CN114163253A - 一种高强度发泡陶瓷及其制备方法 - Google Patents

一种高强度发泡陶瓷及其制备方法 Download PDF

Info

Publication number
CN114163253A
CN114163253A CN202110221713.0A CN202110221713A CN114163253A CN 114163253 A CN114163253 A CN 114163253A CN 202110221713 A CN202110221713 A CN 202110221713A CN 114163253 A CN114163253 A CN 114163253A
Authority
CN
China
Prior art keywords
foamed ceramic
strength
agent
preparation
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110221713.0A
Other languages
English (en)
Other versions
CN114163253B (zh
Inventor
周明凯
陈潇
王怀德
林方亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202110221713.0A priority Critical patent/CN114163253B/zh
Publication of CN114163253A publication Critical patent/CN114163253A/zh
Application granted granted Critical
Publication of CN114163253B publication Critical patent/CN114163253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高强度发泡陶瓷及其制备方法,所述制备方法包括以下步骤:(1)将发泡陶瓷原料和助剂制备成料浆,再经干燥制成粉料;所述助剂中,以碳化硅为发泡剂,以三氧化二铬和/或含三氧化二铬的物质为晶核剂,以无机短切纤维为增强剂;(2)将粉料置于模具中,烧成;(3)烧成后经冷却、拆模,得到高强度发泡陶瓷。本发明采用Cr2O3作为晶核剂,并在冷却至析晶温度点处保温,促进了基体内玻璃相的形成高强度的莫来石和石英晶体,既提升了基体的强度,又不影响高温下熔体内气孔的形成与生长,制得的发泡陶瓷具有良好的孔结构和优异的力学性能。

Description

一种高强度发泡陶瓷及其制备方法
技术领域
本发明涉及一种高强度发泡陶瓷及其制备方法,属于陶瓷材料技术领域。
背景技术
发泡陶瓷是一种由连续固相骨架和封闭气孔组成的两相闭孔陶瓷材料,具有轻质高强、保温隔音、防水阻燃、耐腐蚀、抗老化等优异特性,是一种与建筑同寿命的高性能无机保温墙体材料。良好的保温性能和力学性能是发泡陶瓷用作墙体材料的重要支撑,通过降低材料的体积密度可有效提升发泡陶瓷的保温性能,但却严重降低了发泡陶瓷的强度。因此,发泡陶瓷的力学性能与保温性能相互制约。受制于建筑物结构强度的要求,目前仅能选择体积密度约400kg/m3的发泡陶瓷作为内隔墙墙体材料,因而材料的导热系数通常大于0.12W/(m·k),制约了发泡陶瓷的保温性能。如何提升发泡陶瓷的强度,成为提升发泡陶瓷综合性能、拓宽应用范围的关键。
通常,发泡陶瓷是通过将铝硅质原料与高温发泡剂(如SiC)混合制成粉末,在高温下形成半熔融状态的悬浮熔体,同时,发泡剂分解产生的气体被熔体包裹,形成封闭气孔,在降温阶段凝固形成闭孔泡沫结构。因此,发泡陶瓷是由固相陶瓷基体和气相泡孔构成,孔结构和基体强度决定了发泡陶瓷的力学性能。提高发泡陶瓷强度的途径主要包括:(1)改善孔结构,减小平均孔径并提升孔径分布均匀性;(2)提升发泡陶瓷固相基体(孔壁)的强度。
发明专利CN110511038A《一种高抗压强度发泡陶瓷的制备方法》公开了一种通过分层布置不同粒度的粉料,调控发泡陶瓷的气孔结构,从而提升抗压强度的方法。然而,通过孔结构的优化对发泡陶瓷强度提升效果有限,提升固相基体的强度,是高强度发泡陶瓷开发的重要途径。
发泡陶瓷的固相基体是由大量脆性玻璃体包裹部分高强度晶体构成的,若能提高基体内的晶相含量,将显著提升发泡陶瓷的强度。然而,高温下形成充足的高温液相形成,是发泡陶瓷气孔形成的基本条件,这不可避免地导致发泡陶瓷基体具有大量的玻璃相。
此外,复合纤维是陶瓷基材料增强增韧的重要方法,但如何均匀、无损伤的将纤维分散在陶瓷粉料中,是纤维增韧发泡陶瓷的难题。发明专利CN07954695A《一种无机纤维增强增韧抛光渣基发泡陶瓷板及其方法》公开了一种利用无机纤维增强增韧发泡陶瓷的方法,但该方法仍沿用发泡陶瓷传统的湿法球磨方式混合原料,这导致纤维易在球磨过程中遭到破坏,限制了纤维的增韧效果。
发明内容
本发明的目的在于,提供一种高强度发泡陶瓷及其制备方法,以解决现有发泡陶瓷难以平衡的力学性能和保温性能,实现高强度、低导热的发泡陶瓷,以用于轻质墙体材料的制备。
为实现上述目的,本发明提供一种高强度发泡陶瓷的制备方法,包括以下步骤:
(1)将发泡陶瓷原料和助剂制备成料浆,再经干燥制成粉料;所述助剂中,以碳化硅为发泡剂,以三氧化二铬和/或含三氧化二铬的物质为晶核剂;
(2)将粉料置于模具中,烧成;
(3)烧成后经冷却、拆模,得到高强度发泡陶瓷。
优选地,步骤(1)的助剂中,三氧化二铬(含三氧化二铬的物质按含量折算成三氧化二铬)占发泡陶瓷原料质量的0.5-3%。
优选地,步骤(1)的助剂中,以无机短切纤维为增强剂;无机短切纤维占发泡陶瓷原料质量的0.5-5%。
优选地,步骤(1)中,将发泡陶瓷原料与助剂经湿法搅拌制成料浆。
优选地,步骤(1)中,三氧化二铬一般选用分析纯试剂;含三氧化二铬的物质为铬矿渣;所述铬矿渣为铬铁矿冶炼过程中排放出的废渣。
优选地,步骤(1)中,发泡剂占发泡陶瓷原料质量的0.1-0.6%;和/或,所述无机短切纤维为莫来石纤维、氧化铝纤维、玄武岩纤维、碳纤维中的一种或几种混合;所述无机短切纤维的长度为50-500μm,直径为0.2-10μm。
优选地,步骤(1)中,按质量百分数,所述发泡陶瓷原料中的化学成分为:SiO2:55-70%、Al2O3:20-35%、CaO:0-5%、MgO:0-10%、Na2O+K2O:4-12%、Fe2O3:0-8%。
优选地,步骤(2)中,烧成的温度为1160-1240℃。
优选地,步骤(3)的冷却过程中,先以5-15℃/min的速率由烧成温度冷却至析晶温度,并在析晶温度保温1-5h;再以1-8℃/min的速率由析晶温度冷却至室温。
优选地,所述析晶温度为850-950℃。
优选地,在析晶温度时保温3-4h。
作为同一个发明构思,本发明还提供一种高强度发泡陶瓷,由上述的制备方法获得,所述高强度发泡陶瓷的体积密度为260-450kg/m3、体积吸水率为0.4-0.9%、抗压强度4-10MPa、导热系数0.07-0.11W/(m·K)。其中,体积密度优选为260-350kg/m3
本发明的技术原理是:在发泡陶瓷气孔形成后,熔体冷却时,因内部Cr3+较高的离子电场而形成络合物,形成初期晶核,诱导固相孔壁内的玻璃相转变为晶相。由于晶体相比于玻璃体具有高强的断裂韧性,可显著提升发泡陶瓷的力学性能。
与现有技术相比,本发明的有益效果是:
(1)本发明采用Cr2O3和/或铬矿渣(有效成分为Cr2O3)作为晶核剂,并在冷却至析晶温度点处保温,促进了基体内玻璃相的形成高强度的莫来石和石英晶体,既提升了基体的强度,又不影响高温下熔体内气孔的形成与生长,制得的发泡陶瓷具有良好的孔结构和优异的力学性能。
(2)本发明采用具有高熔点且耐侵蚀的短纤维作为增强剂,既发挥了纤维的复合增强作用,又不影响气孔在熔体内的均匀形成与生长,实现了高强度发泡陶瓷的制备。
(3)本发明提出使用泥浆高速搅拌法将纤维分散在原料中,既实现了纤维的均匀分散,又不造成纤维在分散过程中的损伤,制得的发泡陶瓷具有轻质高强的特性。
附图说明
图1为实施例1经析晶强化的发泡陶瓷孔壁微观形貌;
图2为图1中虚线焦点处的放大示意图;
图3为实施例1短切纤维复合的发泡陶瓷孔壁微观形貌。
具体实施方式
以下结合附图及具体实施例对本发明做进一步详细说明。
实施例1
本实施例提供一种高强度发泡陶瓷的制备方法,步骤如下:
a、选用3.5kg粉煤灰、6.0kg钾长石、0.5kg纯碱作原材料,添加25g的SiC微粉作为发泡剂,经干法球磨混合6h后,制成粒径<75μm的发泡陶瓷坯料;
b、向坯料中添加200gCr2O3作为晶核剂,300g多晶莫来石纤维作为增强剂,并按照水灰比1:1加入自来水,在行星式桨叶搅拌机内高速搅拌15min,制成均匀的料浆;
c、将料浆在喷雾干燥器内干燥制成粉料,并堆填在铺有耐火纤维纸的耐火模具中,铺堆厚度6±1mm。在隧道窑内以5℃/min的升温速率升温至1200℃,保温80min。
d、在窑内以15℃/min的速率冷却至870℃,保温4h,再以2℃/min冷却至室温,取出拆模并切割成规定尺寸的产品。
取步骤d得到的样品进行电镜分析,得到如图1和图2的析晶强化的发泡陶瓷孔壁微观形貌;可见:制得的发泡陶瓷具有均匀微孔结构,气孔圆形度较高,孔径尺寸均匀,且孔径不足1mm,且孔壁完整度较高。这一孔结构是高强度发泡陶瓷的结构基础,也表明上述增强方法并未影响发泡陶瓷的孔结构。同时孔壁表面出现大量晶粒,表明三氧化二铬有效促进晶粒的析出,对基体强度的提升具有重要作用。
取步骤d得到的样品进行电镜分析,得到如图3的短切纤维复合的发泡陶瓷孔壁微观形貌;可见,大量的短切纤维穿插在玻璃相基体中,纤维完整且分散均匀,对提升材料的断裂韧性具有重要作用。
按照《无机硬质绝热制品试验方法》(GB/T 5486-2008)所述方法测试制得高强度发泡陶瓷墙体材料的性能,如下表1所示:
表1发泡陶瓷墙体材料性能
Figure BDA0002955168350000041
实施例2
本实施例提供一种高强度发泡陶瓷的制备方法,步骤如下:
a、选用6.2kg煤矸石、3.0kg铬矿渣、0.8kg纯碱作原材料,添加28g的SiC微粉作为发泡剂,经干法球磨混合6h后,制成粒径<75μm的发泡陶瓷坯料;
b、向坯料中添加200g氧化铝纤维作为增强剂,并按照水灰比1:1加入自来水,在行星式桨叶搅拌机内高速搅拌10min,制成均匀的料浆;
c、将料浆在喷雾干燥器内干燥制成粉料,并堆填在铺有耐火纤维纸的耐火模具中,铺堆厚度5±1mm。在隧道窑内以5℃/min的升温速率升温至1220℃,保温60min。
d、在窑内以15℃/min的速率冷却至935℃,保温3h,再以2℃/min冷却至室温,取出拆模并切割成规定尺寸的产品。
按照《无机硬质绝热制品试验方法》(GB/T 5486-2008)所述方法测试制得高强度发泡陶瓷墙体材料的性能,如下表2所示:
表2发泡陶瓷墙体材料性能
Figure BDA0002955168350000042
实施例3
本实施例的制备方法同实施例1,区别仅在于:不向坯料中添加300g多晶莫来石纤维作为增强剂。
得到的发泡陶瓷性能如下:
表3发泡陶瓷墙体材料性能
Figure BDA0002955168350000051
实施例4
本实施例的制备方法同实施例1,区别仅在于:步骤c中采用氧化铝陶瓷球磨机进行混合,混合时间为240min,制成均匀的料浆。
得到的发泡陶瓷性能如下:
表4发泡陶瓷墙体材料性能
Figure BDA0002955168350000052
对比例1:
对比例1的制备方法同实施例1,区别仅在于:不向坯料中添加200gCr2O3作为晶核剂。
得到的发泡陶瓷性能如下:
表5发泡陶瓷墙体材料性能
Figure BDA0002955168350000053
对比例2
对比例2的制备方法同实施例1,区别仅在于:向坯料中添加的晶核剂由200gCr2O3变为200g的CaF2
得到的发泡陶瓷性能如下:
表6发泡陶瓷墙体材料性能
Figure BDA0002955168350000061
对比例3
对比例3的制备方法同实施例1,区别仅在于:步骤d中,试样在窑内直接以5℃/min的速率冷却至室温,不进行中途保温。
得到的发泡陶瓷性能如下:
表7发泡陶瓷墙体材料性能
Figure BDA0002955168350000062
对比表1和表2可知,添加三氧化二铬和铬矿渣作为晶核剂,并复合短切纤维作为增强剂,制得密度约300kg/m3的试样均获得了大于6MPa的抗压强度。对比表1与表5可见,不引入晶核剂时,制得密度同为299kg/m3的试样,抗压强度仅为4.1MPa,而对比表1与表6可见,添加同样作为晶核剂的CaF2,不仅不能提升试样的强度,反而使抗压强度降至2.6MPa。此外,对比表1与表7可见,即使引入晶核剂,但不在冷却阶段保温,促进晶相的析出,制得试样的强度也仅为4.6MPa。对比表1与表3、4可见,不引入短切纤维,或者采用球磨混合方式破坏了短切纤维,制得试样的强度仅为4.5~4.9MPa。表明本发明提出的方法相互配合,互为补充,有效提升了发泡陶瓷的强度。

Claims (10)

1.一种高强度发泡陶瓷的制备方法,其特征在于,包括以下步骤:
(1)将发泡陶瓷原料和助剂制备成料浆,再经干燥制成粉料;所述助剂中,以碳化硅为发泡剂,以三氧化二铬和/或含三氧化二铬的物质为晶核剂;
(2)将粉料置于模具中,烧成;
(3)烧成后经冷却、拆模,得到高强度发泡陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)的助剂中,三氧化二铬占发泡陶瓷原料质量的0.5-3%。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)的助剂中,以无机短切纤维为增强剂;无机短切纤维占发泡陶瓷原料质量的0.5-5%。
4.根据权利要求1-3任一项所述的制备方法,其特征在于,步骤(1)中,将发泡陶瓷原料与助剂经湿法搅拌制成料浆。
5.根据权利要求1-3任一项所述的制备方法,其特征在于,步骤(1)中,所述含三氧化二铬的物质为铬矿渣;所述铬矿渣为铬铁矿冶炼过程中排放出的废渣。
6.根据权利要求1-3任一项所述的制备方法,其特征在于,步骤(1)中,发泡剂占发泡陶瓷原料质量的0.1-0.6%;和/或,所述无机短切纤维为莫来石纤维、氧化铝纤维、玄武岩纤维、碳纤维中的一种或几种混合;所述无机短切纤维的长度为50-500μm,直径为0.2-10μm。
7.根据权利要求1-3任一项所述的制备方法,其特征在于,步骤(1)中,按质量百分数,所述发泡陶瓷原料中的化学成分为:
SiO2:55-70%、Al2O3:20-35%、CaO:0-5%、MgO:0-10%、Na2O+K2O:4-12%、Fe2O3:0-8%。
8.根据权利要求1-3任一项所述的制备方法,其特征在于,步骤(2)中,烧成的温度为1160-1240℃。
9.根据权利要求1-3任一项所述的制备方法,其特征在于,步骤(3)的冷却过程中,先以5-15℃/min的速率由烧成温度冷却至析晶温度,并在析晶温度保温1-5h;再以1-8℃/min的速率由析晶温度冷却至室温。
10.一种高强度发泡陶瓷,其特征在于,由权利要求1-9任一项所述的制备方法获得,所述高强度发泡陶瓷的体积密度为260-450kg/m3、体积吸水率为0.4-0.9%、抗压强度4-10MPa、导热系数0.07-0.11W/(m·K)。
CN202110221713.0A 2021-02-27 2021-02-27 一种高强度发泡陶瓷及其制备方法 Active CN114163253B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110221713.0A CN114163253B (zh) 2021-02-27 2021-02-27 一种高强度发泡陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110221713.0A CN114163253B (zh) 2021-02-27 2021-02-27 一种高强度发泡陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114163253A true CN114163253A (zh) 2022-03-11
CN114163253B CN114163253B (zh) 2022-12-02

Family

ID=80476265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110221713.0A Active CN114163253B (zh) 2021-02-27 2021-02-27 一种高强度发泡陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114163253B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811923A (zh) * 2021-01-14 2021-05-18 安徽工业大学 一种利用固体废弃物制备高强度发泡陶瓷的方法
CN117510229A (zh) * 2023-11-09 2024-02-06 宜兴市蜀都文化创意发展有限公司 一种多孔紫砂陶瓷及其制备方法、应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE846525C (de) * 1943-12-07 1952-08-14 Degussa Herstellung poroeser Formkoerper
US4808460A (en) * 1987-06-02 1989-02-28 Corning Glass Works Laminated structures containing an inorganic corrugated or honeycomb member
JPH04201201A (ja) * 1990-11-29 1992-07-22 Jiyanisu Kogyo Kk コーナー用化粧パネルの製造法
EP1093448A1 (en) * 1998-04-06 2001-04-25 Cellaris Ltd. Method of producing ceramic foams
KR20070035711A (ko) * 2005-09-28 2007-04-02 삼성에스디아이 주식회사 연료개질용 촉매 및 이를 포함하는 연료전지 시스템
US20100252450A1 (en) * 2008-04-09 2010-10-07 Riehl Bill L Electrode and sensor having carbon nanostructures
CN101962266A (zh) * 2010-04-20 2011-02-02 无锡南理工科技发展有限公司 一种轻质高强微晶陶瓷保温板及其制备方法
CN104803706A (zh) * 2015-04-07 2015-07-29 梁清霞 一种高强度微晶发泡陶瓷建筑材料的制作方法
WO2016149150A1 (en) * 2015-03-13 2016-09-22 University Of Central Florida Research Foundation, Inc. Uniform dispersing of graphene nanoparticles in a host
CN107399989A (zh) * 2017-08-22 2017-11-28 东北大学 一种增强碳化硅‑氧化铝复合泡沫陶瓷的制备方法
CN108147779A (zh) * 2017-12-01 2018-06-12 中山市武汉理工大学先进工程技术研究院 一种轻质多孔日用陶瓷的制备方法
CN108439809A (zh) * 2018-01-30 2018-08-24 上海荣丰科技发展有限公司 基于冶炼炉渣的发泡微晶材料及其生产工艺
CN111348895A (zh) * 2020-04-07 2020-06-30 江西鼎盛新材料科技有限公司 锂云母尾矿一次烧结陶瓷发泡带微晶装饰一体板
CN111943642A (zh) * 2019-05-15 2020-11-17 广东金意陶陶瓷集团有限公司 一种高强度发泡陶瓷及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE846525C (de) * 1943-12-07 1952-08-14 Degussa Herstellung poroeser Formkoerper
US4808460A (en) * 1987-06-02 1989-02-28 Corning Glass Works Laminated structures containing an inorganic corrugated or honeycomb member
JPH04201201A (ja) * 1990-11-29 1992-07-22 Jiyanisu Kogyo Kk コーナー用化粧パネルの製造法
EP1093448A1 (en) * 1998-04-06 2001-04-25 Cellaris Ltd. Method of producing ceramic foams
KR20070035711A (ko) * 2005-09-28 2007-04-02 삼성에스디아이 주식회사 연료개질용 촉매 및 이를 포함하는 연료전지 시스템
US20100252450A1 (en) * 2008-04-09 2010-10-07 Riehl Bill L Electrode and sensor having carbon nanostructures
CN101962266A (zh) * 2010-04-20 2011-02-02 无锡南理工科技发展有限公司 一种轻质高强微晶陶瓷保温板及其制备方法
WO2016149150A1 (en) * 2015-03-13 2016-09-22 University Of Central Florida Research Foundation, Inc. Uniform dispersing of graphene nanoparticles in a host
CN104803706A (zh) * 2015-04-07 2015-07-29 梁清霞 一种高强度微晶发泡陶瓷建筑材料的制作方法
CN107399989A (zh) * 2017-08-22 2017-11-28 东北大学 一种增强碳化硅‑氧化铝复合泡沫陶瓷的制备方法
CN108147779A (zh) * 2017-12-01 2018-06-12 中山市武汉理工大学先进工程技术研究院 一种轻质多孔日用陶瓷的制备方法
CN108439809A (zh) * 2018-01-30 2018-08-24 上海荣丰科技发展有限公司 基于冶炼炉渣的发泡微晶材料及其生产工艺
CN111943642A (zh) * 2019-05-15 2020-11-17 广东金意陶陶瓷集团有限公司 一种高强度发泡陶瓷及其制备方法
CN111348895A (zh) * 2020-04-07 2020-06-30 江西鼎盛新材料科技有限公司 锂云母尾矿一次烧结陶瓷发泡带微晶装饰一体板

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XUEXIANG GE: "Preparation and characterization of ceramic foams from chromium slag and coal bottom ash", 《CERAMICS INTERNATIONAL》 *
唐磊: "《耐高温隔热材料技术》", 31 July 2013, 国防工业出版社 *
宁青菊等: "纤维增强泡沫陶瓷材料的制备及性能", 《陕西科技大学学报》 *
李晓明: "浅议微晶发泡陶瓷保温材料在建筑节能领域的应用", 《墙材革新与建筑节能》 *
葛雪祥: "炉渣发泡陶瓷的组成设计及孔结构与力学性能研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811923A (zh) * 2021-01-14 2021-05-18 安徽工业大学 一种利用固体废弃物制备高强度发泡陶瓷的方法
CN112811923B (zh) * 2021-01-14 2023-02-28 安徽工业大学 一种利用固体废弃物制备高强度发泡陶瓷的方法
CN117510229A (zh) * 2023-11-09 2024-02-06 宜兴市蜀都文化创意发展有限公司 一种多孔紫砂陶瓷及其制备方法、应用

Also Published As

Publication number Publication date
CN114163253B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
CN112811923B (zh) 一种利用固体废弃物制备高强度发泡陶瓷的方法
EP1288177B1 (en) Porous high alumina cast refractory and method for its production
WO2023159858A1 (zh) 一种轻质多孔吸音陶瓷材料、制备工艺及其应用
Ercenk The effect of clay on foaming and mechanical properties of glass foam insulating material
CN102753496A (zh) 一种用于制备火成岩水晶玻璃材料的组合物、火成岩水晶玻璃材料及其制造方法
CN110963762A (zh) 建筑***护结构的泡沫混凝土及其混凝土砌块的制备方法
CN111943642B (zh) 一种高强度发泡陶瓷及其制备方法
CN114163253B (zh) 一种高强度发泡陶瓷及其制备方法
Li et al. Effect of waste B4C addition on high closed-pore porosity foamed ceramics
CN113816664A (zh) 一种掺合钢渣粉的泡沫混凝土
CN111704440A (zh) 一种轻质多孔骨料及其制备工艺
CN112592156A (zh) 发泡陶瓷及其制备方法和应用
CN113896563B (zh) 一种利用硼泥制备高强度发泡陶瓷材料的方法及发泡陶瓷材料
Zaichuk et al. Aspects of development and properties of densely sintered of ultra-high-frequency radio-transparent ceramics of cordierite composition
Fan et al. Preparation and microstructure evolution of novel ultra-low thermal conductivity calcium silicate-based ceramic foams
CN111499402B (zh) 一种耐高温、强度高、轻质保温材料及其制备方法
CN113307613A (zh) 一种钢包盖浇注料及其制备方法
CN104140233A (zh) 一种工业炉用的1200℃级低铁隔热浇注料及制备方法
Li et al. Effect of alumina bubble modification on properties of mullite castables
CN114573324A (zh) 一种rh真空炉内衬耐火材料及其制备方法
CN114940623B (zh) 一种开孔发泡陶瓷板材及其制备方法
CN117185831B (zh) 一种环保型耐火陶瓷板及其生产工艺
EP4071125A1 (en) Composition of heat-insulating lightweight composite material
Paunescu et al. Conversion into heat of microwave power used in the manufacturing process of glass foam
JP2001302281A (ja) 泡ガラス及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant