CN114163222B - Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof - Google Patents

Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof Download PDF

Info

Publication number
CN114163222B
CN114163222B CN202111456639.7A CN202111456639A CN114163222B CN 114163222 B CN114163222 B CN 114163222B CN 202111456639 A CN202111456639 A CN 202111456639A CN 114163222 B CN114163222 B CN 114163222B
Authority
CN
China
Prior art keywords
silicon carbide
corundum
titanium composite
percent
resistant castable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111456639.7A
Other languages
Chinese (zh)
Other versions
CN114163222A (en
Inventor
康剑
高长贺
马淑龙
马飞
王浩杰
张积礼
张康康
周新功
倪高金
张海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gongyi Tongda Zhongyuan Refractory Technology Co ltd
Beijing Jinyu Tongda Refractory Technology Co ltd
Original Assignee
Gongyi Tongda Zhongyuan Refractory Technology Co ltd
Beijing Jinyu Tongda Refractory Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gongyi Tongda Zhongyuan Refractory Technology Co ltd, Beijing Jinyu Tongda Refractory Technology Co ltd filed Critical Gongyi Tongda Zhongyuan Refractory Technology Co ltd
Priority to CN202111456639.7A priority Critical patent/CN114163222B/en
Publication of CN114163222A publication Critical patent/CN114163222A/en
Application granted granted Critical
Publication of CN114163222B publication Critical patent/CN114163222B/en
Priority to PCT/CN2022/134102 priority patent/WO2023098567A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/1015Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Abstract

The invention discloses a titanium composite corundum silicon carbide wear-resistant castable for a cement kiln mouth and a preparation method thereof. The titanium composite corundum silicon carbide wear-resistant castable mainly comprises, by mass, 15-20% of fused white corundum with the thickness of 5-3 mm, 15-25% of fused white corundum with the thickness of 3-1 mm, 15-25% of fused white corundum with the thickness of 1-0 mm, 2-8% of 97 silicon carbide with the thickness of 3-1 mm, 5-10% of 97 silicon carbide with the thickness of 1-0 mm, 2-8% of 97 silicon carbide with the size of 200 meshes, 5-15% of titanium reinforced corundum refractory material with the thickness of 1-0 mm, 10-20% of titanium reinforced corundum refractory material with the size of 200 meshes, 5-10% of active alumina powder and 5-8% of aluminate cement. The product prepared by the invention has excellent wear resistance, is suitable for the kiln opening part of the cement kiln, can effectively increase the safe operation period of the cement rotary kiln, and realizes the yield increase and consumption reduction of cement enterprises.

Description

Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof
The technical field is as follows:
the invention belongs to the technical field of refractory materials, and particularly relates to a titanium composite corundum silicon carbide wear-resistant castable for a cement kiln opening and a preparation method thereof.
Secondly, background art:
the kiln mouth of the cement kiln is a key part in a novel dry cement sintering system, the working condition of the kiln mouth is harsh, high-temperature clinker reaches the kiln mouth under the action of a high-speed rotating cylinder, and primary air and secondary air with high wind speed carry a large amount of sand dust to seriously scour and wear a refractory material of a lining of the kiln mouth. In addition, the kiln mouth part can cause the refractory material of the kiln mouth lining to generate thermal shock damage under the action of high-temperature primary air, secondary air and cold air. And the replacement of the refractory material of the kiln mouth lining needs to be carried out after the kiln is stopped and cooled. Therefore, the performance of the refractory lining of the kiln mouth directly influences the operation period of the firing system equipment and the yield of cement clinker.
The corundum-silicon carbide castable has excellent volume stability, erosion resistance, high temperature resistance and other properties, and is used as an excellent lining refractory material to be applied to the kiln mouth of a cement kiln. In order to improve the sintering properties and other service properties of the casting material, small amounts of additives are usually added to the casting material. Proper amount of TiO is introduced into the corundum castable 2 The additive can promote the sintering of the corundum castable and generate aluminum titanate at high temperature, reduce the thermal expansion coefficient of the material, inhibit the rapid growth of corundum crystals, and further improve the thermal shock resistance of the material.
Thirdly, the invention content:
the technical problem to be solved by the invention is as follows: the invention provides a titanium composite corundum silicon carbide wear-resistant castable for a cement kiln mouth and a preparation method thereof, aiming at overcoming the technical problems of the existing refractory material used for the cement kiln mouth. The present inventionThe titanium composite corundum adopted in the scheme is a novel titanium composite corundum raw material which is generated by a ferrotitanium slag byproduct generated in the ferrotitanium alloy smelting process and is re-synthesized through process optimization, can be used as a substitute of partial white corundum, and is higher than the white corundum and TiO additionally added through different granularities and dosage proportions 2 The strength, wear resistance and other properties of the casting material; thereby greatly saving the cost of raw materials, improving the profit of the traditional refractory products and obtaining better using effect.
In order to solve the problems, the invention adopts the technical scheme that:
the invention provides a titanium composite corundum silicon carbide wear-resistant castable for a cement kiln mouth, which mainly comprises, by mass, 15-20% of fused white corundum with the thickness of 5-3 mm, 15-25% of fused white corundum with the thickness of 3-1 mm, 15-25% of fused white corundum with the thickness of 1-0 mm, 2-8% of 97 silicon carbide with the thickness of 3-1 mm, 5-10% of 97 silicon carbide with the thickness of 1-0 mm, 2-8% of 97 silicon carbide with the size of 200 meshes, 5-15% of titanium reinforced corundum refractory material with the thickness of 1-0 mm, 10-20% of titanium reinforced corundum refractory material with the size of 200 meshes, 5-10% of activated alumina powder and 5-8% of aluminate cement.
According to the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening, the main component and the mass percentage of the main component in the electric melting white corundum are Al 2 O 3 ≥98%、Fe 2 O 3 ≤0.2%、K 2 O is less than or equal to 0.1 percent and Na 2 O≤0.5%。
According to the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening, the mass percentage of SiC in 97 silicon carbide is more than or equal to 97%, and Fe 2 O 3 The mass percentage content of the component (A) is less than or equal to 1.0 percent.
According to the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening, Al in the titanium reinforced corundum refractory material 2 O 3 80.76 percent of SiO 2 1.54 percent by mass of Fe 2 O 3 The mass percentage of TiO is less than or equal to 2.0 percent 2 The mass percentage of the components is 16.73 percent and K 2 The mass percentage of OLess than or equal to 0.1 percent and Na 2 The mass percentage of O is less than or equal to 0.1 percent.
The titanium reinforced corundum refractory material adopted by the invention is prepared by the technical scheme disclosed by CN 202010567012.8.
According to the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening, Al in the active alumina powder 2 O 3 The mass percentage content of the Fe alloy is more than or equal to 98 percent, and the Fe alloy is Fe 2 O 3 The mass percentage content of the sodium-containing material is less than or equal to 0.1 percent, and Na 2 The mass percentage of O is less than or equal to 0.5 percent.
According to the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening, the particle size of the active alumina powder is 325 meshes.
In addition, the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth comprises the following steps:
a. firstly, weighing various raw materials according to the proportion of the titanium composite corundum silicon carbide wear-resistant castable for the kiln opening of the cement kiln;
b. mixing the weighed raw materials with a water reducing agent sodium tripolyphosphate and a retarder sodium fluosilicate, uniformly mixing, pouring into a stirring pot, adding water, and uniformly stirring to obtain a mixed material;
the adding amount of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of the raw materials, the adding amount of the retarder sodium fluosilicate is 0.005% of the total weight of the raw materials, and the adding amount of the water is 3-5% of the total weight of the raw materials;
c. c, vibration molding the mixed material obtained in the step b;
d. curing the formed product at 20-25 ℃ for 24-48 h;
e. and drying the product obtained after curing to obtain the titanium composite corundum silicon carbide wear-resistant castable for the kiln outlet of the cement kiln.
According to the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the kiln opening of the cement kiln, in the step e, drying is carried out in an oven, the drying temperature is 100-120 ℃, and the drying time is 12-24 hours.
The invention has the following positive beneficial effects:
1. the titanium composite corundum silicon carbide wear-resistant castable prepared by the technical scheme of the invention has excellent wear resistance, is suitable for the kiln opening part of a cement kiln, can effectively prolong the safe operation period of the cement rotary kiln, and realizes the yield increase and consumption reduction of cement enterprises. Therefore, the invention has remarkable economic benefit and social benefit.
2. In the technical scheme of the invention, the introduction of the titanium reinforced corundum refractory material promotes the sintering of the material, and the compressive strength and the rupture strength of the material after medium-low temperature calcination are obviously improved. Reduce the effect of adding TiO 2 The introduction of the titanium alloy enhances the high-temperature wear resistance of the material due to overburning and volume shrinkage of the material during high-temperature calcination.
3. The titanium composite corundum silicon carbide wear-resistant castable prepared by the technical scheme of the invention has the apparent volume density of more than or equal to 2.95g/cm 3 The compression strength is 110-150 MPa, and the breaking strength is 12-17 MPa; the high-temperature abrasion loss at the test temperature of 1200 ℃ is less than or equal to 3cm 3
Fourthly, the specific implementation mode:
the invention is further illustrated by the following examples, which do not limit the scope of the invention.
The electro-fused white corundum adopted in the following examples comprises the main component and the mass percentage of Al 2 O 3 ≥98%、Fe 2 O 3 ≤0.2%、K 2 O is less than or equal to 0.1 percent and Na 2 O is less than or equal to 0.5 percent; 97 percent of SiC and Fe 2 O 3 The mass percentage content of the compound is less than or equal to 1.0 percent; al in titanium reinforced corundum refractory material 2 O 3 80.76 percent of SiO 2 1.54 percent by mass of Fe 2 O 3 The mass percentage of TiO is less than or equal to 2.0 percent 2 The mass percentage of the components is 16.73 percent and K 2 The mass percentage of O is less than or equal to 0.1 percent and Na 2 The mass percentage of O is less than or equal to 0.1 percent (the titanium reinforced corundum refractory material is prepared by the technical scheme disclosed by CN 202010567012.8); the activity ofAl in alumina powder 2 O 3 The mass percentage content of the Fe alloy is more than or equal to 98 percent, and the Fe alloy is Fe 2 O 3 The mass percentage content of the sodium-containing material is less than or equal to 0.1 percent, and Na 2 The mass percentage of O is less than or equal to 0.5 percent, and the particle size of the active alumina powder is 325 meshes.
Example 1:
the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth comprises, by mass, 5-3 mm of fused white corundum, 3-1 mm of fused white corundum, 25% of 1-0 mm of fused white corundum, 3-1 mm of 97 silicon carbide, 8% of 1-0 mm of 97 silicon carbide, 10% of 1-0 mm of 97 silicon carbide, 2% of 200-mesh 97 silicon carbide, 5% of 1-0 mm of titanium reinforced corundum refractory, 10% of 200-mesh titanium reinforced corundum refractory, 5% of activated alumina powder and 5% of aluminate cement.
Example 2:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening in the embodiment 1 of the invention comprises the following detailed steps:
a. firstly, weighing various raw materials according to the proportion of the titanium composite corundum silicon carbide wear-resistant castable for the kiln opening of the cement kiln in the embodiment 1;
b. mixing the weighed raw materials, the water reducing agent sodium tripolyphosphate and the retarder sodium fluosilicate, pouring the mixture into a stirring pot after uniformly mixing, and then adding water and uniformly stirring to obtain a mixed material;
the adding amount of the water reducing agent sodium tripolyphosphate is 0.2 percent of the total weight of the raw materials, the adding amount of the retarder sodium fluosilicate is 0.005 percent of the total weight of the raw materials, and the adding amount of the water is 5 percent of the total weight of the raw materials;
c. c, vibration molding the mixed material obtained in the step b;
d. curing the formed product at 20-25 ℃ for 36 h;
e. and drying the product obtained after curing (the drying temperature is 100-120 ℃, and the drying time is 24h), and obtaining the titanium composite corundum silicon carbide wear-resistant castable for the kiln mouth of the cement kiln.
Preparation of the resulting productThe volume density is more than or equal to 2.95g/cm 3 The compressive strength is 115MPa, the breaking strength is 13MPa, and the high-temperature abrasion loss at the test temperature of 1200 ℃ is 2.36cm 3
Example 3:
the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth comprises, by mass, 17% to 3mm of fused white corundum, 16% to 1mm of fused white corundum, 5% to 1mm of 97 silicon carbide, 8% to 0mm of 97 silicon carbide, 5% to 200-mesh 97 silicon carbide, 8% to 0mm of titanium-reinforced corundum refractory, 12% to 200-mesh titanium-reinforced corundum refractory, 6% of activated alumina powder and 7% of aluminate cement.
Example 4:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth in the embodiment 3 of the invention is the same as that in the embodiment 2.
The apparent volume density of the prepared product is more than or equal to 2.95g/cm 3 The compressive strength is 140MPa, and the breaking strength is 13 MPa; the high-temperature abrasion loss at the test temperature of 1200 ℃ is 1.96cm 3
Example 5:
the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth comprises, by mass, 20% of fused white corundum with the thickness of 5-3 mm, 15% of fused white corundum with the thickness of 3-1 mm, 25% of fused white corundum with the thickness of 1-0 mm, 2% of 97 silicon carbide with the thickness of 3-1 mm, 5% of 97 silicon carbide with the thickness of 1-0 mm, 8% of 97 silicon carbide with the size of 200 meshes, 5% of titanium-reinforced corundum refractory material with the thickness of 1-0 mm, 10% of titanium-reinforced corundum refractory material with the size of 200 meshes, 5% of activated alumina powder and 5% of aluminate cement.
Example 6:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening in the embodiment 5 of the invention comprises the following detailed steps:
a. firstly, weighing various raw materials according to the proportion of the titanium composite corundum silicon carbide wear-resistant castable for the kiln opening of the cement kiln in the embodiment 5;
b. mixing the weighed raw materials, the water reducing agent sodium tripolyphosphate and the retarder sodium fluosilicate, pouring the mixture into a stirring pot after uniformly mixing, and then adding water and uniformly stirring to obtain a mixed material;
the adding amount of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of the raw materials, the adding amount of the retarder sodium fluosilicate is 0.005% of the total weight of the raw materials, and the adding amount of the water is 4% of the total weight of the raw materials;
c. c, vibration molding of the mixed material obtained in the step b;
d. curing the formed product at 20-25 ℃ for 28 h;
e. and (3) drying the cured product (the drying temperature is 100-120 ℃, and the drying time is 20 hours), and drying to obtain the titanium composite corundum silicon carbide wear-resistant castable for the kiln mouth of the cement kiln.
The apparent volume density of the prepared product is more than or equal to 2.95g/cm 3 The compressive strength is 124MPa, and the breaking strength is 15 MPa; the high-temperature abrasion loss at the test temperature of 1200 ℃ is 2.09cm 3
Example 7:
the titanium composite corundum silicon carbide wear-resistant castable for the kiln mouth of the cement kiln comprises, by mass, 5-3 mm of fused white corundum, 3-1 mm of fused white corundum, 20% of 1-0 mm of fused white corundum, 3-1 mm of 97 silicon carbide, 2% of 1-0 mm of 97 silicon carbide, 5% of 200-mesh 97 silicon carbide, 15% of 1-0 mm of titanium reinforced corundum refractory, 10% of 200-mesh titanium reinforced corundum refractory, 5% of activated alumina powder and 5% of aluminate cement.
Example 8:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening in the embodiment 7 of the invention is the same as the embodiment 2.
The apparent volume density of the prepared product is more than or equal to 2.95g/cm 3 The compressive strength is 105MPa, the breaking strength is 12MPa, and the high-temperature abrasion loss at the test temperature of 1200 ℃ is 2.28cm 3
Example 9:
the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth comprises, by mass, 5-3 mm of fused white corundum, 3-1 mm of fused white corundum, 20-0 mm of fused white corundum, 3-1 mm of 97 silicon carbide, 1-0 mm of 97 silicon carbide, 5% of 1-0 mm of 97 silicon carbide, 2% of 200-mesh 97 silicon carbide, 5% of 1-0 mm of titanium-reinforced corundum refractory, 20% of 200-mesh titanium-reinforced corundum refractory, 5% of activated alumina powder and 5% of aluminate cement.
Example 10:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth in the embodiment 9 of the invention is the same as that in the embodiment 2.
The apparent volume density of the prepared product is more than or equal to 2.95g/cm 3 The compression strength is 147MPa, and the breaking strength is 16 MPa; the high-temperature abrasion loss at the test temperature of 1200 ℃ is 1.98cm 3
Example 11:
the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth comprises, by mass, 5-3 mm of fused white corundum, 20-1 mm of fused white corundum, 18-0 mm of fused white corundum, 2-1 mm of 97 silicon carbide, 5-0 mm of 97 silicon carbide, 2% of 200-mesh 97 silicon carbide, 5% of 1-0 mm of titanium-reinforced corundum refractory, 15% of 200-mesh titanium-reinforced corundum refractory, 10% of activated alumina powder and 8% of aluminate cement.
Example 12:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening in the embodiment 11 of the invention is the same as the embodiment 6.
The apparent volume density of the prepared product is more than or equal to 2.95g/cm 3 The compressive strength is 110MPa, and the breaking strength is 12 MPa; the high-temperature abrasion loss at the test temperature of 1200 ℃ is 2.97cm 3
Example 13:
the titanium composite corundum silicon carbide wear-resistant castable for the kiln mouth of the cement kiln comprises, by mass, 20% of fused white corundum with the thickness of 5-3 mm, 20% of fused white corundum with the thickness of 3-1 mm, 15% of fused white corundum with the thickness of 1-0 mm, 5% of 97 silicon carbide with the thickness of 3-1 mm, 5% of 97 silicon carbide with the thickness of 1-0 mm, 5% of 97 silicon carbide with the size of 200 meshes, 5% of titanium reinforced corundum refractory material with the thickness of 1-0 mm, 10% of titanium reinforced corundum refractory material with the size of 200 meshes, 8% of activated alumina powder and 7% of aluminate cement.
Example 14:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening in the embodiment 13 of the invention is the same as the embodiment 6.
The apparent volume density of the prepared product is more than or equal to 2.95g/cm 3 The compressive strength is 135MPa, and the breaking strength is 15 MPa; the high-temperature abrasion loss at the test temperature of 1200 ℃ is less than or equal to 2.19m 3
Example 15:
the titanium composite corundum silicon carbide wear-resistant castable for the kiln mouth of the cement kiln comprises, by mass, 5-3 mm of fused white corundum, 25-1 mm of fused white corundum, 15-0 mm of fused white corundum, 5-1 mm of 97 silicon carbide, 10-0 mm of 97 silicon carbide, 5% of 200-mesh 97 silicon carbide, 5% of 1-0 mm of titanium-reinforced corundum refractory, 10% of 200-mesh titanium-reinforced corundum refractory, 5% of activated alumina powder and 5% of aluminate cement.
Example 16:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening in the embodiment 15 of the invention is the same as the embodiment 6.
The apparent volume density of the prepared product is more than or equal to 2.95g/cm 3 The compressive strength is 121MPa, and the breaking strength is 13 MPa; the high-temperature abrasion loss at the test temperature of 1200 ℃ is 2.31cm 3
Example 17:
the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth comprises, by mass, raw materials of, 18% of fused white corundum with the thickness of 5-3 mm, 20% of fused white corundum with the thickness of 3-1 mm, 18% of fused white corundum with the thickness of 1-0 mm, 4% of 97 silicon carbide with the thickness of 3-1 mm, 9% of 97 silicon carbide with the thickness of 1-0 mm, 4% of 97 silicon carbide with the size of 200 meshes, 7% of titanium reinforced corundum refractory material with the thickness of 1-0 mm, 10% of titanium reinforced corundum refractory material with the size of 200 meshes, 5% of activated alumina powder and 5% of aluminate cement.
Example 18:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening in the embodiment 17 of the invention is the same as the embodiment 6.
The apparent volume density of the prepared product is more than or equal to 2.95g/cm 3 The compression strength is 127MPa, and the breaking strength is 15 MPa; the high-temperature abrasion loss at the test temperature of 1200 ℃ is 2.17cm 3
Example 19:
the titanium composite corundum silicon carbide wear-resistant castable for the kiln mouth of the cement kiln comprises, by mass, 17% of fused white corundum with the thickness of 5-3 mm, 20% of fused white corundum with the thickness of 3-1 mm, 20% of fused white corundum with the thickness of 1-0 mm, 5% of 97 silicon carbide with the thickness of 3-1 mm, 5% of 97 silicon carbide with the thickness of 1-0 mm, 5% of 97 silicon carbide with the size of 200 meshes, 5% of titanium reinforced corundum refractory with the thickness of 1-0 mm, 10% of titanium reinforced corundum refractory with the size of 200 meshes, 8% of activated alumina powder and 5% of aluminate cement.
Example 20:
the preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening, provided by the embodiment 19 of the invention, comprises the following detailed steps:
a. firstly, weighing various raw materials according to the proportion of the titanium composite corundum silicon carbide wear-resistant castable for the kiln opening of the cement kiln in the embodiment 19;
b. mixing the weighed raw materials, the water reducing agent sodium tripolyphosphate and the retarder sodium fluosilicate, pouring the mixture into a stirring pot after uniformly mixing, and then adding water and uniformly stirring to obtain a mixed material;
the adding amount of the water reducing agent sodium tripolyphosphate is 0.2 percent of the total weight of the raw materials, the adding amount of the retarder sodium fluosilicate is 0.005 percent of the total weight of the raw materials, and the adding amount of the water is 4 percent of the total weight of the raw materials;
c. c, vibration molding the mixed material obtained in the step b;
d. curing the formed product at 20-25 ℃ for 48 h;
e. and (3) drying the cured product (the drying temperature is 100-120 ℃, and the drying time is 16h), and drying to obtain the titanium composite corundum silicon carbide wear-resistant castable for the kiln mouth of the cement kiln.
The apparent volume density of the prepared product is more than or equal to 2.95g/cm 3 The compressive strength is 150MPa, and the flexural strength is 17 MPa; the high-temperature abrasion loss at the test temperature of 1200 ℃ is 1.81cm 3

Claims (8)

1. The titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening is characterized by comprising the following components in percentage by weight: the titanium composite corundum silicon carbide wear-resistant castable mainly comprises, by mass, 15-20% of fused white corundum with the thickness of 5-3 mm, 15-25% of fused white corundum with the thickness of 3-1 mm, 15-25% of fused white corundum with the thickness of 1-0 mm, 2-8% of 97 silicon carbide with the thickness of 3-1 mm, 5-10% of 97 silicon carbide with the thickness of 1-0 mm, 2-8% of 97 silicon carbide with the size of 200 meshes, 5-15% of titanium reinforced corundum refractory material with the thickness of 1-0 mm, 10-20% of titanium reinforced corundum refractory material with the size of 200 meshes, 5-10% of active alumina powder and 5-8% of aluminate cement.
2. The titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth as claimed in claim 1, characterized in that: the main component and the mass percentage content of the electro-fused white corundum are Al 2 O 3 ≥98%、Fe 2 O 3 ≤0.2%、K 2 O is less than or equal to 0.1 percent and Na 2 O≤0.5%。
3. The titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth as claimed in claim 1, characterized in that: the mass percentage of SiC in the 97 silicon carbide is more than or equal to 97 percent, and the Fe content 2 O 3 The mass percentage content of the component (A) is less than or equal to 1.0 percent.
4. The titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth as claimed in claim 1, characterized in that: al in the titanium reinforced corundum refractory material 2 O 3 The mass percentage of the components is 80.76 percent、SiO 2 1.54 percent by mass of Fe 2 O 3 The mass percentage of TiO is less than or equal to 2.0 percent 2 The mass percentage of the components is 16.73 percent and K 2 The mass percentage of O is less than or equal to 0.1 percent and Na 2 The mass percentage of O is less than or equal to 0.1 percent.
5. The titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth as claimed in claim 1, characterized in that: al in the active alumina powder 2 O 3 The mass percentage content of the Fe alloy is more than or equal to 98 percent, and the Fe alloy is Fe 2 O 3 The mass percentage content of the sodium-containing material is less than or equal to 0.1 percent, and Na 2 The mass percentage of O is less than or equal to 0.5 percent.
6. The titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth as claimed in claim 1, characterized in that: the particle size of the activated alumina powder is 325 meshes.
7. The preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the kiln opening of the cement kiln is characterized by comprising the following steps:
a. firstly, weighing various raw materials according to the proportion of the titanium composite corundum silicon carbide wear-resistant castable for the kiln opening of the cement kiln according to claim 1;
b. mixing the weighed raw materials with a water reducing agent sodium tripolyphosphate and a retarder sodium fluosilicate, uniformly mixing, pouring into a stirring pot, adding water, and uniformly stirring to obtain a mixed material;
the adding amount of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of the raw materials, the adding amount of the retarder sodium fluosilicate is 0.005% of the total weight of the raw materials, and the adding amount of the water is 3-5% of the total weight of the raw materials;
c. c, vibration molding of the mixed material obtained in the step b;
d. curing the formed product at 20-25 ℃ for 24-48 h;
e. and drying the product obtained after curing to obtain the titanium composite corundum silicon carbide wear-resistant castable for the kiln outlet of the cement kiln.
8. The preparation method of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln opening according to claim 7, characterized by comprising the following steps: and e, drying in an oven at 100-120 ℃ for 12-24 hours.
CN202111456639.7A 2021-12-01 2021-12-01 Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof Active CN114163222B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111456639.7A CN114163222B (en) 2021-12-01 2021-12-01 Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof
PCT/CN2022/134102 WO2023098567A1 (en) 2021-12-01 2022-11-24 Titanium composite corundum silicon carbide wear-resistant castable material for kiln outlet of cement kiln, and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111456639.7A CN114163222B (en) 2021-12-01 2021-12-01 Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof

Publications (2)

Publication Number Publication Date
CN114163222A CN114163222A (en) 2022-03-11
CN114163222B true CN114163222B (en) 2022-08-30

Family

ID=80482199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111456639.7A Active CN114163222B (en) 2021-12-01 2021-12-01 Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof

Country Status (2)

Country Link
CN (1) CN114163222B (en)
WO (1) WO2023098567A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163222B (en) * 2021-12-01 2022-08-30 北京金隅通达耐火技术有限公司 Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof
CN115819075A (en) * 2022-12-10 2023-03-21 巩义通达中原耐火技术有限公司 Low-temperature sintered titanium-rich corundum composite silicon carbide brick and preparation method thereof
CN116462493A (en) * 2023-03-31 2023-07-21 巩义通达中原耐火技术有限公司 Titanium-rich corundum composite silicon carbide unburned brick and preparation method thereof
CN116874289A (en) * 2023-07-25 2023-10-13 江西博丰耐火材料有限公司 Preparation method of novel high-temperature-resistant high-strength aluminum-magnesium castable
CN117534449B (en) * 2024-01-10 2024-03-26 洛阳铂信耐火材料有限公司 Corundum castable for copper chute and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892850A (en) * 1986-11-07 1990-01-09 Kureha Chemical Industry Co., Ltd. Tough corundum-rutile composite sintered body
CN1683283A (en) * 2004-04-15 2005-10-19 宜兴市泰科耐火材料有限公司 Silicon carbide corundum pouring material
CN101367664A (en) * 2008-09-28 2009-02-18 瑞泰科技股份有限公司 Composite combined aluminum oxide-silicon carbide-(carbon) system amorphous refractory material
CN102850063A (en) * 2012-08-23 2013-01-02 通达耐火技术股份有限公司 High-strength anti-stripping castable with homogeneous material as aggregate for kilneye and preparation method thereof
CN106396707A (en) * 2016-08-30 2017-02-15 安徽瑞泰新材料科技有限公司 Superhigh temperature anti-skinning castable
CN106747363A (en) * 2016-11-16 2017-05-31 武汉科技大学 A kind of chromite calcination rotary kiln working lining castable and preparation method thereof
CN108275984A (en) * 2017-12-31 2018-07-13 嘉兴新耐建材有限公司 Kilneye castable after a kind of 5000T cement kilns
CN109503135A (en) * 2018-11-28 2019-03-22 江苏恒耐炉料集团有限公司 The high-strength explosion-proof castable refractory of self-flow pattern
CN111747761A (en) * 2020-06-19 2020-10-09 北京科技大学 Titanium-reinforced corundum refractory material and preparation method thereof
CN112479689A (en) * 2020-10-30 2021-03-12 云南濮耐昆钢高温材料有限公司 Quick-drying explosion-proof high-strength wear-resistant castable
CN112645698A (en) * 2021-01-15 2021-04-13 北京瑞尔非金属材料有限公司 Aluminum titanium silicon carbide composite refractory castable for iron-making blast furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126984B2 (en) * 2009-05-26 2013-01-23 日本碍子株式会社 Method for producing SiC-containing castable refractory
CN108147795A (en) * 2017-12-31 2018-06-12 嘉兴新耐建材有限公司 Kilneye castable after a kind of 2500T cement kilns
CN114163222B (en) * 2021-12-01 2022-08-30 北京金隅通达耐火技术有限公司 Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892850A (en) * 1986-11-07 1990-01-09 Kureha Chemical Industry Co., Ltd. Tough corundum-rutile composite sintered body
CN1683283A (en) * 2004-04-15 2005-10-19 宜兴市泰科耐火材料有限公司 Silicon carbide corundum pouring material
CN101367664A (en) * 2008-09-28 2009-02-18 瑞泰科技股份有限公司 Composite combined aluminum oxide-silicon carbide-(carbon) system amorphous refractory material
CN102850063A (en) * 2012-08-23 2013-01-02 通达耐火技术股份有限公司 High-strength anti-stripping castable with homogeneous material as aggregate for kilneye and preparation method thereof
CN106396707A (en) * 2016-08-30 2017-02-15 安徽瑞泰新材料科技有限公司 Superhigh temperature anti-skinning castable
CN106747363A (en) * 2016-11-16 2017-05-31 武汉科技大学 A kind of chromite calcination rotary kiln working lining castable and preparation method thereof
CN108275984A (en) * 2017-12-31 2018-07-13 嘉兴新耐建材有限公司 Kilneye castable after a kind of 5000T cement kilns
CN109503135A (en) * 2018-11-28 2019-03-22 江苏恒耐炉料集团有限公司 The high-strength explosion-proof castable refractory of self-flow pattern
CN111747761A (en) * 2020-06-19 2020-10-09 北京科技大学 Titanium-reinforced corundum refractory material and preparation method thereof
CN112479689A (en) * 2020-10-30 2021-03-12 云南濮耐昆钢高温材料有限公司 Quick-drying explosion-proof high-strength wear-resistant castable
CN112645698A (en) * 2021-01-15 2021-04-13 北京瑞尔非金属材料有限公司 Aluminum titanium silicon carbide composite refractory castable for iron-making blast furnace

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TiO2对刚玉-莫来石系烧结材料显微结构和高温抗折强度的影响;祝金楼;《耐火材料》;19901231;全文 *
氧化钛对氧化铝瓷的莫来石形成和力学性能的影响;尹洪基;《耐火与石灰》;20110210(第01期);全文 *

Also Published As

Publication number Publication date
WO2023098567A1 (en) 2023-06-08
CN114163222A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
CN114163222B (en) Titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouths and preparation method thereof
CN101367668B (en) Pouring material for manufacturing pellet ore rotary kiln and manufacturing method thereof
CN107973610A (en) A kind of carborundum ramming mass using discarded silicon carbide sagger as primary raw material
CN112456973B (en) Magnesium current stabilizer for tundish and preparation method thereof
CN106927838B (en) Steel fiber reinforced wear-resistant explosion-proof castable
CN109836136A (en) A kind of low-carbon aluminium-magnesia carbon brick and preparation method thereof
CN103553683A (en) Main iron runner pouring material for 1350m<3> blast furnace
CN114031378A (en) Anti-scouring ladle bottom castable and production method thereof
CN110563449A (en) Environment-friendly magnesia-carbon gunning mix for RH furnace and preparation method thereof
CN106702056A (en) Iron tap channel swing spout prefabricated piece and manufacturing method thereof
CN109987950A (en) A kind of unburned composite aluminum-carbon SiClx carbon brick
CN107673767B (en) Low-carbon aluminum sliding plate added with magnesium-calcium-aluminum sand and preparation method thereof
CN102850069B (en) Kilneye plastic refractory
CN110981500A (en) Alumina hollow sphere and molten iron pretreatment spray gun refractory castable reinforcing and toughening method
CN110615670A (en) High-performance magnesium sliding brick and preparation method thereof
CN113800931B (en) Kiln mouth anti-stripping castable and using method thereof
CN109437865A (en) A kind of pouring refractories for tapping spout of blast furnace of the ash containing aluminium and preparation method thereof
CN104355635A (en) Casting material and preparation method and use thereof
CN114262232A (en) Preparation method of carbon-free castable added with graphite raw material for refining ladle working lining
CN113233880A (en) Ladle castable for integral casting and preparation method thereof
CN113105219A (en) Crucible and preparation method thereof
CN114133224B (en) Refractory material for rotary kiln and construction method thereof
CN112225536B (en) Anhydrous stemming for ferrosilicon ore heating furnace
CN116396063B (en) 99 castable for resisting copper liquid erosion and peeling in low-oxygen copper rod production
CN114890007B (en) Preparation method of high-strength composite ceramic wear-resistant lining

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant