CN114152267A - 一种火星轨道相机影像仿真方法及*** - Google Patents

一种火星轨道相机影像仿真方法及*** Download PDF

Info

Publication number
CN114152267A
CN114152267A CN202110216606.9A CN202110216606A CN114152267A CN 114152267 A CN114152267 A CN 114152267A CN 202110216606 A CN202110216606 A CN 202110216606A CN 114152267 A CN114152267 A CN 114152267A
Authority
CN
China
Prior art keywords
mars
camera
orbit
image
global
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110216606.9A
Other languages
English (en)
Inventor
赵双明
喻国荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202110216606.9A priority Critical patent/CN114152267A/zh
Publication of CN114152267A publication Critical patent/CN114152267A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)

Abstract

本发明提供一种火星轨道相机影像仿真方法及***,输入仿真数据源,包括火星全球DEM和火星全球数字影像模型MDIM;仿真火星轨道相机的位置和姿态参数,包括利用三次多项式建立火星轨道器姿轨模型,并顾及相机安装矩阵,计算曝光时刻相机的位置和姿态参数;建立火星轨道相机成像模型和相机视向量模型;将仿真影像平面上像素逐一投影到火星全球DEM表面;在火星全球影像MDIM上内插计算像素的灰度值;将火星全球影像MDIM上对应像素的灰度值逐一赋值给仿真影像平面上像素。本发明能够真实、准确的反应火星表面的形貌特征,适用于火星轨道的框幅式相机和线阵推扫式相机等所有类型的成像相机影像的仿真,可以针对不同火星形貌特征的区域进行相机影像仿真。

Description

一种火星轨道相机影像仿真方法及***
技术领域
本发明属于行星摄影测量与遥感领域,特别是涉及一种火星轨道相机影像仿真方法及***。
背景技术
火星轨道相机影像可以直观的帮助人们了解火星表面形貌特征;利用火星相机立体轨道影像数据产生的全球或局部地形信息可用于火星探测器的着陆选址、精确着陆、着陆器巡视导航任务;通过分析火星形貌特点、特征,可以反映火星地质构造的演化过程、寻找水、火星是否存在生命的证据。火星轨道相机的几何设计及验证至关重要,而火星轨道相机影像仿真是相机验证的重要手段,对优化相机设计参数提高火星立体影像几何定位精度具有重要意义。火星表面独特的形貌特征以及与地球表面相比所具有的弱纹理的特点,使得常规的相机仿真方法难以顾及火星表面的形貌特征、特点。
现有的火星轨道器相机成像仿真技术,都是基于地球表面的影像和地形或模拟影像和模拟地形进行仿真,这些方法不能够真实、准确的反应火星表面的形貌特征。
本发明提出利用火星全球DEM和火星全球数字影像模型(MDIM)作为仿真数据源,设计相应的相机影像仿真方法,充分顾及了火星实际形貌特征、特点,能够有效的满足火星轨道相机设计验证需求。
发明内容
本发明针对现有技术的不足,提供一种火星轨道相机影像仿真方案。
本发明提供的技术方案是一种火星轨道相机影像仿真方法,包括如下步骤:
步骤1,输入仿真数据源,包括火星全球DEM和火星全球数字影像模型MDIM;
步骤2,仿真火星轨道相机的位置和姿态参数,包括利用三次多项式建立火星轨道器姿轨模型,并顾及相机安装矩阵,计算曝光时刻相机的位置和姿态参数;
步骤3,建立火星轨道相机成像模型,包括根据步骤2计算的曝光时刻相机的位置和姿态参数,建立火星轨道相机成像模型,进一步推导出相机视向量模型;
步骤4,计算仿真影像平面上像素对应的物方坐标,包括利用步骤3的相机成像模型,将仿真影像平面上像素逐一投影到火星全球DEM表面,通过相机视向量模型计算视向量与火星全球DEM表面的交点坐标,获得对应物方点的位置;
步骤5,根据步骤4计算的物方点位置,在火星全球影像MDIM上内插计算像素的灰度值;
步骤6,将步骤5所得火星全球影像MDIM上对应像素的灰度值逐一赋值给仿真影像平面上像素。
而且,步骤2中,利用以下三次多项式建立火星轨道器姿轨模型,
Figure BDA0002953341070000021
Figure BDA0002953341070000022
其中,XS(t)、YS(t)、ZS(t)表示t时刻轨道器在火星体固坐标系中的位置;ω(t)、
Figure BDA0002953341070000023
κ(t)表示t时刻轨道器在火星体固坐标系中的姿态;ai、bi、ci、di、ei、fi分别表示多项式模型的系数,i=0,1,2,3;
Figure BDA0002953341070000024
σω(t)、σφ(t)、σκ(t)分别为位置和姿态随机噪声;
设相机安装矩阵为
Figure BDA0002953341070000025
在时刻t轨道器到火星体固坐标系的旋转矩阵为
Figure BDA0002953341070000026
则计算如下,
Figure BDA0002953341070000027
其中,
Figure BDA0002953341070000028
为在时刻t火星轨道相机坐标系到火星体固坐标系的旋转矩阵。
而且,步骤3中,建立火星轨道相机成像模型的实现方式如下,
根据步骤2中计算的曝光时刻相机的位置和姿态参数,建立t时刻火星轨道相机成像模型,如下,
Figure BDA0002953341070000029
其中,
Figure BDA00029533410700000210
表示火星表面物方点在火星体固坐标系中的坐标;
Figure BDA00029533410700000211
表示火星轨道相机投影中心在火星体固坐标系中的坐标;
Figure BDA00029533410700000212
表示时刻t火星轨道相机坐标系到火星体固坐标系旋转矩阵;λ为比例系数;x,y为仿真影像平面上像元的平面坐标;f为相机主距;
Figure BDA0002953341070000031
表示t时刻火星轨道相机投影中心位置矢量,
Figure BDA0002953341070000032
表示t时刻火星轨道相机视向量;设有物方点M(X,Y,Z),视向量
Figure BDA0002953341070000033
则式(4)进一步表示为式(5)所示相机视向量模型,
Figure BDA0002953341070000034
其中,
Figure BDA0002953341070000035
表示火星表面上M点的向量,μ表示比例系数,
Figure BDA0002953341070000036
分别表示视向量
Figure BDA0002953341070000037
的三个坐标分量。
而且,步骤4中,计算仿真影像平面上像素对应的物方坐标的实现方式如下,
设火星的椭球方程为:
Figure BDA0002953341070000038
Figure BDA0002953341070000039
其中,a、b分别表示初始的火星椭球体的赤道半径和极半径;h表示椭球高;A、B分别表示迭代过程中火星椭球体的新的赤道半径和新的极半径;
将式(5)代入式(6)得到下列方程式:
Figure BDA00029533410700000310
执行如下步骤,
(1)计算视向量与火星椭球面的初始交点坐标
令h=0,解算式(8),取比例系数μ=min{μ12}并代入式(5),计算交点坐标Mk(Xk,Yk,Zk),下标k表示迭代次数,第一次执行步骤(1)时k=0;μ1、μ2分别表示式(8)的两个根;
(2)将第k次计算的用直角坐标表示的交点坐标Mk(Xk,Yk,Zk)转换为经、纬度和椭球高表示的交点坐标
Figure BDA00029533410700000311
根据计算的经、纬度坐标
Figure BDA00029533410700000312
对火星全球DEM进行双线性内插,得到新的椭球高hk
(3)重新计算视向量与火星椭球面的交点坐标,
令h=hk,解算式(8),取μmin=min{μ12}并代入式(5),计算新的交点坐标Mk+1(Xk+1,Yk+1,Zk+1),令k=k+1;
(4)根据影像分辨率相应的预设阈值ρ,重复(2)、(3),直至||MkMk+1||<ρ,此时交点收敛;视向量与全球DEM交点的直角坐标M(X,Y,Z)为仿真影像平面上像素对应的物方坐标,转换为经、纬度和椭球高表示的大地坐标
Figure BDA0002953341070000041
作为步骤4最终的结果。
而且,步骤5中,根据步骤4计算的仿真影像平面上像素对应的物方点的经、纬度坐标
Figure BDA0002953341070000042
对火星全球影像MDIM进行双线性内插,计算对应像素的灰度值。
另一方面本发明提供一种火星轨道相机影像仿真***,用于实现如上所述的一种火星轨道相机影像仿真方法。
而且,包括以下模块,
第一模块,用于输入仿真数据源,包括火星全球DEM和火星全球数字影像模型MDIM;
第二模块,用于仿真火星轨道相机的位置和姿态参数,包括利用三次多项式建立火星轨道器姿轨模型,并顾及相机安装矩阵,计算曝光时刻相机的位置和姿态参数;
第三模块,用于建立火星轨道相机成像模型,包括根据第二模块计算的曝光时刻相机的位置和姿态参数,建立火星轨道相机成像模型,进一步推导出相机视向量模型;
第四模块,用于计算仿真影像平面上像素对应的物方坐标,包括利用第三模块的相机成像模型,将仿真影像平面上像素逐一投影到火星全球DEM表面,通过相机视向量模型计算视向量与火星全球DEM表面的交点坐标,获得对应物方点的位置;
第五模块,用于根据第四模块计算的物方点位置,在火星全球影像MDIM上内插计算像素的灰度值;
第六模块,用于将第五模块所得火星全球影像MDIM上对应像素的灰度值逐一赋值给仿真影像平面上像素。
或者,包括处理器和存储器,存储器用于存储程序指令,处理器用于调用存储器中的存储指令执行如上所述的一种火星轨道相机影像仿真方法。
或者,包括可读存储介质,所述可读存储介质上存储有计算机程序,所述计算机程序执行时,实现如上所述的一种火星轨道相机影像仿真方法。
通过以上技术方案,本发明利用火星全球DEM和火星全球数字影像模型(MDIM)作为仿真数据源;根据火星轨道相机的位置和姿态参数,建立轨道相机模型;利用像方到火星全球DEM的投影过程,计算对应物方点的坐标;火星全球影像上内插计算对应像素的灰度值;灰度赋值完成相机影像仿真。
与现有技术相比,本发明的有益效果是:
火星表面形貌特征丰富,火星表面有陨击坑和盆地、大的盾形火山、峡谷系、千涸河床、崩塌地貌、沙丘、极区沉积层等多种类型形貌,且与地球表面相比具有弱纹理的特点。本发明的优势包括如下四个方面:1.利用火星表面的真实影像及形貌特征生成不同分辨率的仿真影像,能够准确的反应火星表面的形貌特征;2.适用于火星轨道的框幅式相机和线阵推扫式相机等所有类型的成像相机影像的仿真;3.利用火星全球的DEM和全球的数字影像,可以根据不同的任务需求,设计火星轨道相机的位置和姿态参数,针对不同火星形貌特征的区域进行相机影像仿真;4.针对不同的相机设计参数、影像的航向旁向重叠度进行影像仿真。本发明所得仿真影像可用于火星轨道相机的几何设计及验证、火星立体影像几何定位分析等。
附图说明
图1为本发明实施例的“火星全球DEM(Mars MGS MOLA-MEX HRSC Blended DEMGlobal 200m v2)”示意图。
图2为本发明实施例的“火星全球数字影像模型MDIM”示意图。
图3为本发明实施例的“火星坐标系(mars body-fixed frame)”示意图。
图4为本发明实施例的“火星轨道相机视向量与火星椭球体”示意图。
图5为本发明实施例的“火星全球DEM双线性内插”示意图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步说明。
本发明提供一种火星轨道相机影像仿真方案,利用火星全球DEM和火星全球数字影像模型(MDIM)作为仿真数据源;根据火星轨道相机的位置和姿态参数,建立轨道相机模型;将仿真影像平面上像元投影至火星全球DEM表面,计算对应物方点的坐标;在火星全球影像上内插计算对应像素的灰度值;灰度赋值完成相机影像仿真。
实施例提供一种火星轨道相机影像仿真方法,包括如下步骤:
步骤1,输入仿真数据源,包括火星全球DEM和火星全球数字影像模型MDIM。
和现有的火星轨道器相机成像仿真技术,基于地球表面的影像和地形或模拟影像和模拟地形进行仿真不同。本发明提出利用火星全球DEM和火星全球数字影像模型MDIM作为仿真数据源。
实施例中,采用火星全球DEM(如图1),采用200m分辨率的DEM(Mars MGS MOLA-MEXHRSC Blended DEM Global 200m v2);火星全球数字影像模型MDIM(如图2),采用232m分辨率的数字影像模型(Viking MDIM2.1 Grayscale Global Mosaic 232m)。火星全球DEM和火星全球数字影像模型MDIM均采用Simple Cylindrical地图投影模式。
步骤2,仿真设计火星轨道相机的位置和姿态参数。
实施例中,利用三次多项式建立火星轨道器姿轨模型,并顾及相机安装矩阵,计算曝光时刻相机的位置和姿态参数,实现如下:
如图3为火星体固坐标系(mars body-fixed frame)。火星体固坐标系O-XYZ由国际天文联合会和国际大地测量协会IAU/IAG定义。其中坐标原点O位于火星质心;X轴位于火星平均赤道平面与火星主子午面的交线,Z轴为火星自转轴且指向火星北极;Y轴按右手法则确定。
利用三次多项式(1)、(2)建立火星轨道器姿轨模型,
Figure BDA0002953341070000061
Figure BDA0002953341070000062
其中:XS(t)、YS(t)、ZS(t)表示t时刻轨道器在火星体固坐标系中的位置;ω(t)、
Figure BDA0002953341070000063
κ(t)表示t时刻轨道器在火星体固坐标系中的姿态;ai、bi、ci、di、ei、fi(i=0,1,2,3)分别表示多项式模型的系数,考虑姿轨模型中的随机噪声的影响,给定任意曝光时刻t按照式(1)(2)可计算轨道器的位置和姿态;
Figure BDA0002953341070000064
σω(t)、σφ(t)、σκ(t)分别为位置和姿态随机噪声。
设相机安装矩阵为
Figure BDA0002953341070000065
在时刻t轨道器到火星体固坐标系的旋转矩阵为
Figure BDA0002953341070000066
可由式(2)计算得到,则在时刻t火星轨道相机坐标系到火星体固坐标系的旋转矩阵
Figure BDA0002953341070000067
计算如下:
Figure BDA0002953341070000071
步骤3,建立火星轨道相机成像模型。
实施例中,包括根据步骤2计算的曝光时刻相机的位置和姿态参数,建立火星轨道相机成像模型,进一步推导出相机视向量模型。
根据步骤2中式(1)和式(3)计算的曝光时刻相机的位置和姿态参数,建立t时刻火星轨道相机成像模型,如式(4):
Figure BDA0002953341070000072
其中,
Figure BDA0002953341070000073
表示火星表面物方点在火星体固坐标系中的坐标;
Figure BDA0002953341070000074
表示火星轨道相机投影中心在火星体固坐标系中的坐标;
Figure BDA0002953341070000075
表示时刻t火星轨道相机坐标系到火星体固坐标系旋转矩阵;λ为比例系数;
x,y为仿真影像平面(即本发明要生成的火星轨道相机影像)上像元的平面坐标;f为相机主距。
如图4所示,O-XYZ表示火星体固坐标系;
Figure BDA0002953341070000076
表示t时刻火星轨道相机投影中心位置矢量;
Figure BDA0002953341070000077
表示t时刻火星轨道相机视向量。设有物方点M(X,Y,Z),视向量
Figure BDA0002953341070000078
则式(4)可进一步表示为式(5)所示相机视向量模型:
Figure BDA0002953341070000079
其中,
Figure BDA00029533410700000710
表示火星表面上M点的向量;μ表示比例系数;
Figure BDA00029533410700000711
分别表示视向量
Figure BDA00029533410700000712
的三个坐标分量。
步骤4,计算仿真影像平面上像素对应的物方坐标
利用步骤3的相机成像模型,将仿真影像平面上像素逐一投影到火星全球DEM表面,计算对应物方点坐标,实际上就是根据式(5)计算视向量与火星全球DEM表面的交点坐标。即通过计算视向量与火星全球DEM表面的交点坐标,获得对应物方点的位置。
如图4所示,具体计算过程如下:
设火星的椭球方程为:
Figure BDA0002953341070000081
其中
Figure BDA0002953341070000082
其中,a、b分别表示初始的火星椭球体的赤道半径和极半径;h表示椭球高;A、B分别表示迭代过程中火星椭球体的新的赤道半径和新的极半径。
将式(5)代入式(6)得到下列方程式(8):
Figure BDA0002953341070000083
执行如下步骤,
(5)计算视向量与火星椭球面的初始交点坐标
令h=0,解算式(8),取μ=min{μ12}并代入式(5),计算交点坐标Mk(Xk,Yk,Zk),下标k表示迭代次数,第一次执行步骤(1)时k=0;μ1、μ2分别表示式(8)的两个根;比例系数μ取两个根中的最小值。
(6)将第k次计算的用直角坐标表示的交点坐标Mk(Xk,Yk,Zk)转换为经、纬度和椭球高表示的交点坐标
Figure BDA0002953341070000084
如图5所示,h00、h01、h10、h11分别表示内插窗口四角高程,h表示待内插高程;Δλ、
Figure BDA0002953341070000085
表示待内插点的经、纬度差值。根据计算的经、纬度坐标
Figure BDA0002953341070000086
对火星全球DEM进行双线性内插,得到新的椭球高hk
(7)重新计算视向量与火星椭球面的交点坐标
令h=hk,解算式(8),取μmin=min{μ12}并代入式(5),计算新的交点坐标Mk+1(Xk+1,Yk+1,Zk+1),令k=k+1。
(8)根据影像分辨率设定相应阈值ρ(小于一个像素),重复(2)、(3),直至||MkMk+1||<ρ,此时交点收敛。视向量与全球DEM交点的直角坐标M(X,Y,Z)即仿真影像平面上像素对应的物方坐标,将其转换为经、纬度和椭球高表示的大地坐标
Figure BDA0002953341070000087
作为步骤4最终的结果。
步骤5,在火星全球影像MDIM上内插计算像素的灰度值。
根据步骤4计算的仿真影像平面上像素对应的物方点的经、纬度坐标
Figure BDA0002953341070000091
采用与火星全球DEM类似的内插方法,对火星全球影像进行双线性内插,计算对应像素的灰度值。
步骤6,仿真影像平面上像素灰度赋值。
将步骤5计算的火星全球影像上对应像素的灰度值逐一赋值给对应的仿真影像平面上像素。
具体实施时,本发明技术方案提出的方法可由本领域技术人员采用计算机软件技术实现自动运行流程,实现方法的***装置例如存储本发明技术方案相应计算机程序的计算机可读存储介质以及包括运行相应计算机程序的计算机设备,也应当在本发明的保护范围内。
在一些可能的实施例中,提供一种火星轨道相机影像仿真***,包括以下模块,
第一模块,用于输入仿真数据源,包括火星全球DEM和火星全球数字影像模型MDIM;
第二模块,用于仿真火星轨道相机的位置和姿态参数,包括利用三次多项式建立火星轨道器姿轨模型,并顾及相机安装矩阵,计算曝光时刻相机的位置和姿态参数;
第三模块,用于建立火星轨道相机成像模型,包括根据第二模块计算的曝光时刻相机的位置和姿态参数,建立火星轨道相机成像模型,进一步推导出相机视向量模型;
第四模块,用于计算仿真影像平面上像素对应的物方坐标,包括利用第三模块的相机成像模型,将仿真影像平面上像素逐一投影到火星全球DEM表面,通过相机视向量模型计算视向量与火星全球DEM表面的交点坐标,获得对应物方点的位置;
第五模块,用于根据第四模块计算的物方点位置,在火星全球影像MDIM上内插计算像素的灰度值;
第六模块,用于将第五模块所得火星全球影像MDIM上对应像素的灰度值逐一赋值给仿真影像平面上像素。
在一些可能的实施例中,提供一种火星轨道相机影像仿真***,包括处理器和存储器,存储器用于存储程序指令,处理器用于调用存储器中的存储指令执行如上所述的一种火星轨道相机影像仿真方法。
在一些可能的实施例中,提供一种火星轨道相机影像仿真***,包括可读存储介质,所述可读存储介质上存储有计算机程序,所述计算机程序执行时,实现如上所述的一种火星轨道相机影像仿真方法。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (9)

1.一种火星轨道相机影像仿真方法,其特征在于,包括如下步骤:
步骤1,输入仿真数据源,包括火星全球DEM和火星全球数字影像模型MDIM;
步骤2,仿真火星轨道相机的位置和姿态参数,包括利用三次多项式建立火星轨道器姿轨模型,并顾及相机安装矩阵,计算曝光时刻相机的位置和姿态参数;
步骤3,建立火星轨道相机成像模型,包括根据步骤2计算的曝光时刻相机的位置和姿态参数,建立火星轨道相机成像模型,进一步推导出相机视向量模型;
步骤4,计算仿真影像平面上像素对应的物方坐标,包括利用步骤3的相机成像模型,将仿真影像平面上像素逐一投影到火星全球DEM表面,通过相机视向量模型计算视向量与火星全球DEM表面的交点坐标,获得对应物方点的位置;
步骤5,根据步骤4计算的物方点位置,在火星全球影像MDIM上内插计算像素的灰度值;
步骤6,将步骤5所得火星全球影像MDIM上对应像素的灰度值逐一赋值给仿真影像平面上像素。
2.根据权利要求1所述火星轨道相机影像仿真方法,其特征在于:步骤2中,利用以下三次多项式建立火星轨道器姿轨模型,
Figure FDA0002953341060000011
Figure FDA0002953341060000012
其中,XS(t)、YS(t)、ZS(t)表示t时刻轨道器在火星体固坐标系中的位置;ω(t)、
Figure FDA0002953341060000013
κ(t)表示t时刻轨道器在火星体固坐标系中的姿态;ai、bi、ci、di、ei、fi分别表示多项式模型的系数,i=0,1,2,3;
Figure FDA0002953341060000014
σω(t)、σφ(t)、σκ(t)分别为位置和姿态随机噪声;
设相机安装矩阵为
Figure FDA0002953341060000015
在时刻t轨道器到火星体固坐标系的旋转矩阵为
Figure FDA0002953341060000016
则计算如下,
Figure FDA0002953341060000017
其中,
Figure FDA0002953341060000021
为在时刻t火星轨道相机坐标系到火星体固坐标系的旋转矩阵。
3.根据权利要求1所述火星轨道相机影像仿真方法,其特征在于:步骤3中,建立火星轨道相机成像模型的实现方式如下,
根据步骤2中计算的曝光时刻相机的位置和姿态参数,建立t时刻火星轨道相机成像模型,如下,
Figure FDA0002953341060000022
其中,
Figure FDA0002953341060000023
表示火星表面物方点在火星体固坐标系中的坐标;
Figure FDA0002953341060000024
表示火星轨道相机投影中心在火星体固坐标系中的坐标;
Figure FDA0002953341060000025
表示时刻t火星轨道相机坐标系到火星体固坐标系旋转矩阵;λ为比例系数;x,y为仿真影像平面上像元的平面坐标;f为相机主距;
Figure FDA0002953341060000026
表示t时刻火星轨道相机投影中心位置矢量,
Figure FDA0002953341060000027
表示t时刻火星轨道相机视向量;设有物方点M(X,Y,Z),视向量
Figure FDA0002953341060000028
则式(4)进一步表示为式(5)所示相机视向量模型,
Figure FDA0002953341060000029
其中,
Figure FDA00029533410600000210
表示火星表面上M点的向量,μ表示比例系数,
Figure FDA00029533410600000211
分别表示视向量
Figure FDA00029533410600000212
的三个坐标分量。
4.根据权利要求1所述火星轨道相机影像仿真方法,其特征在于:步骤4中,计算仿真影像平面上像素对应的物方坐标的实现方式如下,
设火星的椭球方程为:
Figure FDA00029533410600000213
Figure FDA00029533410600000214
其中,a、b分别表示初始的火星椭球体的赤道半径和极半径;h表示椭球高;A、B分别表示迭代过程中火星椭球体的新的赤道半径和新的极半径;
将式(5)代入式(6)得到下列方程式:
Figure FDA0002953341060000031
执行如下步骤,
(1)计算视向量与火星椭球面的初始交点坐标
令h=0,解算式(8),取比例系数μ=min{μ12}并代入式(5),计算交点坐标Mk(Xk,Yk,Zk),下标k表示迭代次数,第一次执行步骤(1)时k=0;μ1、μ2分别表示式(8)的两个根;
(2)将第k次计算的用直角坐标表示的交点坐标Mk(Xk,Yk,Zk)转换为经、纬度和椭球高表示的交点坐标
Figure FDA0002953341060000032
根据计算的经、纬度坐标
Figure FDA0002953341060000033
对火星全球DEM进行双线性内插,得到新的椭球高hk
(3)重新计算视向量与火星椭球面的交点坐标,
令h=hk,解算式(8),取μmin=min{μ12}并代入式(5),计算新的交点坐标Mk+1(Xk+1,Yk+1,Zk+1),令k=k+1;
(4)根据影像分辨率相应的预设阈值ρ,重复(2)、(3),直至‖MkMk+1‖<ρ,此时交点收敛;视向量与全球DEM交点的直角坐标M(X,Y,Z)为仿真影像平面上像素对应的物方坐标,转换为经、纬度和椭球高表示的大地坐标
Figure FDA0002953341060000034
作为步骤4最终的结果。
5.根据权利要求1所述火星轨道相机影像仿真方法,其特征在于:步骤5中,根据步骤4计算的仿真影像平面上像素对应的物方点的经、纬度坐标
Figure FDA0002953341060000035
对火星全球影像MDIM进行双线性内插,计算对应像素的灰度值。
6.一种火星轨道相机影像仿真***,其特征在于:用于实现如权利要求1-5任一项所述的一种火星轨道相机影像仿真方法。
7.根据权利要求6所述火星轨道相机影像仿真***,其特征在于:包括以下模块,
第一模块,用于输入仿真数据源,包括火星全球DEM和火星全球数字影像模型MDIM;
第二模块,用于仿真火星轨道相机的位置和姿态参数,包括利用三次多项式建立火星轨道器姿轨模型,并顾及相机安装矩阵,计算曝光时刻相机的位置和姿态参数;
第三模块,用于建立火星轨道相机成像模型,包括根据第二模块计算的曝光时刻相机的位置和姿态参数,建立火星轨道相机成像模型,进一步推导出相机视向量模型;
第四模块,用于计算仿真影像平面上像素对应的物方坐标,包括利用第三模块的相机成像模型,将仿真影像平面上像素逐一投影到火星全球DEM表面,通过相机视向量模型计算视向量与火星全球DEM表面的交点坐标,获得对应物方点的位置;
第五模块,用于根据第四模块计算的物方点位置,在火星全球影像MDIM上内插计算像素的灰度值;
第六模块,用于将第五模块所得火星全球影像MDIM上对应像素的灰度值逐一赋值给仿真影像平面上像素。
8.根据权利要求6所述火星轨道相机影像仿真***,其特征在于:包括处理器和存储器,存储器用于存储程序指令,处理器用于调用存储器中的存储指令执行如权利要求1-5任一项所述的一种火星轨道相机影像仿真方法。
9.根据权利要求6所述火星轨道相机影像仿真***,其特征在于:包括可读存储介质,所述可读存储介质上存储有计算机程序,所述计算机程序执行时,实现如权利要求1-5任一项所述的一种火星轨道相机影像仿真方法。
CN202110216606.9A 2021-02-26 2021-02-26 一种火星轨道相机影像仿真方法及*** Pending CN114152267A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110216606.9A CN114152267A (zh) 2021-02-26 2021-02-26 一种火星轨道相机影像仿真方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110216606.9A CN114152267A (zh) 2021-02-26 2021-02-26 一种火星轨道相机影像仿真方法及***

Publications (1)

Publication Number Publication Date
CN114152267A true CN114152267A (zh) 2022-03-08

Family

ID=80462372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110216606.9A Pending CN114152267A (zh) 2021-02-26 2021-02-26 一种火星轨道相机影像仿真方法及***

Country Status (1)

Country Link
CN (1) CN114152267A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737357A (zh) * 2011-04-08 2012-10-17 中国科学院国家天文台 月球三线阵相机影像仿真数据的生成方法
CN102945544A (zh) * 2012-11-28 2013-02-27 国家测绘地理信息局卫星测绘应用中心 低轨卫星影像仿真方法
CN105528500A (zh) * 2016-01-19 2016-04-27 国家测绘地理信息局卫星测绘应用中心 一种分米级星载tdi ccd立体测绘相机成像仿真方法和***
CN107451957A (zh) * 2017-07-26 2017-12-08 国家测绘地理信息局卫星测绘应用中心 一种星载tdi cmos相机成像仿真方法及设备
CN107945235A (zh) * 2017-10-17 2018-04-20 许昌学院 一种高轨大面阵静止卫星影像几何定位仿真方法
CN109903352A (zh) * 2018-12-24 2019-06-18 中国科学院遥感与数字地球研究所 一种卫星遥感影像大区域无缝正射影像制作方法
CN110929427A (zh) * 2019-12-23 2020-03-27 吉林大学 一种遥感卫星视频成像快速仿真方法
CN111754392A (zh) * 2020-05-30 2020-10-09 同济大学 一种火星轨道器高分辨率光学相机动态成像仿真方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737357A (zh) * 2011-04-08 2012-10-17 中国科学院国家天文台 月球三线阵相机影像仿真数据的生成方法
CN102945544A (zh) * 2012-11-28 2013-02-27 国家测绘地理信息局卫星测绘应用中心 低轨卫星影像仿真方法
CN105528500A (zh) * 2016-01-19 2016-04-27 国家测绘地理信息局卫星测绘应用中心 一种分米级星载tdi ccd立体测绘相机成像仿真方法和***
CN107451957A (zh) * 2017-07-26 2017-12-08 国家测绘地理信息局卫星测绘应用中心 一种星载tdi cmos相机成像仿真方法及设备
CN107945235A (zh) * 2017-10-17 2018-04-20 许昌学院 一种高轨大面阵静止卫星影像几何定位仿真方法
CN109903352A (zh) * 2018-12-24 2019-06-18 中国科学院遥感与数字地球研究所 一种卫星遥感影像大区域无缝正射影像制作方法
CN110929427A (zh) * 2019-12-23 2020-03-27 吉林大学 一种遥感卫星视频成像快速仿真方法
CN111754392A (zh) * 2020-05-30 2020-10-09 同济大学 一种火星轨道器高分辨率光学相机动态成像仿真方法

Similar Documents

Publication Publication Date Title
Beyer et al. The Ames Stereo Pipeline: NASA's open source software for deriving and processing terrain data
JP4685313B2 (ja) 任意の局面の受動的な体積画像の処理方法
El-Hakim et al. A multi-sensor approach to creating accurate virtual environments
US8139111B2 (en) Height measurement in a perspective image
Alexandrov et al. Multiview shape‐from‐shading for planetary images
Li et al. Rigorous photogrammetric processing of HiRISE stereo imagery for Mars topographic mapping
MX2013003853A (es) Modelado tridimensional rápido.
CN110500995A (zh) 利用rpc参数建立高分辨率卫星影像等效几何成像模型的方法
Hassan et al. Integration of laser scanning and photogrammetry in 3D/4D cultural heritage preservation–a review
CN109612438B (zh) 一种虚拟共面条件约束下的空间目标初轨确定方法
CN104764443A (zh) 一种光学遥感卫星严密成像几何模型构建方法
Maimone et al. A photo-realistic 3-D mapping system for extreme nuclear environments: Chernobyl
WO2022104251A1 (en) Image analysis for aerial images
Gennery Visual terrain matching for a Mars rover
Talluri et al. Image map correspondence for mobile robot self-location using computer graphics
CN111611525B (zh) 基于物方匹配高程偏差迭代修正的遥感数据高程解算方法
JP3490774B2 (ja) ジオスペシフィックテクスチャ生成の方法
CN114152267A (zh) 一种火星轨道相机影像仿真方法及***
Liu et al. A solution to low RFM fitting precision of planetary orbiter images caused by exposure time changing
Awange et al. Fundamentals of photogrammetry
Eapen et al. Narpa: Navigation and rendering pipeline for astronautics
Ye et al. Lunar Terrain Reconstruction from Multi-View Lroc Nac Images Based on Semi-Global Matching in Object Space
Hough et al. DEMkit & LunaRay: Tools for Mission Data Generation and Validation
Sholarin et al. Photogrammetry
Edwards et al. Automated 3D surface reconstruction from orbital imagery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination