CN114150331A - Electrolytic hydrogen production waste heat utilization system - Google Patents

Electrolytic hydrogen production waste heat utilization system Download PDF

Info

Publication number
CN114150331A
CN114150331A CN202111601777.XA CN202111601777A CN114150331A CN 114150331 A CN114150331 A CN 114150331A CN 202111601777 A CN202111601777 A CN 202111601777A CN 114150331 A CN114150331 A CN 114150331A
Authority
CN
China
Prior art keywords
hydrogen production
circulating water
electrolyte
gas
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111601777.XA
Other languages
Chinese (zh)
Inventor
刘丽萍
王金意
任志博
王凡
王韬
郭海礁
王鹏杰
余智勇
张畅
徐显明
潘龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
Huaneng Group Technology Innovation Center Co Ltd
Sichuan Huaneng Baoxinghe Hydropower Co Ltd
Sichuan Huaneng Kangding Hydropower Co Ltd
Huaneng Mingtai Power Co Ltd
Sichuan Huaneng Dongxiguan Hydropower Co Ltd
Sichuan Huaneng Fujiang Hydropower Co Ltd
Sichuan Huaneng Hydrogen Technology Co Ltd
Sichuan Huaneng Jialingjiang Hydropower Co Ltd
Sichuan Huaneng Taipingyi Hydropower Co Ltd
Original Assignee
Huaneng Clean Energy Research Institute
Huaneng Group Technology Innovation Center Co Ltd
Sichuan Huaneng Baoxinghe Hydropower Co Ltd
Sichuan Huaneng Kangding Hydropower Co Ltd
Huaneng Mingtai Power Co Ltd
Sichuan Huaneng Dongxiguan Hydropower Co Ltd
Sichuan Huaneng Fujiang Hydropower Co Ltd
Sichuan Huaneng Hydrogen Technology Co Ltd
Sichuan Huaneng Jialingjiang Hydropower Co Ltd
Sichuan Huaneng Taipingyi Hydropower Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute, Huaneng Group Technology Innovation Center Co Ltd, Sichuan Huaneng Baoxinghe Hydropower Co Ltd, Sichuan Huaneng Kangding Hydropower Co Ltd, Huaneng Mingtai Power Co Ltd, Sichuan Huaneng Dongxiguan Hydropower Co Ltd, Sichuan Huaneng Fujiang Hydropower Co Ltd, Sichuan Huaneng Hydrogen Technology Co Ltd, Sichuan Huaneng Jialingjiang Hydropower Co Ltd, Sichuan Huaneng Taipingyi Hydropower Co Ltd filed Critical Huaneng Clean Energy Research Institute
Priority to CN202111601777.XA priority Critical patent/CN114150331A/en
Publication of CN114150331A publication Critical patent/CN114150331A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/083Separating products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/087Recycling of electrolyte to electrochemical cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The application provides an electrolysis hydrogen production waste heat utilization system, includes electrolysis hydrogen production system, circulative cooling system and the thermoelectric power generation system through circulating water pipeline end to end connection, circulative cooling system's circulating water passes through the circulating water pipeline flows through electrolysis hydrogen production system carries out the heat transfer, circulating water after the heat transfer intensifies flows through in the electrolysis hydrogen production system thermoelectric power generation system carries out the heat supply electricity generation, circulating water in the thermoelectric power generation system passes through the circulating water pipeline backward flow extremely circulative cooling system retrieves the used heat that produces in the operation process of electrolysis water hydrogen production system through setting up thermoelectric power generation system, and the heat supply source in the thermoelectric power generation system utilizes the difference in temperature of production between the thermoelectric device to carry out thermoelectric conversion, realizes used heat to the conversion of electric energy. The system has reasonable design and simple use, improves the energy utilization efficiency, and has clean and pollution-free working process.

Description

Electrolytic hydrogen production waste heat utilization system
Technical Field
The application relates to the technical field of electrolytic hydrogen production, in particular to an electrolytic hydrogen production waste heat utilization system.
Background
With the development of social economy, the problems of fossil energy shortage and environmental pollution are increasingly highlighted, and energy transformation is imperative. The hydrogen energy is a secondary energy source which is wide in source, clean, free of carbon, flexible, efficient and rich in application scenes, and is an important carrier for supporting energy transformation and construction of a modern energy system. The development of hydrogen energy is an important route to achieve carbon peak-to-carbon neutralization. Under the background of large-scale development of wind power and photovoltaic renewable energy sources at present, renewable energy sources are receiving more and more extensive attention to hydrogen production by water electrolysis. However, compared with the hydrogen production by fossil energy, the hydrogen production by water electrolysis by renewable energy is still relatively expensive in terms of production operation cost and equipment investment cost, wherein the power cost accounts for the largest percentage and is about 40% -60%. Therefore, reducing the system energy consumption in the process of producing hydrogen by electrolyzing water is crucial to the industrial development of the process.
In the process of producing hydrogen by electrolyzing water, because parts such as electrodes, diaphragms, electrolyte and the like have certain resistance, the temperature of the electrolyte in the electrolytic cell can be continuously raised by the current thermal effect of the parts, so in order to stabilize the working temperature of the electrolytic cell within a proper range, the electrolyte from the electrolytic cell needs to be cooled firstly after being separated by a gas-liquid separator, and then can flow back to the electrolytic cell. At present, the part of waste heat is not recycled in industrial application, and the energy loss of the water electrolysis hydrogen production system is further increased.
Disclosure of Invention
The present application is directed to solving, at least to some extent, one of the technical problems in the related art.
Therefore, the present application aims to provide an electrolytic hydrogen production waste heat utilization system, which is provided with a thermoelectric power generation system to recover waste heat generated in the operation process of the electrolytic hydrogen production system, and the waste heat is used as a heat supply source in the thermoelectric power generation system, and the temperature difference generated between thermoelectric devices is utilized to perform thermoelectric conversion, so that the conversion of the waste heat into electric energy is realized. The system has reasonable design and simple use, improves the energy utilization efficiency, and has clean and pollution-free working process.
For reaching above-mentioned purpose, the electrolysis hydrogen production waste heat utilization system that this application provided includes electrolysis hydrogen production system, circulative cooling system and the thermoelectric power generation system through circulating water pipeline end to end connection, circulative cooling system's circulating water passes through the circulating water pipeline flows through electrolysis hydrogen production system carries out the heat transfer, circulating water flow through after the heat transfer intensifies in the electrolysis hydrogen production system thermoelectric power generation system carries out the heat supply electricity generation, circulating water in the thermoelectric power generation system through the circulating water pipeline backward flow extremely circulative cooling system.
Furthermore, the electrolytic hydrogen production system comprises an electrolytic tank, a gas-liquid separator and an electrolyte heat exchanger which are connected end to end through an electrolyte pipeline, the electrolytic tank is communicated with the gas-liquid separator through an electrolyte pipeline, the gas-liquid separator is communicated with the electrolyte heat exchanger through an electrolyte pipeline, separated alkali liquor is introduced into the electrolyte heat exchanger through the electrolyte pipeline, a circulating water pipeline passes through the electrolyte heat exchanger, the alkali liquor and the circulating water exchange heat in the electrolyte heat exchanger, and the alkali liquor after heat exchange in the electrolyte heat exchanger flows back to the electrolytic tank.
Further, the electrolytic hydrogen production system further comprises a gas cooler, the gas-liquid separator is communicated with the gas cooler through a gas pipeline, the gas-liquid separator introduces gas into the gas cooler through a gas pipeline, the circulating water pipeline passes through the gas cooler, and the circulating water and the gas exchange heat in the gas cooler.
Further, the gas cooler and the electrolyte heat exchanger are of a dividing wall type heat exchange structure.
Further, the electrolyzer is an alkaline electrolyzer or a PEM electrolyzer.
Furthermore, a thermometer and a regulating valve are arranged on the electrolyte pipeline and the circulating water pipeline.
Further, the thermoelectric power generation system includes a semiconductor thermoelectric generator.
Furthermore, the operation temperature range of the thermoelectric power generation system is 30-300 ℃.
Further, a circulating pump is arranged on an electrolyte pipeline between the electrolyte heat exchanger and the electrolytic bath.
Additional aspects and advantages of the present application will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the present application.
Drawings
The foregoing and/or additional aspects and advantages of the present application will become apparent and readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
fig. 1 is a schematic structural diagram of an electrolytic hydrogen production waste heat utilization system according to an embodiment of the present application.
Detailed Description
Reference will now be made in detail to embodiments of the present application, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the drawings are exemplary only for the purpose of explaining the present application and are not to be construed as limiting the present application. On the contrary, the embodiments of the application include all changes, modifications and equivalents coming within the spirit and terms of the claims appended hereto.
Fig. 1 is a schematic structural diagram of an electrolytic hydrogen production waste heat utilization system according to an embodiment of the present application.
Referring to fig. 1, an electrolytic hydrogen production waste heat utilization system includes an electrolytic hydrogen production system 1, a circulating cooling system 2 and a thermoelectric power generation system 3 which are connected end to end through a circulating water pipeline, circulating water of the circulating cooling system 2 flows through the electrolytic hydrogen production system 1 through the circulating water pipeline for heat exchange, circulating water after heat exchange and temperature rise in the electrolytic hydrogen production system 1 flows through the thermoelectric power generation system 3 for heat supply and power generation, and circulating water in the thermoelectric power generation system 3 flows back to the circulating cooling system 2 through the circulating water pipeline.
In this embodiment, the circulating cooling system 2, the gas cooler 7, the electrolyte heat exchanger 6, and the thermoelectric power generation system 3 form a circulating water circulation loop, and the waste heat of the electrolytic hydrogen production system 1 is brought into the thermoelectric power generation system 3 by the flow of circulating water to generate power, thereby improving the utilization efficiency of energy. The working principle of the thermoelectric power generation system 3 is based on the Seebeck effect, heat energy is converted into electric energy by utilizing the temperature difference generated between thermoelectric devices, the joint end of two semiconductors in the thermoelectric power generation system 3 is arranged at high temperature, the other end in the low-temperature environment can obtain electromotive force, circulating water heated after heat exchange enters the high-temperature end in the thermoelectric power generation system, the Seebeck effect is generated in the thermoelectric power generation system due to the temperature difference, and the conversion of the heat energy into the electric energy is realized. The generated electric energy can be supplied to an electrolytic tank for water electrolysis to produce hydrogen, and can also be stored by a storage battery and sold as a product.
It can be understood that the circulating water of the circulating cooling system 2 flows through the electrolytic hydrogen production system 1 and the thermoelectric power generation system 3 through the circulating water pipeline and only exchanges heat with them, the circulating cooling system 2 is used as an independent circulating water circulation loop system and does not exchange substances with the electrolytic hydrogen production system 1 and the thermoelectric power generation system 3, so as to ensure the recycling of the circulating water, and preferably, the circulating cooling system comprises a circulating cooling tower and a circulating water pipeline connected with the circulating cooling tower. The circulating cooling tower is used as a transfer junction of circulating water and used for storing and supplementing the circulating water and is distributed everywhere through circulating water pipelines.
Electrolytic hydrogen production system 1 includes electrolysis trough 4, vapour and liquid separator 5 and the electrolyte heat exchanger 6 through electrolyte pipeline end to end connection, electrolysis trough 4 passes through electrolyte pipeline way vapour and liquid separator 5 lets in the gas-liquid mixture, vapour and liquid separator 5 passes through electrolyte pipeline way electrolyte heat exchanger 6 lets in the alkali lye after the separation, the circulating water pipeline passes through electrolyte heat exchanger 6, alkali lye with the circulating water is in carry out the heat transfer in the electrolyte heat exchanger 6, the alkali lye after the heat transfer in the electrolyte heat exchanger 6 flows back extremely in the electrolysis trough 4.
In this embodiment, the electrolytic cell 4, the gas-liquid separator 5 and the electrolyte heat exchanger 6 are connected through an electrolyte pipeline to form an electrolyte circulation loop, a gas-liquid mixture in the electrolytic cell 4 is separated, gas is introduced into the gas cooler 5, alkali liquor flows back to the electrolytic cell 4, the consumption of the alkali liquor is reduced, in the alkali liquor backflow process, heat exchange and cooling are performed through a circulating water pipeline, the electrolytic cell fault caused by overheating of the alkali liquor is avoided, circulating water after heat exchange flows through the thermoelectric power generation system to generate power, and waste heat of the electrolytic hydrogen production system is fully utilized. The heat utilization efficiency of the system is improved.
Electrolytic hydrogen production system 1 still includes gas cooler 7, vapour and liquid separator 5 through gas pipeline with gas cooler 7 intercommunication, vapour and liquid separator 5 passes through the gas pipeline to gas cooler 7 lets in gas, the circulating water pipeline passes through gas cooler 7, circulating water with gas is in carry out the heat transfer in the gas cooler 7.
In this embodiment, gas after gas-liquid separation still has higher temperature, need set up gas cooler 7 and cool off it to in order to store and utilize, the circulating line of this application passes through gas cooler 7, can arrange in the gas line outside and cool down gas in spiral winding's form, has better cooling effect, in other embodiments of course, also can arrange in other forms, this application does not do the restriction to this.
The gas cooler 7 and the electrolyte heat exchanger 6 are of a dividing wall type heat exchange structure. I.e. the cold and hot fluids are separated by a solid wall (pipe or plate) and do not mix, but exchange heat through the partition. The heat exchange is carried out while avoiding the mixing of liquid, and the independence of heat exchange substances is ensured.
The electrolyzer 4 is an alkaline electrolyzer or a PEM electrolyzer. The electrolytic cell adopting the type has higher electrolytic efficiency, is widely applied and is easy to purchase equipment.
And a thermometer and an adjusting valve are arranged on the electrolyte pipeline and the circulating water pipeline. The monitoring of the system operation temperature is realized by arranging thermometers on the electrolyte pipeline and the circulating water pipeline, and the regulating valve can regulate and control the flow of liquid in the pipeline through the opening degree, so that the temperature is controlled.
The operating temperature range of the thermoelectric power generation system 3 is 30-300 ℃. In the temperature range, the thermoelectric power generation system has higher power generation efficiency.
The thermoelectric power generation system 3 includes a semiconductor thermoelectric generator. Two semiconductor thermoelectric materials with high thermoelectric figure of merit can be used to convert thermal energy directly into electrical energy. Small volume, long service life, no noise in operation and no need of maintenance. The thermoelectric power generation system can also comprise a heat insulation layer and a heat dissipation component, which are important temperature field components for providing working temperature difference for the semiconductor thermoelectric device and are the basis for normal and efficient work of the semiconductor thermoelectric device.
And a circulating pump is arranged on an electrolyte pipeline between the electrolyte heat exchanger 6 and the electrolytic bath 4. The arrangement of the circulating pump can improve the flowing speed of the alkali liquor in the alkali liquor circulating loop, thereby improving the electrolysis efficiency.
Hydrogen and oxygen generated by water decomposition in the electrolytic bath 4 enter a gas-liquid separator 5 under the entrainment of electrolyte, and the separated hydrogen and oxygen enter a gas cooler 7 and then are discharged out of a pipeline; the separated electrolyte passes through an electrolyte heat exchanger 6 and then is pumped back to the electrolytic bath 4; circulating water of the circulating cooling system 2 passes through the gas cooler 7 and the electrolyte heat exchanger 6 in sequence to cool hydrogen, oxygen and electrolyte, and meanwhile, the temperature of the circulating water is increased; then the circulating water enters the high-temperature end of the thermoelectric power generation system 3, and the Seebeck effect is generated in the thermoelectric power generation system due to the temperature difference, so that the conversion of heat energy to electric energy is realized.
It should be noted that, in the description of the present application, the terms "first", "second", etc. are used for descriptive purposes only and are not to be construed as indicating or implying relative importance. In addition, in the description of the present application, "a plurality" means two or more unless otherwise specified.
Any process or method descriptions in flow charts or otherwise described herein may be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps of the process, and the scope of the preferred embodiments of the present application includes other implementations in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present application.
In the description herein, reference to the description of the term "one embodiment," "some embodiments," "an example," "a specific example," or "some examples," etc., means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the application. In this specification, the schematic representations of the terms used above do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
Although embodiments of the present application have been shown and described above, it is understood that the above embodiments are exemplary and should not be construed as limiting the present application, and that variations, modifications, substitutions and alterations may be made to the above embodiments by those of ordinary skill in the art within the scope of the present application.

Claims (9)

1. The electrolytic hydrogen production waste heat utilization system is characterized by comprising an electrolytic hydrogen production system, a circulating cooling system and a thermoelectric power generation system which are connected end to end through a circulating water pipeline, circulating water of the circulating cooling system flows through the electrolytic hydrogen production system through the circulating water pipeline for heat exchange, circulating water after heat exchange and temperature rise in the electrolytic hydrogen production system flows through the thermoelectric power generation system for heat supply and power generation, and circulating water in the thermoelectric power generation system flows back to the circulating cooling system through the circulating water pipeline.
2. The system for utilizing the waste heat generated by the electrolytic hydrogen production according to claim 1, wherein the system for producing hydrogen by electrolysis comprises an electrolysis tank, a gas-liquid separator and an electrolyte heat exchanger which are connected end to end through an electrolyte pipeline, the electrolysis tank is used for introducing a gas-liquid mixture into the gas-liquid separator through an electrolyte pipeline, the gas-liquid separator is used for introducing separated alkali liquor into the electrolyte heat exchanger through an electrolyte pipeline, the circulating water pipeline passes through the electrolyte heat exchanger, the alkali liquor and the circulating water exchange heat in the electrolyte heat exchanger, and the alkali liquor after heat exchange in the electrolyte heat exchanger flows back into the electrolysis tank.
3. The electrolytic hydrogen production waste heat utilization system according to claim 2, further comprising a gas cooler, wherein the gas-liquid separator is communicated with the gas cooler through a gas pipeline, the gas-liquid separator feeds gas into the gas cooler through a gas pipeline, the circulating water pipeline passes through the gas cooler, and the circulating water and the gas exchange heat in the gas cooler.
4. The electrolytic hydrogen production waste heat utilization system according to claim 3, wherein the gas cooler and the electrolyte heat exchanger are of a dividing wall type heat exchange structure.
5. The residual heat utilization system for electrolytic hydrogen production according to claim 2, wherein the electrolytic cell is an alkaline electrolytic cell or a PEM electrolytic cell.
6. The residual heat utilization system for electrolytic hydrogen production according to claim 2, wherein a thermometer and an adjusting valve are arranged on the electrolyte pipeline and the circulating water pipeline.
7. The residual heat utilization system for electrolytic hydrogen production according to claim 1, wherein the thermoelectric power generation system comprises a semiconductor thermoelectric generator.
8. The electrolytic hydrogen production waste heat utilization system according to claim 1, wherein the operation temperature range of the thermoelectric power generation system is 30-300 ℃.
9. The residual heat utilization system for electrolytic hydrogen production according to claim 2, wherein a circulating pump is arranged on an electrolyte pipeline between the electrolyte heat exchanger and the electrolytic bath.
CN202111601777.XA 2021-12-24 2021-12-24 Electrolytic hydrogen production waste heat utilization system Pending CN114150331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111601777.XA CN114150331A (en) 2021-12-24 2021-12-24 Electrolytic hydrogen production waste heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111601777.XA CN114150331A (en) 2021-12-24 2021-12-24 Electrolytic hydrogen production waste heat utilization system

Publications (1)

Publication Number Publication Date
CN114150331A true CN114150331A (en) 2022-03-08

Family

ID=80452340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111601777.XA Pending CN114150331A (en) 2021-12-24 2021-12-24 Electrolytic hydrogen production waste heat utilization system

Country Status (1)

Country Link
CN (1) CN114150331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921343A (en) * 2021-02-20 2021-06-08 河北建投新能源有限公司 Cold and hot hydrogen combined supply system and control method
CN114807959A (en) * 2022-03-15 2022-07-29 中国船舶重工集团公司第七一八研究所 High-efficiency hydrogen production system suitable for wide power fluctuation
CN114990602A (en) * 2022-05-12 2022-09-02 中国华能集团清洁能源技术研究院有限公司 Desalted water integrated system for water electrolysis hydrogen production device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112921343A (en) * 2021-02-20 2021-06-08 河北建投新能源有限公司 Cold and hot hydrogen combined supply system and control method
CN112921343B (en) * 2021-02-20 2022-11-15 河北建投新能源有限公司 Cold and hot hydrogen combined supply system and control method
CN114807959A (en) * 2022-03-15 2022-07-29 中国船舶重工集团公司第七一八研究所 High-efficiency hydrogen production system suitable for wide power fluctuation
CN114807959B (en) * 2022-03-15 2023-10-27 中国船舶重工集团公司第七一八研究所 High-efficiency hydrogen production system suitable for wide power fluctuation
CN114990602A (en) * 2022-05-12 2022-09-02 中国华能集团清洁能源技术研究院有限公司 Desalted water integrated system for water electrolysis hydrogen production device

Similar Documents

Publication Publication Date Title
CN114150331A (en) Electrolytic hydrogen production waste heat utilization system
CN111748822A (en) Comprehensive heat management system of large alkaline electrolyzed water hydrogen production device
CN112820896B (en) Thermoelectric coupling energy-saving and energy-storing system and method based on hydrogen fuel cell
CN211872097U (en) Wide-power water electrolysis hydrogen production system
CN113889648B (en) MW-level combined heat and power supply fuel cell power station
CN113930804B (en) Hydrogen production device with alkali temperature keeping function
CN216639661U (en) Electrolytic hydrogen production waste heat utilization system
CN114318360A (en) Heat management's circulation heat transfer system
KR101314238B1 (en) Hydrogen production system using high temperature steam electrolysis connected with nuclear power plant, electrolyzer of water and fuel cell power generation system
CN101517795A (en) Method and device for operating fuel cell used together with condenser
CN214958724U (en) Multi-energy combined supply system constructed based on hydrogen energy storage
CN101294288A (en) Oxyhydrogen, heat, electricity co-production, circulation method
CN114215617A (en) High-temperature gas cooled reactor nuclear power generation, hydrogen production and heating cogeneration system and method
CN114196968B (en) Solid oxide water electrolysis hydrogen production device and operation control method thereof
CN215209640U (en) Proton exchange membrane electrolytic hydrogen production device based on photovoltaic cell
CN114672834A (en) Thermoelectric coupling system and method based on photovoltaic hydrogen production coupling fuel cell
CN114412599A (en) Electrolysis hydrogen production coupling gas turbine power generation system
CN110600764A (en) Solar energy hydrothermal circulation type magnetofluid power generation and heat supply integrated machine and power generation and heat supply method thereof
CN217808782U (en) Synthetic ammonia coupling water electrolysis hydrogen production system
CN219283682U (en) Wind-solar hydrogen production waste heat utilization system and wind-solar power generation device
CN110285398A (en) The novel co-generation unit of condensation photovoltaic and steam compression cycle
CN109390974A (en) A kind of energy microgrid cogeneration system
CN217052419U (en) Heat management's circulation heat transfer system
CN218386949U (en) Container type renewable energy electric heat hydrogen co-production energy storage system
CN220633032U (en) Green methanol synthesis system considering heat preservation of electrolytic cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination