CN114182249B - 一种冷喷涂双层涂层增加耐腐蚀性能的方法 - Google Patents

一种冷喷涂双层涂层增加耐腐蚀性能的方法 Download PDF

Info

Publication number
CN114182249B
CN114182249B CN202111454299.4A CN202111454299A CN114182249B CN 114182249 B CN114182249 B CN 114182249B CN 202111454299 A CN202111454299 A CN 202111454299A CN 114182249 B CN114182249 B CN 114182249B
Authority
CN
China
Prior art keywords
coating
powder
corrosion resistance
layer
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111454299.4A
Other languages
English (en)
Other versions
CN114182249A (zh
Inventor
涂浩
苏冠玉
陈军修
吴长军
王建华
苏旭平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202111454299.4A priority Critical patent/CN114182249B/zh
Publication of CN114182249A publication Critical patent/CN114182249A/zh
Application granted granted Critical
Publication of CN114182249B publication Critical patent/CN114182249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0042Matrix based on low melting metals, Pb, Sn, In, Zn, Cd or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/165Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon of zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明属于冷喷涂涂层制备技术领域,涉及冷喷涂双层涂层增加耐腐蚀性能的方法,包括采用冷喷涂的工艺方法逐层将干燥的Zn和Al2O3的混合粉末,Al和Al2O3的混合粉末喷涂到金属基体表面,然后退火热处理,使得金属基体表面自内向外依次形成Zn‑Al2O3涂层、Zn‑Al合金层涂层和Al‑Al2O3涂层。Al‑Al2O3涂层耐摩擦磨损性能较为良好且可以钝化生成Al2O3膜;Zn‑Al合金层涂层兼顾Al涂层的稳定性和Zn涂层的牺牲阳极属性;Zn‑Al2O3涂层具有牺牲阳极的属性,作为最后的基体抗腐蚀手段。本发明方法获得的涂层能够更好地防止基体被腐蚀,提高金属基体件的使用寿命。

Description

一种冷喷涂双层涂层增加耐腐蚀性能的方法
技术领域
本发明涉及冷喷涂涂层制备技术领域,具体涉及一种冷喷涂双层涂层增加耐腐蚀性能的方法。
背景技术
钢铁材料仍然是现阶段最常用的结构材料,而腐蚀是造成钢铁材料失效的主要原因之一。对于长期处于海洋大气环境这种恶劣环境中的海洋设备的结构材料来说,腐蚀防护的重要性尤为重要。提高钢铁材料的耐腐蚀性能够大幅度延长材料的使用寿命,从而减少资源的浪费和污染的发生,表面改性和涂层是钢铁材料进行腐蚀防护最常用也是最有效的方法。
海洋设备的表面处理方式有热浸镀、有机涂层、热喷涂等。传统的热喷涂过程中会出现粉末熔融的情况,合金涂层易产生氧化相变,涂层的孔隙率大,热应力大等问题。冷喷涂是利用高压气体携带粉末颗粒从轴向进入喷枪产生超音速气流,粉末颗粒经气流加速后在完全固态下撞击到基体表面,产生较大的塑性变形而沉积于基体表面形成涂层的一种新型喷涂技术。冷喷涂过程中的温度较低,具有低温下固态沉积的特点,从而相对比热喷涂来说,具有对基体的热影响小,喷涂过程中无氧化、晶粒生长、相变发生,残余拉应力低等特点。研究表明,在合金涂层中加入适量陶瓷相颗粒后不仅提高了耐腐蚀性,而且使涂层具有了较高的硬度和耐磨性能。锌涂层对钢铁基体具有有效的阳极保护机制,铝涂层具有极强的稳定性,随着腐蚀的进行会被氧化生成Al2O3保护膜而增强耐腐蚀性能。但现有方法获得的涂层仍不太理想,耐腐蚀性能较差及使用寿命较短的问题。
发明内容
本发明提供了一种冷喷涂双层涂层增加耐腐蚀性能的方法(本申请方案可以用于但不限于钢铁基体的腐蚀防护),解决了现有金属基体表面防腐蚀处理效果不理想,耐腐蚀性能较差及使用寿命较短的问题。该涂层为双层结构,具有较好的耐腐蚀性能及使用寿命。
为了实现本发明目的,所采用的技术方案为:
一种冷喷涂双层涂层增加耐腐蚀性能的方法,采用冷喷涂的工艺方法逐层将干燥的Zn和Al2O3的混合粉末,Al和Al2O3的混合粉末喷涂到金属基体表面,然后进行退火热处理,使得基体表面自内向外依次形成Zn-Al2O3涂层、Zn-Al合金层涂层和Al-Al2O3涂层。
进一步的,Zn和Al2O3的混合粉末中Al2O3的质量含量为8~10%,余量为Zn粉;Al和Al2O3的混合粉末中Al2O3的质量含量为8~10%,余量为Al粉。
进一步的,Zn和Al2O3的混合粉末中Zn和Al2O3的质量比为9:1;Al和Al2O3的混合粉末中Al和Al2O3的质量为9:1。
进一步的,所述金属基体为不锈钢、镁合金、铝合金基体中的任意一种。
进一步的,退火温度为200℃≤T<350℃,退火时间至少为1小时,退火温度为350℃及以上时,会因退火温度过高涂层热应力大于结合力,而出现涂层整体脱落的现象。
进一步的,还包括将金属基体进行喷涂前的预处理步骤:将金属基体进行简单的超声处理后,进行喷砂处理。
进一步的,冷喷涂的工艺参数为:送粉气体及工作气体均为压缩空气,气体压力为0.8~1.2MPa,气体加热温度为400℃~600℃,送粉量为40~60g/min。冷喷涂进行时喷枪距离基体表面的距离为12~15mm,喷枪与基体的相对移动速度为10~12mm/s。
进一步的,混合粉末的制备方法为:分别将Zn粉和Al2O3粉、Al粉和Al2O3粉混合均匀后,在真空干燥箱内进行干燥处理,真空度抽至10-1~10-2Pa,干燥(干燥温度进一步优选为50℃),干燥时间为10~12小时。
进一步的,上述所述Zn粉、Al粉、Al2O3粉的粒径均在20~30μm,形状可以为球形或不规则形状。
进一步的,冷喷涂后形成的上层为Al-Al2O3涂层,涂层厚度为200μm~500μm,底层为Zn-Al2O3涂层,涂层厚度为200μm~400μm。
与现有技术相比,本发明的优点及有益效果如下:
1.本发明设计的涂层为多层涂层结构,经退火处理后,上层涂层为较为稳定的Al-Al2O3涂层,中间生成Zn-Al合金层涂层(进过扫描电镜观察组织,合金涂层的组织均为Al80Zn20),底层为具有牺牲阳极属性的Zn-Al2O3涂层,可以有效地提高涂层的耐腐蚀性性能和服役寿命。
2.本发明采用冷喷的工艺方法制备目标涂层,工艺简单。在粉末中加入Al2O3陶瓷相粉末,可以降低涂层孔隙率,使组织致密度增加。
3.涂层在所选退火温度下进行热处理可以生成中间涂层,增强涂层性能,但并未对机体本身性能产生影响。
附图说明
图1为涂层截面的面扫描图。
图2为未进行热处理前的涂层横截面形貌图。
图3为进行热处理后的涂层横截面形貌图。
图4为热处理后涂层截面线扫描图。
图5为热处理前后的极化曲线对比图。
图6为热处理前后涂层的开路电位曲线图。
具体实施方式
本发明不局限于下列具体实施方式,本领域一般技术人员根据本发明公开的内容,可以采用其他多种具体实施方式实施本发明的,或者凡是采用本发明的设计结构和思路,做简单变化或更改的,都落入本发明的保护范围。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本发明下面结合实施例作进一步详述:
在具体实施方式中,本发明选用的原始粉末材料为:粉末粒径为20~30μm的Zn、Al金属粉末,纯度为99.9%,粉末颗粒的形状为球形或不规则形状;粉末粒径为20~30μm的Al2O3粉末,纯度为99.9%,粉末颗粒的形状为球形或不规则形状。
将上述粉末分别按照质量比Zn:Al2O3=9:1,Al:Al2O3=9:1的比例混合均匀,混合方式为机械混合,混合时间为60分钟。降混合均匀的粉末放置于真空干燥箱中进行干燥,真空度抽至10-1~10-2Pa,干燥箱温度设置为50℃,干燥时间为10~12小时。
在进行冷喷涂之前对Q345钢基体进行预处理。先将基体置于超声清洗容器内进行简单的清洗,除去表面附着的油污。然后将基体吹干进行喷砂处理,目的是除去基体表面残留的油污和超声清洗无法去除的氧化皮,另外增强基体表面的粗糙度,以提高涂层和基体间的结合力。
将干燥好的粉末置于冷喷涂***的送粉桶中,设置送粉量为40~60g/min。冷喷涂用气体采用压缩空气,气体压力为0.8~1.2MPa,气体加热温度为400℃~600℃。冷喷涂距离基体表面的距离设置为12~15mm,喷枪与基体的相对移动速度为10~12mm/s。采用上述粉末及工艺参数所知去的涂层为双层涂层,底层为Zn-Al2O3涂层,上层为Al-Al2O3涂层。涂层总厚度为400μm~1mm。
将制备好的样品封装真空放入管式炉中进行扩散退火热处理,具体退火参数见表1。热处理完成后,将试样取出空冷至室温,获得含有中间合金层的目标涂层。具体实施例如下:
实施例1
混合粉末按照重量百分比的配比分别为,Zn-Al2O3粉末:Zn粉90%、Al2O3粉10%;Al-Al2O3粉末:Al粉90%、Al2O3粉10%。选择压缩空气为工作气体,气体压力为0.99MPa,送粉量为50g/min,Zn-Al2O3粉末喷涂温度为400℃,Al-Al2O3粉末喷涂温度为600℃,喷涂距离为12mm,喷枪与基体的相对移动速度为10mm/s。采用冷喷涂工艺在Q345钢基体表面制备底层为Zn-Al2O3,上层为Al-Al2O3的双层复合涂层。随后将试样封装真空在250℃下进行扩散退火热处理1小时,随后取出空冷至室温。如图3(a)所示,热处理后的涂层的孔隙率较低结合力良好。在Zn涂层和Al涂层中间有合金组织层形成,中间合金成分为Al80Zn20,由原来的双层结构转变为三层结构的涂层。如图5所示分别为基体、退火前、退火后的涂层Tafel曲线图,基体的自腐蚀电流对比涂层的要大得多,退火后的自腐蚀电流对比退火前也要有明显减小。双层涂层经过热处理后耐腐蚀性提高,可以大大减缓Q345钢的腐蚀速率,表明该涂层具有较好的耐腐蚀性能。本实施例制备的涂层在3.5wt%的NaCl溶液浸泡48小时后进行电化学测试,开路电位为-0.9946V,自腐蚀电流密度为6.4643×10-6A/cm2
实施例2
混合粉末按照重量百分比的配比分别为,Zn-Al2O3粉末:Zn粉90%、Al2O3粉10%;Al-Al2O3粉末:Al粉90%、Al2O3粉10%。选择压缩空气为工作气体,气体压力为0.99MPa,送粉量为50g/min,Zn-Al2O3粉末喷涂温度为400℃,Al-Al2O3粉末喷涂温度为600℃,喷涂距离为12mm,喷枪与基体的相对移动速度为10mm/s。采用冷喷涂工艺在Q345钢基体表面制备底层为Zn-Al2O3,上层为Al-Al2O3的双层复合涂层。随后将试样封装真空在250℃下进行扩散退火热处理2小时,随后取出空冷至室温。实验结果表明,该涂层具有较好的耐腐蚀性性能。涂层在3.5wt%的NaCl溶液浸泡48小时后进行电化学测试,开路电位为-0.9866V,自腐蚀电流密度为5.7631×10-6A/cm2
实施例3
混合粉末按照重量百分比的配比分别为,Zn-Al2O3粉末:Zn粉90%、Al2O3粉10%;Al-Al2O3粉末:Al粉90%、Al2O3粉10%。选择压缩空气为工作气体,气体压力为0.99MPa,送粉量为50g/min,Zn-Al2O3粉末喷涂温度为400℃,Al-Al2O3粉末喷涂温度为600℃,喷涂距离为12mm,喷枪与基体的相对移动速度为10mm/s。采用冷喷涂工艺在Q345钢基体表面制备底层为Zn-Al2O3,上层为Al-Al2O3的双层复合涂层。随后将试样封装真空在250℃下进行扩散退火热处理4小时,随后取出空冷至室温。实验结果表明,该涂层具有较好的耐腐蚀性性能。涂层在3.5wt%的NaCl溶液浸泡48小时后进行电化学测试,开路电位为-1.0401V,自腐蚀电流密度为5.2673×10-6A/cm2
实施例4
混合粉末按照重量百分比的配比分别为,Zn-Al2O3粉末:Zn粉90%、Al2O3粉10%;Al-Al2O3粉末:Al粉90%、Al2O3粉10%。选择压缩空气为工作气体,气体压力为0.99MPa,送粉量为60g/min,Zn-Al2O3粉末喷涂温度为400℃,Al-Al2O3粉末喷涂温度为600℃,喷涂距离为12mm,喷枪与基体的相对移动速度为12mm/s。采用冷喷涂工艺在Q345钢基体表面制备底层为Zn-Al2O3,上层为Al-Al2O3的双层复合涂层。随后将试样封装真空在250℃下进行扩散退火热处理4小时,随后取出空冷至室温。实验结果表明,该涂层具有较好的耐腐蚀性性能。涂层在3.5wt%的NaCl溶液浸泡48小时后进行电化学测试,开路电位为-0.9926V,自腐蚀电流密度为5.0264×10-6A/cm2
实施例5
混合粉末按照重量百分比的配比分别为,Zn-Al2O3粉末:Zn粉90%、Al2O3粉10%;Al-Al2O3粉末:Al粉90%、Al2O3粉10%。选择压缩空气为工作气体,气体压力为0.99MPa,送粉量为60g/min,Zn-Al2O3粉末喷涂温度为400℃,Al-Al2O3粉末喷涂温度为600℃,喷涂距离为12mm,喷枪与基体的相对移动速度为12mm/s。采用冷喷涂工艺在Q345钢基体表面制备底层为Zn-Al2O3,上层为Al-Al2O3的双层复合涂层。随后将试样封装真空在300℃下进行扩散退火热处理4小时,随后取出空冷至室温。实验结果表明,该涂层具有较好的耐腐蚀性性能。涂层在3.5wt%的NaCl溶液浸泡48小时后进行电化学测试,开路电位为-0.9753V,自腐蚀电流密度为4.1682×10-6A/cm2
实施例6
混合粉末按照重量百分比的配比分别为,Zn-Al2O3粉末:Zn粉90%、Al2O3粉10%;Al-Al2O3粉末:Al粉90%、Al2O3粉10%。选择压缩空气为工作气体,气体压力为0.99MPa,送粉量为60g/min,Zn-Al2O3粉末喷涂温度为400℃,Al-Al2O3粉末喷涂温度为600℃,喷涂距离为12mm,喷枪与基体的相对移动速度为12mm/s。采用冷喷涂工艺在Q345钢基体表面制备底层为Zn-Al2O3,上层为Al-Al2O3的双层复合涂层。随后将试样封装真空在200℃下进行扩散退火热处理4小时,随后取出空冷至室温。实验结果表明,该涂层具有较好的耐腐蚀性性能。涂层在3.5wt%的NaCl溶液浸泡48小时后进行电化学测试,开路电位为-0.9653V,自腐蚀电流密度为5.3785×10-6A/cm2
表1退火工艺参数
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种冷喷涂双层涂层增加耐腐蚀性能的方法,其特征在于:包括采用冷喷涂的工艺方法逐层将干燥的Zn和Al2O3的混合粉末,Al和Al2O3的混合粉末喷涂到金属基体表面,然后进行退火热处理,使得金属基体表面自内向外依次形成Zn-Al2O3涂层、Zn-Al合金层涂层和Al-Al2O3涂层;
Zn和Al2O3的混合粉末中Al2O3的质量含量为8~10%,余量为Zn粉;Al和Al2O3的混合粉末中Al2O3的质量含量为8~10%,余量为Al粉;
退火温度为200℃≤T<350℃,退火时间至少为1小时;
冷喷涂后形成的上层Al-Al2O3涂层厚度为200μm~500μm,底层为Zn-Al2O3涂层厚度为200μm~400μm。
2.根据权利要求1所述的冷喷涂双层涂层增加耐腐蚀性能的方法,其特征在于:Zn和Al2O3的混合粉末中Zn和Al2O3的质量比为9:1;Al和Al2O3的混合粉末中Al和Al2O3的质量为9:1。
3.根据权利要求1所述的冷喷涂双层涂层增加耐腐蚀性能的方法,其特征在于:所述金属基体为不锈钢、镁合金、铝合金基体中的任意一种。
4.根据权利要求1所述的冷喷涂双层涂层增加耐腐蚀性能的方法,其特征在于:还包括将金属基体进行喷涂前的预处理步骤:将金属基体进行简单的超声处理后,进行喷砂处理。
5.根据权利要求1所述的冷喷涂双层涂层增加耐腐蚀性能的方法,其特征在于:冷喷涂的工艺参数为:送粉气体及工作气体均为压缩空气,气体压力为0.8~1.2MPa,气体加热温度为400℃~600℃,送粉量为40~60g/min,冷喷涂进行时喷枪距离基体表面的距离为12~15mm,喷枪与基体的相对移动速度为10~12mm/s。
6.根据权利要求1所述的冷喷涂双层涂层增加耐腐蚀性能的方法,其特征在于:混合粉末的制备方法为:分别将Zn粉和Al2O3粉、Al粉和Al2O3粉混合均匀后,在真空干燥箱内进行干燥处理,真空度抽至10-1~10-2 Pa,干燥,干燥时间为10~12小时。
7.根据权利要求1所述的冷喷涂双层涂层增加耐腐蚀性能的方法,其特征在于:所述Zn粉、Al粉、Al2O3粉的粒径均在20~30μm,形状为球形或不规则形状。
CN202111454299.4A 2021-12-01 2021-12-01 一种冷喷涂双层涂层增加耐腐蚀性能的方法 Active CN114182249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111454299.4A CN114182249B (zh) 2021-12-01 2021-12-01 一种冷喷涂双层涂层增加耐腐蚀性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111454299.4A CN114182249B (zh) 2021-12-01 2021-12-01 一种冷喷涂双层涂层增加耐腐蚀性能的方法

Publications (2)

Publication Number Publication Date
CN114182249A CN114182249A (zh) 2022-03-15
CN114182249B true CN114182249B (zh) 2023-11-17

Family

ID=80541913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111454299.4A Active CN114182249B (zh) 2021-12-01 2021-12-01 一种冷喷涂双层涂层增加耐腐蚀性能的方法

Country Status (1)

Country Link
CN (1) CN114182249B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055677B (zh) * 2022-08-17 2022-11-01 潍坊谷合传动技术有限公司 一种冷喷涂制备锌铝耐腐蚀涂层的方法
CN115537799A (zh) * 2022-11-07 2022-12-30 常州大学 一种提高冷喷涂层耐腐蚀性的方法
CN115747573B (zh) * 2022-12-08 2024-02-13 季华实验室 一种冷喷涂锌合金粉、涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732876A (zh) * 2012-06-18 2012-10-17 中国船舶重工集团公司第七二五研究所 一种铝基复合结构耐蚀防滑涂层及其制备方法
CN104928608A (zh) * 2014-03-21 2015-09-23 北京碧海舟腐蚀防护工业股份有限公司 防止金属基体发生腐蚀的涂层、制备方法及防腐蚀构件
RU2621088C1 (ru) * 2016-03-30 2017-05-31 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ получения покрытия на стальной пластине
WO2019008503A1 (en) * 2017-07-04 2019-01-10 Arcelormittal METALLIC SUBSTRATE WITH COLD SPRAY COATING

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2560030C (en) * 2005-11-24 2013-11-12 Sulzer Metco Ag A thermal spraying material, a thermally sprayed coating, a thermal spraying method an also a thermally coated workpiece
US20200299843A1 (en) * 2017-09-29 2020-09-24 University Of The Witwatersrand, Johannesburg Method of applying an antimicrobial surface coating to a substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732876A (zh) * 2012-06-18 2012-10-17 中国船舶重工集团公司第七二五研究所 一种铝基复合结构耐蚀防滑涂层及其制备方法
CN104928608A (zh) * 2014-03-21 2015-09-23 北京碧海舟腐蚀防护工业股份有限公司 防止金属基体发生腐蚀的涂层、制备方法及防腐蚀构件
RU2621088C1 (ru) * 2016-03-30 2017-05-31 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Способ получения покрытия на стальной пластине
WO2019008503A1 (en) * 2017-07-04 2019-01-10 Arcelormittal METALLIC SUBSTRATE WITH COLD SPRAY COATING

Also Published As

Publication number Publication date
CN114182249A (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN114182249B (zh) 一种冷喷涂双层涂层增加耐腐蚀性能的方法
CN108504976B (zh) 一种金属-石墨烯复合涂层的制备方法
Pardo et al. Corrosion protection of Mg/Al alloys by thermal sprayed aluminium coatings
Kuroda et al. Warm spraying—a novel coating process based on high-velocity impact of solid particles
CN107761035B (zh) 一种耐腐蚀的完全致密热喷涂金属合金涂层及其制备方法
Parco et al. Investigation of HVOF spraying on magnesium alloys
CN113088956B (zh) 一种基于冷喷涂的耐腐蚀复合涂层及其制备方法和应用
Bik et al. Studies on the oxidation resistance of SiOC glasses coated TiAl alloy
Rezagholizadeh et al. Electroless Ni-P/Ni-BB 4 C duplex composite coatings for improving the corrosion and tribological behavior of Ck45 steel
CN108559987A (zh) 一种镁合金表面防腐耐磨低密度复合结构涂层及其制备方法
CN105039964A (zh) 镁合金表面抗腐蚀、耐磨损复合涂层及其制备方法
US4036602A (en) Diffusion coating of magnesium in metal substrates
Zhang et al. A comparative study of DS NiCrAlY coating and LPPS NiCrAlY coating
Verdian Fabrication of FeAl (Cu) intermetallic coatings by plasma spraying of vacuum annealed powders
Jegadeeswaran et al. Oxidation resistance HVOF sprayed coating 25%(Cr3C2-25 (Ni20Cr))+ 75% NiCrAlY on titanium alloy
Yang et al. Thermal shock behavior of YSZ thermal barrier coatings with a Ni-P/Al/Ni-P sandwich interlayer on AZ91D magnesium alloy substrate at 400° C
Khan et al. Evaluation of die-soldering and erosion resistance of high velocity oxy-fuel sprayed MoB-based cermet coatings
Dong et al. Degradation behaviour of ZrO2–Ni/Al gradient coatings in molten Zn
CN104264150B (zh) 一种耐磨性和疲劳性能较好的TiN涂层模具
CN104264151B (zh) 一种反应等离子熔覆原位合成TiN涂层的制备方法
WO2014155931A1 (ja) サーメット溶射粉末、溶融金属めっき浴用ロール及び溶融金属めっき浴中部品
CN114632949B (zh) 一种增材制造金属零件表面防腐防污复合处理方法
Khan et al. Development of cermet coatings by kinetic spray technology for the application of die-soldering and erosion resistance
Yan et al. Effects of Micro-arc Oxidation Process Parameters on Micro-structure and Properties of Al2O3 Coatings Prepared on Sintered 2024 Aluminum Alloy
CN104372335B (zh) 一种反应等离子熔覆原位合成TiN涂层

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant