60摄氏度;控制脱合金时间在2~36h。
8.如权利要求7所述的基于3D打印脱合金工艺的制氢催化剂制备方法,其特征在于,所述步骤(6)中氢气浓度在2~30%,还原温度在240~350摄氏度,还原时间在1~4h。
9.一种基于3D打印脱合金工艺的制氢催化剂,其特征在于,该催化剂由3D打印多孔骨架和脱合金纳米多孔铜表层组成,所述3D打印多孔骨架通过选择性激光熔化预合金粉末打印,所述纳米多孔铜表层通过在碱性或酸性溶液中脱合金3D打印多孔骨架获得。
10.一种基于3D打印脱合金工艺的制氢催化剂的应用,其特征在于,将如权利要求8所述制备方法制得的基于3D打印脱合金工艺的制氢催化剂应用在甲醇重整制氢过程中,重整制氢反应温度为250~330摄氏度,使用的甲醇水溶液的水醇比摩尔比为0.8~3,质量空速在5~80h-1
CN202111589351.7A 2021-12-23 2021-12-23 基于3d打印脱合金工艺的制氢催化剂、制备方法及应用 Pending CN114192148A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111589351.7A CN114192148A (zh) 2021-12-23 2021-12-23 基于3d打印脱合金工艺的制氢催化剂、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111589351.7A CN114192148A (zh) 2021-12-23 2021-12-23 基于3d打印脱合金工艺的制氢催化剂、制备方法及应用

Publications (1)

Publication Number Publication Date
CN114192148A true CN114192148A (zh) 2022-03-18

Family

ID=80656165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111589351.7A Pending CN114192148A (zh) 2021-12-23 2021-12-23 基于3d打印脱合金工艺的制氢催化剂、制备方法及应用

Country Status (1)

Country Link
CN (1) CN114192148A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799206A (zh) * 2022-03-28 2022-07-29 北京科技大学 用于催化电极多级结构高熵合金材料的制备方法及应用
CN115041157A (zh) * 2022-06-10 2022-09-13 佛山科学技术学院 一种制氢催化剂载体及其制备方法
CN115957751A (zh) * 2022-09-08 2023-04-14 厦门大学 一种基于激光烧结制备多孔反应载体板的方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105522151A (zh) * 2016-01-19 2016-04-27 王岩 一种3d打印医用钛合金材料的方法
CN109589980A (zh) * 2018-10-29 2019-04-09 华中科技大学 一种复合材料催化剂的制备方法、及其产品和应用
US20190118264A1 (en) * 2017-10-23 2019-04-25 Lawrence Livermore National Security, Llc Hierarchical porous metals with deterministic 3d morphology and shape via dealloying of 3d printed alloys
CN111068681A (zh) * 2019-11-28 2020-04-28 上海应用技术大学 用于甲醇水蒸气重整制氢的催化剂及其制备方法和应用
CN111229231A (zh) * 2020-03-11 2020-06-05 中国华能集团清洁能源技术研究院有限公司 一种3d打印整体式合金催化剂及其制备方法和应用
CN113290242A (zh) * 2021-04-26 2021-08-24 华中科技大学 一种微纳多孔功能器件、其增材制造方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105522151A (zh) * 2016-01-19 2016-04-27 王岩 一种3d打印医用钛合金材料的方法
US20190118264A1 (en) * 2017-10-23 2019-04-25 Lawrence Livermore National Security, Llc Hierarchical porous metals with deterministic 3d morphology and shape via dealloying of 3d printed alloys
CN109589980A (zh) * 2018-10-29 2019-04-09 华中科技大学 一种复合材料催化剂的制备方法、及其产品和应用
CN111068681A (zh) * 2019-11-28 2020-04-28 上海应用技术大学 用于甲醇水蒸气重整制氢的催化剂及其制备方法和应用
CN111229231A (zh) * 2020-03-11 2020-06-05 中国华能集团清洁能源技术研究院有限公司 一种3d打印整体式合金催化剂及其制备方法和应用
CN113290242A (zh) * 2021-04-26 2021-08-24 华中科技大学 一种微纳多孔功能器件、其增材制造方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHONG YANG ET AL.: ""3D printing of Zr-based bulk metallic glasses with complex geometries and enhanced catalytic properties"", 《INTERMETALLICS》 *
ZHUANGDIAN LIANG ET AL.: ""Highly controlled structured catalysts for on-board methanol reforming"", 《JOURNAL OF ENERGY CHEMISTRY》 *
中国机械工程学会编著: "《3D打印 打印未来》", 30 June 2013, 《中国科学技术出版社》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114799206A (zh) * 2022-03-28 2022-07-29 北京科技大学 用于催化电极多级结构高熵合金材料的制备方法及应用
CN114799206B (zh) * 2022-03-28 2023-08-08 北京科技大学 用于催化电极多级结构高熵合金材料的制备方法及应用
CN115041157A (zh) * 2022-06-10 2022-09-13 佛山科学技术学院 一种制氢催化剂载体及其制备方法
CN115041157B (zh) * 2022-06-10 2023-08-08 佛山科学技术学院 一种制氢催化剂载体及其制备方法
CN115957751A (zh) * 2022-09-08 2023-04-14 厦门大学 一种基于激光烧结制备多孔反应载体板的方法及其应用

Similar Documents

Publication Publication Date Title
CN114192148A (zh) 基于3d打印脱合金工艺的制氢催化剂、制备方法及应用
Yao et al. Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane
Singh et al. Synergistic catalysis over bimetallic alloy nanoparticles
Cui et al. Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH 4 and NH 3 BH 3
Uzundurukan et al. Carbon nanotube-graphene hybrid supported platinum as an effective catalyst for hydrogen generation from hydrolysis of ammonia borane
Erat et al. Co/CuO–NiO–Al2O3 catalyst for hydrogen generation from hydrolysis of NaBH4
Kang et al. Facial fabrication of yolk-shell Pd-Ni-P alloy with mesoporous structure as an advanced catalyst for methanol electro-oxidation
CN108479820B (zh) 一种硼氢化钠醇解制氢用块状载体纳米型合金催化剂及其制备方法
CN101172575A (zh) 氨分解制氢的整体式微型反应器
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane
CN102299346A (zh) 一种电催化剂在质子交换膜燃料电池阳极中的应用
CN111883785B (zh) 一种Co-N共掺杂鼓状多孔碳催化剂及其制备方法与应用
WO2014124452A1 (en) Catalysts with active support
EP2714952A2 (en) Nickel alloys for hydrogen storage and the generation of energy therefrom
Xiaopeng et al. CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage
Wei et al. Pt-based catalyst decorated by bimetallic FeNi2P with outstanding CO tolerance and catalytic activity for methanol electrooxidation
Zhou et al. Pt-CeO2/TiN NTs derived from metal organic frameworks as high-performance electrocatalyst for methanol electrooxidation
Li et al. Assembly of trimetallic palladium-silver-copper nanosheets for efficient C2 alcohol electrooxidation
CN114744224B (zh) 一种氮掺杂碳纳米管负载镍钴复合纳米线的制备与应用
Wang et al. Electronic transfer enhanced coral-like CoxP loaded Ru nanoclusters as efficient catalyst for hydrogen generation via NaBH4 hydrolysis
CN113634256B (zh) 一种多维度微纳非贵金属复合催化剂及其制备和应用
CN114164455A (zh) 一种通过电化学刻蚀提高贵金属基材料电催化性能的方法
CN117443428A (zh) 一种复合催化剂及其制备方法与应用
US11631876B2 (en) Co-electroless deposition methods for formation of methanol fuel cell catalysts
CN102125836A (zh) 一种用于硼氢化物水解制氢的整体催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination