CN114109750A - 一种太阳能风力冲动涡轮发电一体机 - Google Patents

一种太阳能风力冲动涡轮发电一体机 Download PDF

Info

Publication number
CN114109750A
CN114109750A CN202111407581.7A CN202111407581A CN114109750A CN 114109750 A CN114109750 A CN 114109750A CN 202111407581 A CN202111407581 A CN 202111407581A CN 114109750 A CN114109750 A CN 114109750A
Authority
CN
China
Prior art keywords
solar
wind
power generation
blade
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111407581.7A
Other languages
English (en)
Other versions
CN114109750B (zh
Inventor
李凯伦
李红智
姚明宇
张一帆
敬小磊
张旭伟
吴家荣
韩煜航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202111407581.7A priority Critical patent/CN114109750B/zh
Publication of CN114109750A publication Critical patent/CN114109750A/zh
Application granted granted Critical
Publication of CN114109750B publication Critical patent/CN114109750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/34Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
    • F03D9/35Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects
    • F03D9/37Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures within towers, e.g. using chimney effects with means for enhancing the air flow within the tower, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种太阳能风力冲动涡轮发电一体机,包括支撑导向***、太阳能热水***及风力发电***;所述支撑导向***用于支撑一体机并使集流器入口始终正对着风的来流方向;所述太阳能热水***用于使水流吸收太阳能热量,用于加热集流器进入的来流空气;所述风力发电***将加热集流器进入的来流空气升压、升温、膨胀后推动动叶转动,并转化为发电机的电能。本发明利用城市中高层建筑顶层的风能及太阳能,可以布置在城市中高层建筑的顶层,不需要额外占据用地。

Description

一种太阳能风力冲动涡轮发电一体机
技术领域
本发明属于风能及太阳能发电技术领域,具体涉及一种太阳能风力冲动涡轮发电一体机。
背景技术
随着化石能源的枯竭及环保要求的增大,风能和太阳能发电技术越来越引起人们的重视,作为清洁新能源,风能和太阳能发电几乎可以做到零排放。
对于目前的风能及太阳能利用装置来说,其技术路线均是将风能与太阳能单独进行利用发电,没有将风力的机械性能与太阳的热性能综合考虑后采用热机循环的方式进行发电。
发明内容
为了克服以上技术问题,本发明提供了一种太阳能风力冲动涡轮发电一体机,同时利用城市中高层建筑顶层的风能及太阳能,可以布置在城市中高层建筑的顶层,不需要额外占据用地。
为了实现上述目的,本发明采用的技术方案是:
一种太阳能风力冲动涡轮发电一体机,包括支撑导向***、太阳能热水***及风力发电***;
所述支撑导向***用于支撑一体机并使风力发电***中的集流器10入口始终正对着风的来流方向;
所述太阳能热水***用于使水流吸收太阳能热量,以及用于加热集流器10进入的来流空气;
所述风力发电***将加热集流器10进入的来流空气升压、升温、膨胀后推动动叶13转动,并转化为发电机7的电能。
所述支撑导向***包括布置在高层建筑顶部水泥平台上的支撑轴承1,所述支撑轴承1上同轴心安装紧固有立柱4,所述立柱4用于支撑整个涡轮发电一体机,所述立柱4顶部设置有风向导向叶片6,所述立柱4可绕其轴心自由转动,使得风向导向叶片6在风力的作用下,始终使集流器10入口正对着风的来流方向。
所述风力发电***包括用于吸收来流空气的集流器10,集流器10末端设置有整流罩11,整流罩11与风力涡轮本体5外机壳之间为环形气流通道20,环形气流通道20径向高度不变但直径沿流动方向逐渐增大,所述环形气流通道20末端的风力涡轮本体5外侧设置静叶12,所述静叶12前部为直段,内部中空结构,直段内部中空结构构成静叶内中空流道19,后部为曲段,空气流经过静叶12直段后随即进入静叶12曲段进行膨胀加速,位于静叶12曲段后部设置有动叶13,所述动叶13形成动叶13流道,空气流进入动叶13流道推动转轴18转动,空气流在动叶13流道内只改变流向,不进行膨胀;转轴18通过联轴器带动发电机7做功发电,向外输出电能。
所述环形气流通道20末端与集流器10横截面积之比介于1.5~3.0之间。
所述静叶12直段均径处的叶珊稠度应>2.5,空气流与水流换热部分壁板厚度1~2mm,静叶12直段与曲段焊接为一个整体结构。
所述静叶12曲段入口流道与出口流道横截面积之比应>2.0。
所述动叶13为冲动式对称带冠叶片。
所述太阳能热水***包括位于立柱4内部的上水管14,在整流罩11后部、静叶12根部的机壳内设置保温内胆15,所述立柱4外侧设置有多个太阳能加热管束2,太阳能加热管束2下部连通环形集水管21,所述环形集水管21与立柱4同轴心设置,太阳能加热管束2上部连通上水管14,太阳能加热管束2形成圆锥形结构,上水管14与保温内胆15相连通,所述保温内胆15内部热水沿静叶内中空流道19径向向外流动,所述静叶内中空流道19外侧设置有下水机壳9,下水机壳9通过设置的下水管3连接在环形集水管21上,完成一个完整的加热冷却循环。
所述在保温内胆15外部后方紧固设置转子轴承16,转子轴承16与机壳同轴布置,转轴18采用悬臂支撑的方式,一端与转子轴承16连接,另一端通过联轴器与发电机7连接;发电机7通过发电机支撑8固定在一体机的外机壳上。
所述整流罩11与保温内胆15结构通过静叶12固定在机壳上;所述静叶12流道与动叶13流道采用插口结构,***深度10.0~20.0mm,径向间隙1.0mm~2.0mm。
本发明的有益效果:
本发明利用城市中高层建筑顶层的风能及太阳能,同时避免额外占据用地。本发明主要由三个子***组成,分别是支撑导向***、太阳能热水***及风力发电***;首先,支撑导向***的主要作用是支撑一体机并通过风向导向叶片使集流器入口始终正对着风的来流方向;其次,太阳能热水***的主要作用是通过管束内水流吸收太阳能热量,用于加热来流空气;最后,风力发电***的主要作用是将来流空气依次通过扩压流道升压、静叶直段加热升温、静叶曲段喷管膨胀后推动动叶转动,并转化为发电机的电能。能够同时利用风能和太阳能发电。
附图说明
图1发明外形三维视图1。
图2发明外形三维视图2。
图3发明内部剖面图1。
图4发明内部剖面图2。
图5发明内部剖面图3。
图6空气流动及动、静叶流道插口结构示意图。
图7水流动方向示意图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
如图1-图7所示:本发明提出了一种太阳能风力冲动涡轮发电一体机,其目的在于利用城市高层建筑顶部的太阳能及风能发电。具体实施过程如下:
1本发明主要思想是首先将来流空气进行降速升压,其次利用太阳能将升压后的空气流加热,再通过静叶对升压升温后的空气流进行膨胀加速,推动动叶做功,为此本发明由三个子***构成:分别是支撑导向***、太阳能热水***及风力发电***。
其中支撑轴承1、立柱4、风向导向叶片6构成了支撑导向***,主要作用是支撑一体机并使集流器10入口始终正对着风的来流方向;太阳能加热管束2、下水管3、下水机壳9、上水管14、保温内胆15、静叶内中空流道19、环形集水管21构成太阳能热水***,其主要作用是吸收太阳能热量,并保持水流循环用于加热来流空气;剩余部分如风力涡轮本体5、发电机7、发电机支撑8、集流器10、整流罩11、静叶12、动叶13、转子轴承16、轮毂17、转轴18、环形气流通道20等构成风力发电***,其主要作用是将来流空气升压、升温、膨胀后推动动叶13转动,并转化为发电机7的电能。
2支撑导向***由支撑轴承1、立柱4、风向导向叶片6构成,其中支撑轴承1布置在高层建筑顶部水泥平台上,立柱4与支撑轴承1同轴心安装紧固,整个涡轮发电一体机全部重量均由立柱4支撑,立柱4可以绕其轴心自由转动,风向导向叶片6在风力的作用下,始终使集流器10入口正对着风的来流方向。
3、太阳能热水***由太阳能加热管束2、下水管3、下水机壳9、上水管14、保温内胆15、静叶内中空流道19、环形集水管21构成。其中上水管14本身为立柱4的一部分,利用其中空结构制成;保温内胆15位于整流罩后部、静叶12根部的机壳内。工作过程中,太阳能加热管束2内部的水经过太阳能加热后水温升高、密度减小,热水向上汇流入上水管14,进而由上水管14流入保温内胆15,保温内胆15内部热水沿静叶内中空流道19径向向外流动,热水被静叶12表面的空气流冷却后,经下水机壳9汇流至下水管3及环形集水管21,进而流回太阳能加热管束2,完成一个完整的加热冷却循环。
太阳能热水***的水循环动力来自冷热水密度差产生的浮力,水循环流动过程中,始终使保温内胆15内部水温保持最高。太阳能热水***中水流方向示意图如图7所示。
4、风力发电***由风力涡轮本体5、发电机7、发电机支撑8、集流器10、整流罩11、静叶12、动叶13、转子轴承16、轮毂17、转轴18、环形气流通道20构成,来流空气流经集流器10集流后,流速提高;随即通过整流罩11与风力涡轮本体5外机壳之间的环形气流通道20,环形气流通道20径向高度不变但直径沿流动方向逐渐增大,空气流在环形气流通道20内不断减速升压,环形气流通道20末端与集流器10横截面积之比介于1.5~3.0之间,保证环形气流通道20末端空气流静压高于来流空气静压,从而完成空气流的降速升压过程。降速升压后的空气流流经静叶12直段进行加热,静叶12直段内部中空结构构成静叶内中空流道19,静叶内中空流道19内部热水同时被空气流冷却,空气流经静叶12直段后完成加热过程;为保证空气流与水流具有良好的换热效果,静叶12直段均径处的叶珊稠度应>2.5,空气流与水流换热部分壁板厚度1~2mm;空气流经过静叶12直段后随即进入静叶12曲段进行膨胀加速,静叶12直段与曲段焊接为一个整体结构,为保证空气流的压力能和热能完全转化为动能,静叶12曲段入口流道与出口流道横截面积之比应>2.0。空气流经过静叶12曲段膨胀加速后,进入动叶13流道推动转轴18转动,动叶13为冲动式对称带冠叶片,空气流在动叶13流道内只改变流向,不进行膨胀;转轴18通过联轴器带动发电机7做功发电,向外输出电能。风力发电***中空气的流动方向如图6所示。
转子轴承16与机壳同轴布置,紧固在保温内胆15外部后方,两者接触面设置有隔热材料;转轴18采用悬臂支撑的方式,一端与转子轴承16连接,另一端通过联轴器与发电机7连接;发电机7通过发电机支撑8固定在一体机的外机壳上。整流罩11与保温内胆15通过静叶12固定在机壳上;为避免空气流泄露减少做功能力,静叶12流道与动叶13流道采用插口结构,***深度10.0~30.0mm,径向间隙1.0mm~2.0mm。

Claims (10)

1.一种太阳能风力冲动涡轮发电一体机,其特征在于,包括支撑导向***、太阳能热水***及风力发电***;
所述支撑导向***用于支撑一体机并使风力发电***的集流器(10)入口始终正对着风的来流方向;
所述太阳能热水***用于使水流吸收太阳能热量,以及用于加热集流器(10)进入的来流空气;
所述风力发电***将加热集流器(10)进入的来流空气升压、升温、膨胀后推动动叶(13)转动,并转化为发电机(7)的电能。
2.根据权利要求1所述的一种太阳能风力冲动涡轮发电一体机,其特征在于,所述支撑导向***包括布置在高层建筑顶部水泥平台上的支撑轴承(1),所述支撑轴承(1)上同轴心安装紧固有立柱(4),所述立柱(4)用于支撑整个涡轮发电一体机,所述立柱(4)顶部设置有风向导向叶片(6),所述立柱(4)可绕其轴心自由转动,使得风向导向叶片(6)在风力的作用下,始终使集流器(10)入口正对着风的来流方向。
3.根据权利要求1所述的一种太阳能风力冲动涡轮发电一体机,其特征在于,所述风力发电***包括用于吸收来流空气的集流器(10),集流器(10)末端设置有整流罩(11),整流罩(11)与风力涡轮本体(5)外机壳之间为环形气流通道(20),环形气流通道(20)径向高度不变但直径沿流动方向逐渐增大,所述环形气流通道(20)末端的风力涡轮本体(5)外侧设置静叶(12),所述静叶(12)前部为直段,内部中空结构,直段内部中空结构构成静叶内中空流道(19),后部为曲段,空气流经过静叶(12)直段后随即进入静叶(12)曲段进行膨胀加速,位于静叶(12)曲段后部设置有动叶(13),所述动叶(13)形成动叶(13)流道,空气流进入动叶(13)流道推动转轴(18)转动,空气流在动叶(13)流道内只改变流向,不进行膨胀;转轴(18)通过联轴器带动发电机(7)做功发电,向外输出电能。
4.根据权利要求3所述的一种太阳能风力冲动涡轮发电一体机,其特征在于,所述环形气流通道(20)末端与集流器(10)横截面积之比介于1.5~3.0之间。
5.根据权利要求3所述的一种太阳能风力冲动涡轮发电一体机,其特征在于,所述静叶(12)直段均径处的叶珊稠度应>2.5,空气流与水流换热部分壁板厚度1~2mm,静叶(12)直段与曲段焊接为一个整体结构。
6.根据权利要求3所述的一种太阳能风力冲动涡轮发电一体机,其特征在于,所述静叶(12)曲段入口流道与出口流道横截面积之比应>2.0。
7.根据权利要求3所述的一种太阳能风力冲动涡轮发电一体机,其特征在于,所述动叶(13)为冲动式对称带冠叶片。
8.根据权利要求1所述的一种太阳能风力冲动涡轮发电一体机,其特征在于,所述太阳能热水***包括位于立柱(4)内部的上水管(14),在整流罩(11)后部、静叶(12)根部的机壳内设置保温内胆(15),所述立柱(4)外侧设置有多个太阳能加热管束(2),太阳能加热管束(2)下部连通环形集水管(21),所述环形集水管(21)与立柱(4)同轴心设置,太阳能加热管束(2)上部连通上水管(14),太阳能加热管束(2)形成圆锥形结构,上水管(14)与保温内胆(15)相连通,所述保温内胆(15)内部热水沿静叶内中空流道(19)径向向外流动,所述静叶内中空流道(19)外侧设置有下水机壳(9),下水机壳(9)通过设置的下水管(3)连接在环形集水管(21)上,完成一个完整的加热冷却循环。
9.根据权利要求8所述的一种太阳能风力冲动涡轮发电一体机,其特征在于,所述在保温内胆(15)外部后方紧固设置转子轴承(16),转子轴承(16)与机壳同轴布置,转轴(18)采用悬臂支撑的方式,一端与转子轴承(16)连接,另一端通过联轴器与发电机(7)连接;发电机(7)通过发电机支撑(8)固定在一体机的外机壳上。
10.根据权利要求8所述的一种太阳能风力冲动涡轮发电一体机,其特征在于,所述整流罩(11)与保温内胆(15)结构通过静叶(12)固定在机壳上;所述静叶(12)流道与动叶(13)流道采用插口结构,***深度10.0~20.0mm,径向间隙1.0mm~2.0mm。
CN202111407581.7A 2021-11-24 2021-11-24 一种太阳能风力冲动涡轮发电一体机 Active CN114109750B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111407581.7A CN114109750B (zh) 2021-11-24 2021-11-24 一种太阳能风力冲动涡轮发电一体机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111407581.7A CN114109750B (zh) 2021-11-24 2021-11-24 一种太阳能风力冲动涡轮发电一体机

Publications (2)

Publication Number Publication Date
CN114109750A true CN114109750A (zh) 2022-03-01
CN114109750B CN114109750B (zh) 2024-06-25

Family

ID=80372336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111407581.7A Active CN114109750B (zh) 2021-11-24 2021-11-24 一种太阳能风力冲动涡轮发电一体机

Country Status (1)

Country Link
CN (1) CN114109750B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115182848A (zh) * 2022-09-09 2022-10-14 山西润世华新能源技术服务有限公司 风力发电机组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2472093A1 (fr) * 1979-12-21 1981-06-26 Dumay Raymond Eolienne a rotor monte dans un entonnoir-avaloir
JPH1182284A (ja) * 1997-09-04 1999-03-26 Kawasaki Heavy Ind Ltd 風力利用エネルギーシステム
CN101196168A (zh) * 2007-04-29 2008-06-11 东北师范大学 偏低风速风能-太阳能互补发电装置
CN201221447Y (zh) * 2008-07-15 2009-04-15 宁波银风能源科技股份有限公司 集风型筒式水平轴发电***
US20110018269A1 (en) * 2009-07-21 2011-01-27 George Moser Wind turbine
CN202165220U (zh) * 2011-07-18 2012-03-14 青岛敏深风电科技有限公司 太阳能与风能相结合的发电装置
JP2018188989A (ja) * 2017-04-28 2018-11-29 日本テクニカ株式会社 風力発電装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2472093A1 (fr) * 1979-12-21 1981-06-26 Dumay Raymond Eolienne a rotor monte dans un entonnoir-avaloir
JPH1182284A (ja) * 1997-09-04 1999-03-26 Kawasaki Heavy Ind Ltd 風力利用エネルギーシステム
CN101196168A (zh) * 2007-04-29 2008-06-11 东北师范大学 偏低风速风能-太阳能互补发电装置
CN201221447Y (zh) * 2008-07-15 2009-04-15 宁波银风能源科技股份有限公司 集风型筒式水平轴发电***
US20110018269A1 (en) * 2009-07-21 2011-01-27 George Moser Wind turbine
CN202165220U (zh) * 2011-07-18 2012-03-14 青岛敏深风电科技有限公司 太阳能与风能相结合的发电装置
JP2018188989A (ja) * 2017-04-28 2018-11-29 日本テクニカ株式会社 風力発電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115182848A (zh) * 2022-09-09 2022-10-14 山西润世华新能源技术服务有限公司 风力发电机组

Also Published As

Publication number Publication date
CN114109750B (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
US5300817A (en) Solar venturi turbine
US6278197B1 (en) Contra-rotating wind turbine system
US8739533B2 (en) Solar augmented wind turbine for stable and dispatchable utility scale power generation
US6492743B1 (en) Jet assisted hybrid wind turbine system
AU2012101941A4 (en) Storage energy generation method utilizing natural energy and generation system thereof
CA2645296A1 (en) Annular multi-rotor double-walled turbine
WO2012017078A2 (en) Solar tower with integrated gas turbine
CN114109750B (zh) 一种太阳能风力冲动涡轮发电一体机
CN102496959A (zh) 利用多种自然能的发电机
CN101240779A (zh) 用于太阳能热风发电***的集热器
AU672701B2 (en) Solar venturi turbine
CN201835877U (zh) 径向进气轴向排气的高炉煤气余压透平机
CN100447904C (zh) 核能-风能自然循环联合发电***
CN209857027U (zh) 一种牲畜***物综合利用发电装置
CN102425531A (zh) 一种多种能源联合运行的发动机
CN102322410B (zh) 利用太阳能形成热气流发电的方法
CN105649883A (zh) 热能造风辅助的风力耦合衡定发电方法及***
CN202381259U (zh) 发电塔涡轮涡扇运转结构
Lewis et al. A theory and experimental investigation of ducted wind turbines
CN108374762A (zh) 一种新型风能制热***
CN209925091U (zh) 一种热流式发电装置
CN201730756U (zh) 空气动力发电装置
CN207974915U (zh) 一种新型风能制热***
CN101307749B (zh) 一种太阳能热成旋风发电方法及其装置
CN108518312A (zh) 一种风力发电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant