CN114150002A - Light-operated gene switch and application thereof - Google Patents

Light-operated gene switch and application thereof Download PDF

Info

Publication number
CN114150002A
CN114150002A CN202010928794.3A CN202010928794A CN114150002A CN 114150002 A CN114150002 A CN 114150002A CN 202010928794 A CN202010928794 A CN 202010928794A CN 114150002 A CN114150002 A CN 114150002A
Authority
CN
China
Prior art keywords
gene
ycgz
promoter
blue light
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010928794.3A
Other languages
Chinese (zh)
Inventor
胡晓清
吴佳欣
王小元
薛岚
刘世傲
刘昭君
罗双华
余克洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202010928794.3A priority Critical patent/CN114150002A/en
Publication of CN114150002A publication Critical patent/CN114150002A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a light-operated gene switch and application thereof, belonging to the technical field of biology. The invention provides a light-operated gene switch, which is a recombinant plasmid for expressing a gene for coding a regulatory protein BluR, a gene for coding a blue light receptor protein BluF, an ycgZ promoter and a target gene, wherein when no blue light is irradiated, the regulatory protein BluR coded by the BluR can be combined on the ycgZ promoter to inhibit ycgZ, and when the blue light is irradiated, the blue light receptor protein BluF coded by the BluF gene can relieve the inhibition of the regulatory protein BluR on the ycgZ to start the expression of the target gene; the light-operated gene switch can control the expression quantity of the target protein by controlling the irradiation dose of blue light so as to achieve the aim of accurately controlling the expression of the target protein in time and space.

Description

Light-operated gene switch and application thereof
Technical Field
The invention relates to a light-operated gene switch and application thereof, belonging to the technical field of biology.
Background
In the field of synthetic biology, artificial precise regulation of gene expression for controlling a target protein has become an indispensable means. Currently, there are many systems for inducing protein expression through artificial regulation in the world, and the systems for inducing and regulating the expression of target proteins under specific conditions through chemical inducers or physical methods.
In recent years, the induction and regulation of gene expression systems by chemical substances has been greatly developed. However, these chemical inducers have potential problems of toxicity to the bacteria themselves, high purification cost, and serious environmental pollution. Also, when these chemical inducers are induced to express in bacteria for fermentative production, there is a possibility that they may affect the normal metabolic processes of the bacteria. In addition, it is difficult to achieve precise control of chemical substances in terms of time and space when the expression of genes is induced and controlled.
In fermentation production, a temperature-controlled molecular switch can dynamically regulate metabolic pathways through a synthetic biosensor and redirect metabolic flows through a gene loop, improving yield and productivity. However, most biosensors require extensive debugging of genetic circuit elements to adapt to a target strain under a specific fermentation condition, and thus have a large load on the microbial cells. Furthermore, high temperatures can affect the activity of certain enzymes and proteins during the growth of the strain.
Light is an ideal inducer of gene expression and can be used as a very ideal inducer due to its low toxicity, easy acquisition, easy manipulation, high spatial and temporal resolution, etc. In addition, compared with a chemical substance regulation system, the regulation system induced by a physical method is more and more concerned by people due to the advantages of convenience, no need of adding other inducers and the like. Therefore, the light is used as an inducer to regulate the expression of target protein so as to control fermentation production or disease treatment, and the application value is very high.
At present, strong ultraviolet rays have been used to release a locked transcription factor or a chemical inducer to induce gene expression, but strong ultraviolet rays are likely to cause irreversible damage to cells, and there is a difficulty in introducing the locked transcription factor into living cells. The gene expression system mediated by the heat shock effect is controlled by far infrared light to generate heat, but the far infrared laser control of the heat shock effect can activate the expression of other endogenous genes of the thallus, and the equipment is complex and expensive.
Therefore, it is urgently needed to find a method which is harmless, has low cost and can precisely regulate the expression amount of the target protein in space and time.
Disclosure of Invention
[ problem ] to
The technical problem to be solved by the invention is to provide a method which is harmless and low in cost and can accurately regulate and control the expression quantity of a target protein in space and time.
[ solution ]
In order to solve the technical problems, the invention provides a light-operated gene switch, which is characterized in that:
(a) is a recombinant plasmid for expressing the ycgZ promoter and a target gene;
(b) is a recombinant plasmid for connecting a gene encoding a blue light receptor protein bluF on (a);
(c) is a recombinant plasmid for connecting a gene encoding a regulatory protein bluR and a gene encoding a blue light receptor protein bluF on (a).
In one embodiment of the present invention, when the light-operated gene switch is (a), the gene of interest is located downstream of the ycgZ promoter; when the light-operated gene switch is (b), the target gene is located downstream of the ycgZ promoter, and the gene encoding the blue light receptor protein, bluF, is located upstream of the ycgZ promoter; when the light-dependent gene switch is (c), the gene of interest is located downstream of the ycgZ promoter, the gene encoding blue light receptor protein blu f is located upstream of the ycgZ promoter, and the gene encoding regulatory protein blu r is located upstream of the gene encoding blue light receptor protein blu f.
In one embodiment of the present invention, the recombinant plasmid is pET-28a plasmid, pCL1920 plasmid, pFT24 plasmid or pBAD33 plasmid.
In one embodiment of the invention, the ycgZ promoter is derived from a strain having NCBI accession number CP046033.1, CP014768.1, CP024695.1, CP041513.1, CP026797.1, CP026866.1, CP026814.1, CP026811.1, CP026762.1, CP026731.1, CP024470.1, CP011511.1, CP001063.1, CP032513.1, CP026795.1, CP026872.1, CP026098.1, CP041620.1, CP026875.1, CP026845.1, CP026877.1, CP026836.1, CP026846.1, CP026824.1, CP027027.1 or CP 026867.1.
In one embodiment of the invention, the nucleotide sequence of the ycgZ promoter is shown in SEQ ID No. 1.
In one embodiment of the invention, the gene encoding the regulatory protein blu is derived from a strain having NCBI accession number CP, HE, CP, LR, CP, HE, CP, LR, CP or CP.
In one embodiment of the invention, the nucleotide sequence of the gene encoding the blue light receptor protein blu is shown in SEQ ID No. 2.
In one embodiment of the present invention, the gene encoding the blue light receptor protein bluF is derived from strains having NCBI accession No. CP051430.1, CP046033.1, CP041513.1, CP026795.1, CP026797.1, CP026814.1, CP026731.1, CP011511.1, CP001063.1, CP047094.1, CP024695.1, CP026867.1, CP026866.1, CP026762.1, CP026872.1, CP026839.1, CP024470.1, CP045522.1, CP026803.1, CP032513.1, CP026098.1, CP026875.1, CP026845.1, CP026877.1, CP044191.1, CP044151.1, CP041511.1, CP032523.1, CP029794.1, CP027027.1, CP026802.1, CP026836.1, HE616528.1, CP045526.1, CP045524.1, CP046286.1, CP045932.1, CP041322.1, CP LR 041322.1, CP041322.1, or a strain.
In one embodiment of the invention, the nucleotide sequence of the gene encoding the blue light receptor protein bluF is shown in SEQ ID No. 3.
In one embodiment of the invention, the gene of interest is a gene encoding green fluorescent protein.
In one embodiment of the invention, the nucleotide sequence of the gene encoding green fluorescent protein is shown as SEQ ID No. 4.
The invention also provides a host cell, which carries the light-operated gene switch; alternatively, the genome of the host cell has integrated therein a gene segment comprising the ycgZ promoter and the gene of interest; alternatively, the genome of the host cell has integrated a gene segment comprising a gene encoding the blue light receptor protein, bluF, the ycgZ promoter, and the gene of interest; alternatively, the genome of the host cell has integrated a gene segment comprising a gene encoding the regulatory protein blu, a gene encoding the blue light receptor protein blu f, the ycgZ promoter and the gene of interest.
In one embodiment of the invention, when the genome of the host cell incorporates a gene segment comprising the ycgZ promoter and a gene of interest, the gene of interest is located downstream of the ycgZ promoter; when the genome of the host cell is integrated with a gene fragment containing a gene encoding blue light receptor protein bluF, the ycgZ promoter, and a gene of interest located downstream of the ycgZ promoter, the gene encoding blue light receptor protein bluF is located upstream of the ycgZ promoter; when the genome of the host cell is integrated with a gene fragment containing a gene encoding a regulatory protein blu, a gene encoding a blue light receptor protein blu, a ycgZ promoter, and a gene of interest, the gene of interest is located downstream of the ycgZ promoter, the gene encoding the blue light receptor protein blu is located upstream of the ycgZ promoter, and the gene encoding the regulatory protein blu is located upstream of the gene encoding the blue light receptor protein blu.
In one embodiment of the invention, the host cell is a bacterium or a fungus.
In one embodiment of the invention, the host cell is a gram-negative bacterium.
In one embodiment of the invention, the host cell is E.coli.
The invention also provides a method for controlling the expression quantity of the target protein, which comprises the steps of inoculating the host cell into a culture medium for fermentation to obtain fermentation liquor, and then separating the fermentation liquor to obtain the target protein; in the fermentation process, the expression amount of the target protein is controlled by controlling the irradiation dose of the blue light.
In one embodiment of the present invention, the target protein is green fluorescent protein.
The invention also provides the application of the light-operated gene switch or the host cell or the method in producing target protein.
In one embodiment of the present invention, the target protein is green fluorescent protein.
[ advantageous effects ]
(1) The invention provides a light-operated gene switch, which is a recombinant plasmid for expressing a gene for coding a regulatory protein BluR, a gene for coding a blue light receptor protein BluF, an ycgZ promoter and a target gene, wherein when no blue light is irradiated, the regulatory protein BluR coded by the BluR can be combined on the ycgZ promoter to inhibit ycgZ, and when the blue light is irradiated, the blue light receptor protein BluF coded by the BluF gene can relieve the inhibition of the regulatory protein BluR on the ycgZ to start the expression of the target gene; the light-operated gene switch can control the expression quantity of the target protein by controlling the irradiation dose of blue light so as to achieve the aim of accurately controlling the expression of the target protein in time and space.
(2) The invention provides a method for controlling the expression quantity of a target protein, by using the method, the expression quantity of the target protein can be controlled by controlling the irradiation dose of blue light, so as to achieve the aim of accurately controlling the expression of the target protein in space and time, and the blue light irradiation has the advantages of no harm to host cells and low cost.
Drawings
FIG. 1: light-operated gene switch pET28a-PycgZPlasmid map of gfp.
FIG. 2: fluorescence intensity of fermentation liquor obtained by fermenting different recombinant escherichia coli.
FIG. 3: recombinant Escherichia coli BL21/pET28a-PycgZFluorescence intensity of the fermentation broth obtained at different times of gfp fermentation.
FIG. 4: light-operated gene switch pET28a-blu R-PycgZPlasmid map of gfp.
FIG. 5: fluorescence intensity of fermentation liquor obtained by fermenting different recombinant escherichia coli.
FIG. 6: light-operated gene switch pET28a-bluF-PycgZPlasmid map of gfp.
FIG. 7: recombinant Escherichia coli BL21/pET28a-bluF-PycgZFluorescence intensity of the fermentation broth obtained at different times of gfp fermentation.
Detailed Description
Coli (Escherichia coli) BL21 and E.coli (Escherichia coli) W3110 referred to in the examples below were purchased from Youbao; the pET-28a plasmid and the pWSK129 plasmid referred to in the following examples were purchased from Biovector plasmid vector cell gene collection center; the One-Step Cloning Kit referred to in the following examples was purchased from Biotech Inc. of Najing Nodezam, Inc., having a commercial number of C113-01.
The media and reagents involved in the following examples are as follows:
LB liquid medium: 10g/L of peptone and 5g/L, NaCl 10g/L of yeast extract.
LB solid medium: 10g/L of peptone, 5g/L, NaCl 10g/L of yeast extract and 15g/L of agar.
Example 1: light-operated gene switch pET28a-PycgZConstruction of-gfp
The method comprises the following specific steps:
(1) light-operated gene switch pET28a-PycgZConstruction of-gfp
Synthesizing a gene gfp (SEQ ID No.4) for coding green fluorescent protein; carrying out double enzyme digestion on gfp gene encoding green fluorescent protein and pET-28a plasmid through BamH I and EcoRI, and then connecting by using a One-Step Cloning Kit Clon express Multi One Step Cloning Kit to obtain a connected product; transforming the ligation product into escherichia coli BL21 to obtain a transformation product; the transformed product was spread on LB solid medium (containing 30. mu.g.mL)-1Kanamycin), and performing inverted culture in a constant-temperature incubator at 37 ℃ for 8-12 h to obtain a transformant; selecting a transformant, inoculating the transformant to an LB liquid culture medium, performing shake-flask culture for 8-12 h at 37 ℃ and 200rpm, extracting plasmids, and performing PCR verification to obtain recombinant escherichia coli BL21/pET28a-gfp and recombinant plasmid pET28a-gfp after verification is correct;
the primers used for PCR verification are as follows:
pET28a-gfp+(SEQ ID No.5):
CAGCAAATGGGTCGCGGATCCATGAGTAAAGGAGAAGAACTTTTCACTG;
pET28a-gfp-(SEQ ID No.6):
TTGTCGACGGAGCTCGAATTCCTATTTGTATAGTTCATCCATGCCATG。
synthesizing the ycgZ promoter (SEQ ID No.1) derived from Escherichia coli (Escherichia coli) MG 1655; the ycgZ promoter and the recombinant plasmid pET28a-gfp were digested by Bgl I and Xba I, and then ligated by using the One-Step Cloning Kit Clon express Multi S One Step Cloning Kit to obtainTo the ligation product; transforming the ligation product into escherichia coli BL21 to obtain a transformation product; the transformed product was spread on LB solid medium (containing 12.5. mu.g.mL)-1Kanamycin), and performing inverted culture in a constant-temperature incubator at 37 ℃ for 8-12 h to obtain a transformant; selecting a transformant, inoculating the transformant to an LB liquid culture medium, performing shake-flask culture for 8-12 h at 37 ℃ and 200rpm, extracting plasmids for PCR verification, and obtaining recombinant escherichia coli BL21/pET28a-P after verification is correctycgZGfp and the recombinant plasmid pET28a-PycgZGfp (plasmid map see fig. 1, nucleotide sequence of plasmid SEQ ID No. 7);
the primers used for the one-step cloning are as follows:
pET28a-PycgZ-gfp promoter+(SEQ ID No.8)
CGGCGTAGAGGATCGAGATCTTCTTTTAATACCAAAACATAACC;
pET28a-PycgZ-gfp promoter-(SEQ ID No.9)
AACAAAATTATTTCTAGAGCTACGCCTCTGTTAAA;
the primers used for PCR validation were as follows:
pET28a-PycgZ-gfp promoter test+(SEQ ID No.10):
CTCTCCCTTATGCGACTCCT;
pET28a-PycgZ-gfp promoter test-(SEQ ID No.11):
GCCAACTAGTGTTCAACTTTTTCCA。
(2) light-operated gene switch pET28a-PycgZFirst verification of gfp
Recombinant Escherichia coli BL21/pET28a-gfp was used as a control, and recombinant Escherichia coli BL21/pET28a-P was usedycgZInoculating a gfp single colony into an LB liquid culture medium, performing shake culture for 3h under the conditions of 37 ℃, 200rpm and natural illumination, and fermenting for 15h under the conditions of 37 ℃, 200rpm and blue light illumination or 37 ℃, 200rpm and darkness respectively to obtain a fermentation liquid; wherein, the blue light is emitted by an 415nm LED lamp, and the illumination frequency is 15min off/15 min on.
Detecting the recombinant Escherichia coli BL21/pET28a-gfp and the recombinant Escherichia coli BL21/pET28a-P by an enzyme-labeling instrumentycgZFluorescence intensity (excitation wavelength) of fermentation broth obtained by gfp fermentation488nm, emission wavelength 516nm), the detection result is shown in FIG. 2.
As shown in FIG. 2, when the recombinant Escherichia coli BL21/pET28a-gfp was fermented without IPTG induction, the fluorescence intensity of the fermentation broth obtained by fermentation was 2000AU/OD600Recombinant Escherichia coli BL21/pET28a-PycgZFluorescence intensity of fermentation broth from gfp fermentation 80000AU/OD600. Thus, the light-operated gene switch pET28a-PycgZThe gfp can regulate the expression of the target gene gfp, and the expression level of the target gene gfp gradually increases with the increase of the illumination time.
(3) Light-operated gene switch pET28a-PycgZSecond verification of gfp
To prove the light-operated gene switch pET28a-P of the inventionycgZThe gfp can control the expression quantity of the target protein, and the recombinant Escherichia coli BL21/pET28a-PycgZInoculating a gfp single colony into an LB liquid culture medium, performing shake culture for 3h under the conditions of 37 ℃, 200rpm and natural illumination, and fermenting for 9h under the conditions of 37 ℃, 200rpm and blue light illumination or 37 ℃, 200rpm and darkness respectively to obtain a fermentation liquid; wherein, the blue light is emitted by an 415nm LED lamp, and the illumination frequency is 15min off/15 min on.
Detection of recombinant Escherichia coli BL21/pET28a-P by enzyme labeling instrumentycgZFluorescence intensity (excitation wavelength 488nm, emission wavelength 516nm) of fermentation broth obtained at different time of gfp fermentation, and the detection results are shown in fig. 3.
As shown in FIG. 3, fluorescence intensity/OD before blue light irradiation600Almost the same, and at 15h on blue light irradiation, E.coli BL21/pET28a-PycgZFluorescence intensity of fermentation broth from gfp fermentation 80000AU/OD600The expression level of the same strain is only 45000AU/OD under dark conditions600
Example 2: light-operated gene switch pET28a-blu R-blu F-PycgZConstruction of-gfp
The method comprises the following specific steps:
(1) light-operated gene switch pET28a-blu R-blu F-PycgZConstruction of-gfp
Synthesis of a Gene encoding the regulatory protein BluR derived from Escherichia coli (Escherichia coli) MG1655Gene (SEQ ID No.2) and a gene encoding the blue light receptor protein bluF (SEQ ID No.3) derived from Escherichia coli (Escherichia coli) MG 1655; carrying out double enzyme digestion on a gene for coding a regulatory protein bluR, a gene for coding a blue light receptor protein bluF and a recombinant plasmid pET28a-gfp by Bgl I and BamH I, and then connecting by using a One-Step Cloning Kit Clon express Multi One Step Cloning Kit to obtain a connection product; transforming the ligation product into escherichia coli BL21 to obtain a transformation product; the transformed product was spread on LB solid medium (containing 30. mu.g.mL)-1Kanamycin), and performing inverted culture in a constant-temperature incubator at 37 ℃ for 8-12 h to obtain a transformant; selecting a transformant, inoculating the transformant to an LB liquid culture medium, performing shake-flask culture for 8-12 h at 37 ℃ and 200rpm, extracting plasmids for PCR verification, and obtaining recombinant escherichia coli BL21/pET28a-bluR-bluF-P after verification is correctycgZGfp and the recombinant plasmid pET28a-blu R-blu F-PycgZGfp (plasmid map see fig. 4, nucleotide sequence of plasmid SEQ ID No. 12);
the primers used for the one-step cloning are as follows:
pET28a-bluR-bluF-PycgZ-gfp+(SEQ ID No.13)
CAGCAAATGGGTCGCGGATCCATGAGTAAAGGAGAAGAACTTTTCACTG;
pET28a-bluR-bluF-PycgZ-gfp-(SEQ ID No.14)
TTGTCGACGGAGCTCGAATTCCTATTTGTATAGTTCATCCATGCCATG;
the primers used for PCR validation were as follows:
pET28a-bluR-bluF-PycgZ-gfp test+(SEQ ID No.15):
GTAGGTGTTCCACAGGGTAGC;
pET28a-bluR-bluF-PycgZ-gfp test-(SEQ ID No.16):
CTCCCGCATTATGAGCAGTA。
(2) light-operated gene switch pET28a-blu R-blu F-PycgZVerification of gfp
Inoculating a single colony of recombinant escherichia coli BL21/pET28a-gfp serving as a control into an LB liquid culture medium, performing shake-flask culture for 3h at 37 ℃ under 200rpm under natural illumination, adding IPTG (isopropyl-beta-thiogalactoside) into the LB liquid culture medium until the final concentration is 1mmol/L, and continuing to perform shake-flask culture for 15h at 37 ℃ under 200rpm under natural illumination to obtain a fermentation liquid.
Recombinant Escherichia coli BL21/pET28a-PycgZGfp and BL21/pET28a-blu R-blu F-PycgZInoculating a gfp single colony into an LB liquid culture medium, performing shake culture for 3h under the conditions of 37 ℃, 200rpm and natural illumination, and fermenting for 15h under the conditions of 37 ℃, 200rpm and blue light illumination or 37 ℃, 200rpm and darkness respectively to obtain a fermentation liquid; wherein, the blue light is emitted by an 415nm LED lamp, and the illumination frequency is 15min off/15 min on.
Detecting recombinant escherichia coli BL21/pET28a-gfp and recombinant escherichia coli BL21/pET28a-P by an enzyme-labeling instrumentycgZGfp and recombinant E.coli BL21/pET28a-blu R-blu F-PycgZFluorescence intensity of fermentation broth from gfp fermentation (excitation wavelength 488nm, emission wavelength 516nm), the results are shown in fig. 4.
As shown in fig. 4, both photoswitches have a regulating effect, and the protein expression level gradually increases with the increase of the illumination dose. And the two switches are compared to find that the recombinant plasmid pET28a-bluR-bluF-PycgZGfp effect after blue light irradiation compared to recombinant plasmid pET28a-P with only ycgZ promoter addedycgZThe effect of gfp is more pronounced after blue light irradiation. Recombinant plasmid BL21/pET28a-blu R-blu F-PycgZThe fluorescence intensity of gfp can reach 100000AU/OD after 15 hours of blue light irradiation600The above.
Example 3: light-operated gene switch pET28a-bluF-PycgZConstruction of-gfp
The method comprises the following specific steps:
(1) light-operated gene switch pET28a-bluF-PycgZConstruction of-gfp
Synthesizing a gene encoding blue light receptor protein bluF (SEQ ID No.3) derived from Escherichia coli (Escherichia coli) MG 1655; carrying out double enzyme digestion on a gene for coding a blue light receptor protein bluF and a recombinant plasmid pET28a-gfp by Bgl I and BamH I, and then connecting by using a One-Step Cloning Kit Clon express Multi One Step Cloning Kit to obtain a ligation product; transforming the ligation product into escherichia coli BL21 to obtain a transformation product; the transformation product was plated on LB solid medium (containing30μg·mL-1Kanamycin), and performing inverted culture in a constant-temperature incubator at 37 ℃ for 8-12 h to obtain a transformant; selecting a transformant, inoculating the transformant to an LB liquid culture medium, performing shake-flask culture for 8-12 h at 37 ℃ and 200rpm, extracting plasmids for PCR verification, and obtaining recombinant escherichia coli BL21/pET28a-bluF-P after verification is correctycgZGfp and the recombinant plasmid pET28a-bluF-PycgZGfp (plasmid map see fig. 6, nucleotide sequence of plasmid SEQ ID No. 17);
the primers used for the one-step cloning are as follows:
pET28a-bluF-PycgZ-gfp+(SEQ ID No.18)
TGGGGCCGCCATGCCGGCTTATTTTTTCTCTGGCCACGCT;
pET28a-bluF-PycgZ-gfp-(SEQ ID No.19)
TTAAACAAAATTATTTCTAGAGCTACGCCTCTGTTAAAAATGTTAA;
the primers used for PCR validation were as follows:
pET28a-bluF-PycgZ-gfp test+(SEQ ID No.20):
GTAGGTGTTCCACAGGGTAG;
pET28a-bluF-PycgZ-gfp test-(SEQ ID No.21):
CTATTTGTATAGTTCATCCATGCCATG。
(2) light-operated gene switch pET28a-bluF-PycgZVerification of gfp
Recombinant Escherichia coli BL21/pET28a-bluF-PycgZInoculating a single colony of gfp into an LB liquid culture medium, performing shake culture for 3h under the conditions of 37 ℃, 200rpm and natural illumination, and fermenting for 6.5h under the conditions of 37 ℃, 200rpm and blue light illumination or 37 ℃, 200rpm and darkness respectively to obtain a fermentation liquid; wherein, the blue light is emitted by an 415nm LED lamp, and the illumination frequency is 15min off/15 min on.
Detection of recombinant Escherichia coli BL21/pET28a-bluF-P by enzyme-labeling instrumentycgZFluorescence intensity of fermentation broth from gfp fermentation (excitation wavelength 488nm, emission wavelength 525nm), the results are shown in fig. 7.
As shown in FIG. 7, the fluorescence intensity of the fermentation broth obtained by fermentation of recombinant E.coli was different from the first two due to the different detection wavelengthsThe photoswitches differ. The fluorescence intensity of the fermentation liquor is 2300AU/OD when being irradiated by blue light for 6.5h600300AU/OD only in dark conditions600. Thus, the light-operated gene switch BL21/pET28a-bluF-PycgZGfp can regulate the expression of the gene of interest gfp. Furthermore, the expression level of the target gene gfp gradually increases with the increase of the illumination time, so that the light-operated gene switch BL21/pET28a-bluF-PycgZSensitivity to gfp is better.
Example 4: construction of other light-operated Gene switches
The method comprises the following specific steps:
based on example 1, the ycgZ promoter from Escherichia coli (Escherichia coli) MG1655 was replaced with the ycgZ promoters from different sources in table 1, and effect detection shows that the ycgZ promoters in table 1 all have similar effects when used in a light-operated gene switch expression system.
TABLE 1 sources of the ycgZ promoter and its NCBI numbering
Promoter source NCBI number
Salmonella sp.HNK130 CP046033.1
Shigella sp.PAMC 28760 CP014768.1
Shigella boydii strain 192 CP024695.1
Shigella boydii strain 83-578 CP026814.1
Although the present invention has been described with reference to the preferred embodiments, it should be understood that various changes and modifications can be made therein by those skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims.
Sequence listing
<110> university of south of the Yangtze river
<120> light-operated gene switch and application thereof
<160> 21
<170> PatentIn version 3.3
<210> 1
<211> 248
<212> DNA
<213> Artificial sequence
<400> 1
cttttaatac caaaacataa ccgtttcttt acattgataa aaaatggaaa aagttgaaca 60
ctagttggcg aaaaatcttg tatagattgt cagttaaatg atgcaatatg ttttatcata 120
acacattgtt ttatatgcat tagcactaat tgcaaaaaat taatttatca ttctgtacac 180
atatttcgta caagtttgct attgttactt cacttaacat tgattaacat ttttaacaga 240
ggcgtagc 248
<210> 2
<211> 732
<212> DNA
<213> Artificial sequence
<400> 2
ttagggggca tgaaagatga ctttataacc ttgctcaccc cagtgttgta aaagttcgtt 60
ttgccttctc gttggtgcca tgcctgtcca gacaatcaat gtttgcgtcg ggaacagttc 120
cgggcgcggc gattcaatgg gatcagcaag aacagaaatg tgccatcctg acaatgataa 180
acgccatgct tccagccaca atcgtgctct ctcttcaaca ttccacgcca tcagaatggc 240
ttctttaccg ggcttacggc gcatttcgaa aagcgaggtt gctgcgtatt caattaatgc 300
gccgtcaaac atactgctca taatgcggga ggtgttgtga tcaagcacga gacgctggcg 360
aacaggaagg taaacatgat taatcaattg atctactggg tactctcgac ccagtgaaat 420
aattctcgcg cgtagtttgg caggattagc catgcgaaga attgacatca tctcttcttg 480
caggcggctc cagtcatctt ccgtatcctg gctggtggtt tccagtaatg ctttaacttt 540
gcctacaggg acgccattac ttatccaacg cttgatctct tcgatgcgtt gtatgtcttc 600
ttcatcaaag agtcggtgtc cgccttcact gcgctgtggt tttaacaaac cgtagcggcg 660
ttgccaggcc cggagagtga caggattaat cccgcaacgt tcagcaacat caccaatgct 720
gtaataagcc ac 732
<210> 3
<211> 1212
<212> DNA
<213> Artificial sequence
<400> 3
ttattttttc tctggccacg ctatggaagg gataccattc aatttagctt tagcaaacag 60
atctccctga aacatctcaa ttcctgcgga ttcaagccac atccactctt ctggtgttgc 120
cacgcccata gcactgactt gaatttcaag tgatgtacag cattttatga tcgcctgaat 180
aattgcctgc cgtggcccac ttttatgaac attggtaatc aattcctgac tgattttaat 240
tctgtcaggc tggaagcgtg acaggagtaa caaaccagca aaacctgcgc caaaatgatc 300
aattgctaca ctgataccag cagcctttag cgatttaatc gcttcggcaa actcatcaaa 360
ccgagatatg acttcacttt cagtaaattc aacgatgatt tgttcaggca ccagagcatt 420
ggcctttatt tcattaagta aaaaagagac tgcgtcaggt tcgttaacca gggtcatagg 480
taatagattg attgaaatca ttttatcacc gagctcaagt gcgtgtgcca tcgtgaatgc 540
aagcgcctta cttttgagat ccgctgtgta gatttccccg tctttacgct gcccaaccgc 600
tatggctgat gggctatctt catttttttg cacaatggct tcaaaagcga ttatccgccg 660
cgataaggga tcgacaatag gatgaaaggc aaagtggtcg tttatagttg gtgaaagggc 720
acaggaatca agttctttat cagatccgtc agcgataaaa agccaggagt cttcggcagg 780
gatctcgaaa taggttgatt gttcggttgc aaggacaaaa gtacgaaaaa attgtagcgc 840
tctgtcatca taagttagct gaaattttga tgtgcctttg tcgaatacgg cctgtaaaac 900
gtcatctcgc tcgtgcaggc gcaaatcaaa taattccatt cccgctttgc caaaacggcg 960
agcaggcgcg taatcgcaca gcagctcaac aatattatag tgccgtggat cctggcatat 1020
agcccgatat atcattttaa cctgttcttc cggaccttcc agaagctgga aaaaatgaga 1080
accattaaac agtaagatcc ctgttacgtc agactgcatg ttcctgcgat ttgctatcga 1140
aaccatttct tcgatttttt tgacaggttc gtcgtcacgt atatggctac gataaataag 1200
ggtggtaagc at 1212
<210> 4
<211> 717
<212> DNA
<213> Artificial sequence
<400> 4
atgagtaaag gagaagaact tttcactgga gttgtcccaa ttcttgttga attagatggt 60
gatgttaatg ggcacaaatt ttctgtcagt ggagagggtg aaggtgatgc aacatacgga 120
aaacttaccc ttaaatttat ttgcactact ggaaaactac ctgttccatg gccaacactt 180
gtcactactt tgacttatgg tgttcaatgc ttttcaagat acccagatca tatgaaacgg 240
catgactttt tcaagagtgc catgcccgaa ggttatgtac aggaaagaac tatatttttc 300
aaagatgacg ggaactacaa gacacgtgct gaagtcaagt ttgaaggtga tacccttgtt 360
aatagaatcg agttaaaagg tattgatttt aaagaagatg gaaacattct tggacacaaa 420
ttggaataca actataactc acacaatgta tacatcatgg cagacaaaca aaagaatgga 480
atcaaagtta acttcaaaat tagacacaac attgaagatg gaagcgttca actagcagac 540
cattatcaac aaaatactcc aattggcgat ggccctgtcc ttttaccaga caaccattac 600
ctgtccacac aatctgccct ttcgaaagat cccaacgaaa agagagacca catggtcctt 660
cttgagtttg taacagctgc tgggattaca catggcatgg atgaactata caaatag 717
<210> 5
<211> 49
<212> DNA
<213> Artificial sequence
<400> 5
cagcaaatgg gtcgcggatc catgagtaaa ggagaagaac ttttcactg 49
<210> 6
<211> 48
<212> DNA
<213> Artificial sequence
<400> 6
ttgtcgacgg agctcgaatt cctatttgta tagttcatcc atgccatg 48
<210> 7
<211> 6275
<212> DNA
<213> Artificial sequence
<400> 7
tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540
tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600
tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660
actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720
gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780
aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840
agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900
cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960
aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020
tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080
tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140
taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200
ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260
tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320
tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380
cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1560
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160
tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220
agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280
tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340
caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400
ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460
gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520
gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580
gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640
aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700
ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760
acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820
ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880
tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940
tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000
cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060
gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120
ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180
catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240
ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300
gctccagcga aagcggtcct cgccgaaaat gacccagagc gctgccggca cctgtcctac 3360
gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420
ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480
atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540
cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600
tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660
ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720
aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780
atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840
cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900
gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960
tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc agacgcgccg 4020
agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080
gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140
ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200
catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260
tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320
tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380
gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440
ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500
tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 4560
catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct 4620
cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680
tctcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag taggttgagg 4740
ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800
ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860
cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920
gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctt cttttaatac 4980
caaaacataa ccgtttcttt acattgataa aaaatggaaa aagttgaaca ctagttggcg 5040
aaaaatcttg tatagattgt cagttaaatg atgcaatatg ttttatcata acacattgtt 5100
ttatatgcat tagcactaat tgcaaaaaat taatttatca ttctgtacac atatttcgta 5160
caagtttgct attgttactt cacttaacat tgattaacat ttttaacaga ggcgtagctc 5220
tagaaataat tttgtttaac tttaagaagg agatatacca tgggcagcag ccatcatcat 5280
catcatcaca gcagcggcct ggtgccgcgc ggcagccata tggctagcat gactggtgga 5340
cagcaaatgg gtcgcggatc catgagtaaa ggagaagaac ttttcactgg agttgtccca 5400
attcttgttg aattagatgg tgatgttaat gggcacaaat tttctgtcag tggagagggt 5460
gaaggtgatg caacatacgg aaaacttacc cttaaattta tttgcactac tggaaaacta 5520
cctgttccat ggccaacact tgtcactact ttgacttatg gtgttcaatg cttttcaaga 5580
tacccagatc atatgaaacg gcatgacttt ttcaagagtg ccatgcccga aggttatgta 5640
caggaaagaa ctatattttt caaagatgac gggaactaca agacacgtgc tgaagtcaag 5700
tttgaaggtg atacccttgt taatagaatc gagttaaaag gtattgattt taaagaagat 5760
ggaaacattc ttggacacaa attggaatac aactataact cacacaatgt atacatcatg 5820
gcagacaaac aaaagaatgg aatcaaagtt aacttcaaaa ttagacacaa cattgaagat 5880
ggaagcgttc aactagcaga ccattatcaa caaaatactc caattggcga tggccctgtc 5940
cttttaccag acaaccatta cctgtccaca caatctgccc tttcgaaaga tcccaacgaa 6000
aagagagacc acatggtcct tcttgagttt gtaacagctg ctgggattac acatggcatg 6060
gatgaactat acaaatagga attcgagctc cgtcgacaag cttgcggccg cactcgagca 6120
ccaccaccac caccactgag atccggctgc taacaaagcc cgaaaggaag ctgagttggc 6180
tgctgccacc gctgagcaat aactagcata accccttggg gcctctaaac gggtcttgag 6240
gggttttttg ctgaaaggag gaactatatc cggat 6275
<210> 8
<211> 44
<212> DNA
<213> Artificial sequence
<400> 8
cggcgtagag gatcgagatc ttcttttaat accaaaacat aacc 44
<210> 9
<211> 35
<212> DNA
<213> Artificial sequence
<400> 9
aacaaaatta tttctagagc tacgcctctg ttaaa 35
<210> 10
<211> 20
<212> DNA
<213> Artificial sequence
<400> 10
ctctccctta tgcgactcct 20
<210> 11
<211> 25
<212> DNA
<213> Artificial sequence
<400> 11
gccaactagt gttcaacttt ttcca 25
<210> 12
<211> 5495
<212> DNA
<213> Artificial sequence
<400> 12
tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540
tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600
tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660
actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720
gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780
aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840
agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900
cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960
aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020
tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080
tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140
taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200
ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260
tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320
tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380
cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1560
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160
tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220
agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280
tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340
caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400
ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460
gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520
gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580
gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640
aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700
ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760
acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820
ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880
tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940
tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000
cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060
gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120
ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180
catgccggct tagggggcat gaaagatgac tttataacct tgctcacccc agtgttgtaa 3240
aagttcgttt tgccttctcg ttggtgccat gcctgtccag acaatcaatg tttgcgtcgg 3300
gaacagttcc gggcgcggcg attcaatggg atcagcaaga acagaaatgt gccatcctga 3360
caatgataaa cgccatgctt ccagccacaa tcgtgctctc tcttcaacat tccacgccat 3420
cagaatggct tctttaccgg gcttacggcg catttcgaaa agcgaggttg ctgcgtattc 3480
aattaatgcg ccgtcaaaca tactgctcat aatgcgggag gtgttgtgat caagcacgag 3540
acgctggcga acaggaaggt aaacatgatt aatcaattga tctactgggt actctcgacc 3600
cagtgaaata attctcgcgc gtagtttggc aggattagcc atgcgaagaa ttgacatcat 3660
ctcttcttgc aggcggctcc agtcatcttc cgtatcctgg ctggtggttt ccagtaatgc 3720
tttaactttg cctacaggga cgccattact tatccaacgc ttgatctctt cgatgcgttg 3780
tatgtcttct tcatcaaaga gtcggtgtcc gccttcactg cgctgtggtt ttaacaaacc 3840
gtagcggcgt tgccaggccc ggagagtgac aggattaatc ccgcaacgtt cagcaacatc 3900
accaatgctg taataagcca caattcctcc ttgcggtcac aaatctccgt cgcctgtaca 3960
cgacccaata atactttgta caatatacgc taaaattgta caaagtataa ataagatttc 4020
agctaaattg gatgaaacat tatttttaat gtggattaaa tttaaacgta acgtattcat 4080
tttcacgatg atttactgaa atcatgtgaa agaatgtgct gaaaattatt ttttctctgg 4140
ccacgctatg gaagggatac cattcaattt agctttagca aacagatctt cttttaatac 4200
caaaacataa ccgtttcttt acattgataa aaaatggaaa aagttgaaca ctagttggcg 4260
aaaaatcttg tatagattgt cagttaaatg atgcaatatg ttttatcata acacattgtt 4320
ttatatgcat tagcactaat tgcaaaaaat taatttatca ttctgtacac atatttcgta 4380
caagtttgct attgttactt cacttaacat tgattaacat ttttaacaga ggcgtagctc 4440
tagaaataat tttgtttaac tttaagaagg agatatacca tgggcagcag ccatcatcat 4500
catcatcaca gcagcggcct ggtgccgcgc ggcagccata tggctagcat gactggtgga 4560
cagcaaatgg gtcgcggatc catgagtaaa ggagaagaac ttttcactgg agttgtccca 4620
attcttgttg aattagatgg tgatgttaat gggcacaaat tttctgtcag tggagagggt 4680
gaaggtgatg caacatacgg aaaacttacc cttaaattta tttgcactac tggaaaacta 4740
cctgttccat ggccaacact tgtcactact ttgacttatg gtgttcaatg cttttcaaga 4800
tacccagatc atatgaaacg gcatgacttt ttcaagagtg ccatgcccga aggttatgta 4860
caggaaagaa ctatattttt caaagatgac gggaactaca agacacgtgc tgaagtcaag 4920
tttgaaggtg atacccttgt taatagaatc gagttaaaag gtattgattt taaagaagat 4980
ggaaacattc ttggacacaa attggaatac aactataact cacacaatgt atacatcatg 5040
gcagacaaac aaaagaatgg aatcaaagtt aacttcaaaa ttagacacaa cattgaagat 5100
ggaagcgttc aactagcaga ccattatcaa caaaatactc caattggcga tggccctgtc 5160
cttttaccag acaaccatta cctgtccaca caatctgccc tttcgaaaga tcccaacgaa 5220
aagagagacc acatggtcct tcttgagttt gtaacagctg ctgggattac acatggcatg 5280
gatgaactat acaaatagga attcgagctc cgtcgacaag cttgcggccg cactcgagca 5340
ccaccaccac caccactgag atccggctgc taacaaagcc cgaaaggaag ctgagttggc 5400
tgctgccacc gctgagcaat aactagcata accccttggg gcctctaaac gggtcttgag 5460
gggttttttg ctgaaaggag gaactatatc cggat 5495
<210> 13
<211> 49
<212> DNA
<213> Artificial sequence
<400> 13
cagcaaatgg gtcgcggatc catgagtaaa ggagaagaac ttttcactg 49
<210> 14
<211> 48
<212> DNA
<213> Artificial sequence
<400> 14
ttgtcgacgg agctcgaatt cctatttgta tagttcatcc atgccatg 48
<210> 15
<211> 21
<212> DNA
<213> Artificial sequence
<400> 15
gtaggtgttc cacagggtag c 21
<210> 16
<211> 20
<212> DNA
<213> Artificial sequence
<400> 16
ctcccgcatt atgagcagta 20
<210> 17
<211> 5771
<212> DNA
<213> Artificial sequence
<400> 17
tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540
tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600
tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660
actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720
gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780
aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840
agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900
cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960
aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020
tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080
tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140
taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200
ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260
tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320
tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380
cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1560
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160
tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220
agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280
tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340
caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400
ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460
gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520
gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580
gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640
aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700
ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760
acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820
ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880
tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940
tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000
cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060
gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120
ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180
catgccggct tattttttct ctggccacgc tatggaaggg ataccattca atttagcttt 3240
agcaaacaga tctccctgaa acatctcaat tcctgcggat tcaagccaca tccactcttc 3300
tggtgttgcc acgcccatag cactgacttg aatttcaagt gatgtacagc attttatgat 3360
cgcctgaata attgcctgcc gtggcccact tttatgaaca ttggtaatca attcctgact 3420
gattttaatt ctgtcaggct ggaagcgtga caggagtaac aaaccagcaa aacctgcgcc 3480
aaaatgatca attgctacac tgataccagc agcctttagc gatttaatcg cttcggcaaa 3540
ctcatcaaac cgagatatga cttcactttc agtaaattca acgatgattt gttcaggcac 3600
cagagcattg gcctttattt cattaagtaa aaaagagact gcgtcaggtt cgttaaccag 3660
ggtcataggt aatagattga ttgaaatcat tttatcaccg agctcaagtg cgtgtgccat 3720
cgtgaatgca agcgccttac ttttgagatc cgctgtgtag atttccccgt ctttacgctg 3780
cccaaccgct atggctgatg ggctatcttc atttttttgc acaatggctt caaaagcgat 3840
tatccgccgc gataagggat cgacaatagg atgaaaggca aagtggtcgt ttatagttgg 3900
tgaaagggca caggaatcaa gttctttatc agatccgtca gcgataaaaa gccaggagtc 3960
ttcggcaggg atctcgaaat aggttgattg ttcggttgca aggacaaaag tacgaaaaaa 4020
ttgtagcgct ctgtcatcat aagttagctg aaattttgat gtgcctttgt cgaatacggc 4080
ctgtaaaacg tcatctcgct cgtgcaggcg caaatcaaat aattccattc ccgctttgcc 4140
aaaacggcga gcaggcgcgt aatcgcacag cagctcaaca atattatagt gccgtggatc 4200
ctggcatata gcccgatata tcattttaac ctgttcttcc ggaccttcca gaagctggaa 4260
aaaatgagaa ccattaaaca gtaagatccc tgttacgtca gactgcatgt tcctgcgatt 4320
tgctatcgaa accatttctt cgattttttt gacaggttcg tcgtcacgta tatggctacg 4380
ataaataagg gtggtaagca ttaacaatcc agggtaatgg gtgaggcgag agtaagacgg 4440
taacagacat atcttcttgt gtctttcttt taataccaaa acataaccgt ttctttacat 4500
tgataaaaaa tggaaaaagt tgaacactag ttggcgaaaa atcttgtata gattgtcagt 4560
taaatgatgc aatatgtttt atcataacac attgttttat atgcattagc actaattgca 4620
aaaaattaat ttatcattct gtacacatat ttcgtacaag tttgctattg ttacttcact 4680
taacattgat taacattttt aacagaggcg tagctctaga aataattttg tttaacttta 4740
agaaggagat ataccatggg cagcagccat catcatcatc atcacagcag cggcctggtg 4800
ccgcgcggca gccatatggc tagcatgact ggtggacagc aaatgggtcg cggatccatg 4860
agtaaaggag aagaactttt cactggagtt gtcccaattc ttgttgaatt agatggtgat 4920
gttaatgggc acaaattttc tgtcagtgga gagggtgaag gtgatgcaac atacggaaaa 4980
cttaccctta aatttatttg cactactgga aaactacctg ttccatggcc aacacttgtc 5040
actactttga cttatggtgt tcaatgcttt tcaagatacc cagatcatat gaaacggcat 5100
gactttttca agagtgccat gcccgaaggt tatgtacagg aaagaactat atttttcaaa 5160
gatgacggga actacaagac acgtgctgaa gtcaagtttg aaggtgatac ccttgttaat 5220
agaatcgagt taaaaggtat tgattttaaa gaagatggaa acattcttgg acacaaattg 5280
gaatacaact ataactcaca caatgtatac atcatggcag acaaacaaaa gaatggaatc 5340
aaagttaact tcaaaattag acacaacatt gaagatggaa gcgttcaact agcagaccat 5400
tatcaacaaa atactccaat tggcgatggc cctgtccttt taccagacaa ccattacctg 5460
tccacacaat ctgccctttc gaaagatccc aacgaaaaga gagaccacat ggtccttctt 5520
gagtttgtaa cagctgctgg gattacacat ggcatggatg aactatacaa ataggaattc 5580
gagctccgtc gacaagcttg cggccgcact cgagcaccac caccaccacc actgagatcc 5640
ggctgctaac aaagcccgaa aggaagctga gttggctgct gccaccgctg agcaataact 5700
agcataaccc cttggggcct ctaaacgggt cttgaggggt tttttgctga aaggaggaac 5760
tatatccgga t 5771
<210> 18
<211> 40
<212> DNA
<213> Artificial sequence
<400> 18
tggggccgcc atgccggctt attttttctc tggccacgct 40
<210> 19
<211> 46
<212> DNA
<213> Artificial sequence
<400> 19
ttaaacaaaa ttatttctag agctacgcct ctgttaaaaa tgttaa 46
<210> 20
<211> 20
<212> DNA
<213> Artificial sequence
<400> 20
gtaggtgttc cacagggtag 20
<210> 21
<211> 27
<212> DNA
<213> Artificial sequence
<400> 21
ctatttgtat agttcatcca tgccatg 27

Claims (10)

1. A light-operated gene switch, wherein the light-operated gene switch is (a), (b), or (c):
(a) is a recombinant plasmid for expressing the ycgZ promoter and a target gene;
(b) is a recombinant plasmid for connecting a gene encoding a blue light receptor protein bluF on (a);
(c) is a recombinant plasmid for connecting a gene encoding a regulatory protein bluR and a gene encoding a blue light receptor protein bluF on (a).
2. The light-operated gene switch of claim 1, wherein when the light-operated gene switch is (a), the gene of interest is located downstream of the ycgZ promoter; when the light-operated gene switch is (b), the target gene is located downstream of the ycgZ promoter, and the gene encoding the blue light receptor protein, bluF, is located upstream of the ycgZ promoter; when the light-dependent gene switch is (c), the gene of interest is located downstream of the ycgZ promoter, the gene encoding blue light receptor protein blu f is located upstream of the ycgZ promoter, and the gene encoding regulatory protein blu r is located upstream of the gene encoding blue light receptor protein blu f.
3. The light-operated gene switch of claim 1 or 2, wherein the recombinant plasmid is a pET-28a plasmid, a pCL1920 plasmid, an pFT24 plasmid or a pBAD33 plasmid.
4. A light-operated gene switch as claimed in any one of claims 1 to 3, wherein the ycgZ promoter is derived from a strain having NCBI accession No. CP046033.1, CP014768.1, CP024695.1, CP041513.1, CP026797.1, CP026866.1, CP026814.1, CP026811.1, CP026762.1, CP026731.1, CP024470.1, CP011511.1, CP001063.1, CP032513.1, CP026795.1, CP026872.1, CP026098.1, CP041620.1, CP026875.1, CP026845.1, CP026877.1, CP026836.1, CP026846.1, CP026824.1, CP027027.1 or CP 026867.1.
5. A light-operated gene switch as claimed in any one of claims 1 to 4, characterized in that the gene coding for the regulatory protein blu is derived from a strain with NCBI accession number CP, HE, CP, LR, CP, or CP.
6. A light-operated gene switch as claimed in any one of claims 1 to 5, wherein the gene encoding the blue light receptor protein bluF is derived from a strain having NCBI accession number CP, HE, CP, LR, CP, or CP.
7. A host cell carrying the light-operated gene switch of any one of claims 1-6; alternatively, the genome of the host cell has integrated therein a gene segment comprising the ycgZ promoter and the gene of interest; alternatively, the genome of the host cell has integrated a gene segment comprising a gene encoding the blue light receptor protein, bluF, the ycgZ promoter, and the gene of interest; alternatively, the genome of the host cell has integrated a gene segment comprising a gene encoding the regulatory protein blu, a gene encoding the blue light receptor protein blu f, the ycgZ promoter and the gene of interest.
8. The host cell of claim 7, wherein when the genome of the host cell incorporates a gene segment comprising the ycgZ promoter and the gene of interest, the gene of interest is located downstream of the ycgZ promoter; when the genome of the host cell is integrated with a gene fragment containing a gene encoding blue light receptor protein bluF, the ycgZ promoter, and a gene of interest located downstream of the ycgZ promoter, the gene encoding blue light receptor protein bluF is located upstream of the ycgZ promoter; when the genome of the host cell is integrated with a gene fragment containing a gene encoding a regulatory protein blu, a gene encoding a blue light receptor protein blu, a ycgZ promoter, and a gene of interest, the gene of interest is located downstream of the ycgZ promoter, the gene encoding the blue light receptor protein blu is located upstream of the ycgZ promoter, and the gene encoding the regulatory protein blu is located upstream of the gene encoding the blue light receptor protein blu.
9. A method for controlling the expression level of a target protein, which comprises inoculating the host cell of claim 7 or 8 into a culture medium to ferment to obtain a fermentation broth, and then separating the fermentation broth to obtain the target protein; in the fermentation process, the expression amount of the target protein is controlled by controlling the irradiation dose of the blue light.
10. Use of the light-operated gene switch of any one of claims 1-6 or the host cell of claim 7 or 8 or the method of claim 9 for the production of a protein of interest.
CN202010928794.3A 2020-09-07 2020-09-07 Light-operated gene switch and application thereof Pending CN114150002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010928794.3A CN114150002A (en) 2020-09-07 2020-09-07 Light-operated gene switch and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010928794.3A CN114150002A (en) 2020-09-07 2020-09-07 Light-operated gene switch and application thereof

Publications (1)

Publication Number Publication Date
CN114150002A true CN114150002A (en) 2022-03-08

Family

ID=80460335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010928794.3A Pending CN114150002A (en) 2020-09-07 2020-09-07 Light-operated gene switch and application thereof

Country Status (1)

Country Link
CN (1) CN114150002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606171A (en) * 2022-03-24 2022-06-10 南京工业大学 Recombinant escherichia coli with blaR gene knocked out and construction method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DUVAL V 等: "A Novel Regulatory Cascade Involving BluR, YcgZ, and Lon Controls the Expression of Escherichia coli OmpF Porin", FRONTIERS IN MICROBIOLOGY, vol. 8, pages 1 - 12 *
TSCHOWRI N 等: "Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of Escherichia coli", MOLECULAR MICROBIOLOGY, vol. 85, no. 5, pages 893 *
TSCHOWRI N等: "The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli", GENES & DEVELOPMENT, vol. 23, no. 4, pages 522 - 534, XP055062202, DOI: 10.1101/gad.499409 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606171A (en) * 2022-03-24 2022-06-10 南京工业大学 Recombinant escherichia coli with blaR gene knocked out and construction method and application thereof

Similar Documents

Publication Publication Date Title
CN111304232B (en) Method for purifying protein based on membrane surface fusion expression strategy and application thereof
CN111850007B (en) Cellulosobody docking protein combination mutant 36864 applicable to low calcium ion concentration and application
CN113621638A (en) Method for constructing Escherichia coli producing L-serine
CN111848758B (en) Cellulosome docking protein mutant suitable for low calcium ion concentration and application
CN114774452B (en) Construction method and application of engineering escherichia coli for adsorbing mercury ions in solution
CN114150002A (en) Light-operated gene switch and application thereof
CN112592877B (en) Recombinant escherichia coli for over-expressing lsrC gene and construction method and application thereof
CN113151214B (en) Protein PnlipA with lipase activity and gene and application thereof
CN111848757B (en) Cellulosome docking protein combined mutant 36862 suitable for low calcium ion concentration and application
CN111850005B (en) Cellulosome docking protein combined mutant 36863 suitable for low calcium ion concentration and application
CN112501103B (en) Recombinant escherichia coli for over-expressing lsrB gene and construction method and application thereof
CN114875004B (en) High-stereoselectivity R-transketolase mutant and encoding gene and application thereof
CN115216485A (en) Amikacin-resistant recombinant plasmid pET28a (+) -rmtB and application thereof
CN113383080B (en) Bacterial expression vectors for increasing protein secretion
KR20180010642A (en) Transformed E. coli producing pili(F4, F18) and heat labile toxin(LT) for postweaing diarrhea vaccine in pigs and vaccine composition comprising the pili and LT produced by the same
CN114591985B (en) Mutant pectin lyase and application thereof
CN113122558B (en) Expression vector of membrane protein AmpG and expression and purification method thereof
CN113122561B (en) Expression vector of membrane protein SohB and expression and purification method thereof
CN111850006B (en) Cellulosome docking protein combined mutant 36865 suitable for low calcium ion concentration and application
CN113337491B (en) Structural domain for improving high-temperature resistance stability of keratinase and application thereof
CN111848759B (en) Cellulosomal dockerin mutant 36741 with improved activity and application thereof
CN113136394A (en) Expression vector of membrane protein CcmB and expression purification method thereof
CN113122560A (en) Expression vector of membrane protein FieF and expression and purification method thereof
CN113122557A (en) Expression vector of membrane protein AmtB and expression purification method thereof
CN113136395A (en) Expression vector of membrane protein YcbM and expression and purification method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination