CN114057176B - Lithium iron phosphate and preparation method and application thereof - Google Patents

Lithium iron phosphate and preparation method and application thereof Download PDF

Info

Publication number
CN114057176B
CN114057176B CN202111387890.2A CN202111387890A CN114057176B CN 114057176 B CN114057176 B CN 114057176B CN 202111387890 A CN202111387890 A CN 202111387890A CN 114057176 B CN114057176 B CN 114057176B
Authority
CN
China
Prior art keywords
lithium iron
phosphate
ferric
iron phosphate
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111387890.2A
Other languages
Chinese (zh)
Other versions
CN114057176A (en
Inventor
李长明
吴超
辛民昌
赖永彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Jiuhuan Xinyue New Energy Technology Co ltd
Southwest University
Original Assignee
Qingdao Jiuhuan Xinyue New Energy Technology Co ltd
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Jiuhuan Xinyue New Energy Technology Co ltd, Southwest University filed Critical Qingdao Jiuhuan Xinyue New Energy Technology Co ltd
Priority to CN202111387890.2A priority Critical patent/CN114057176B/en
Publication of CN114057176A publication Critical patent/CN114057176A/en
Application granted granted Critical
Publication of CN114057176B publication Critical patent/CN114057176B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention discloses lithium iron phosphate and a preparation method and application thereof; the preparation method of the lithium iron phosphate comprises the following steps: (1) Ferric salt, phytic acid and phosphate are mixed and reacted in water to obtain ferric phosphate precursor liquid; (2) Filtering, drying and calcining the ferric phosphate precursor liquid to obtain ferric phosphate; (3) Mixing ferric phosphate, lithium salt and a carbon source in water, and then drying and calcining to obtain lithium iron phosphate. According to the invention, the low-temperature performance of the prepared lithium iron phosphate is obviously improved through the matched use of the phytic acid and the phosphate.

Description

Lithium iron phosphate and preparation method and application thereof
Technical Field
The invention relates to the technical field of batteries, in particular to lithium iron phosphate and a preparation method and application thereof.
Background
With the continuous decrease of petroleum resources and the increasing pollution of automobile exhaust to the environment worldwide, hybrid Electric Vehicles (HEV) and Electric Vehicles (EV) have become attractive as alternatives to fuel-driven automobiles in the future, and mobile power systems are one of the key components of electric automobiles. Therefore, high performance (i.e., high specific energy, long life, safety), low cost, and environmentally friendly batteries will be an important and hot spot for the development of the mobile power industry. Lithium ion batteries are a new generation of green high-energy rechargeable batteries developed to meet this demand. It has the outstanding advantages of high voltage, small volume, light weight, high specific energy, no memory effect, no pollution, small self-discharge, long service life, etc.
The Padhi et al report that the lithium iron phosphate material with the olivine structure can be used as the positive electrode material of the lithium ion battery in 1997, and the lithium iron phosphate material is one of the positive electrode materials with the highest potential at present because of the advantages of low price, environmental protection, no pollution, no moisture absorption, good thermal stability and the like, and is concerned by vast scientific research institutions and commercial institutions. In recent years, a lot of research, development and improvement are carried out on the material by many scientific researchers, and the material is gradually commercialized and applied to the markets of high-capacity, high-power and long-service-life lithium ion batteries. Lithium iron phosphate represents a future development of positive electrode materials for power cells.
At present, a solid-phase synthesis method is a main method for preparing commercial lithium iron phosphate, but the defects of high cost of ferrous iron source, difficult preservation, large particle size of synthesized lithium iron phosphate, poor uniformity and the like are difficult to meet the requirements of a power type lithium ion battery. Therefore, ferric iron with low cost and stable performance is adopted to replace ferrous iron as an iron source, and synthetic ferric phosphate is adopted as a precursor to prepare the lithium iron phosphate. The synthesis method of the synthesized ferric phosphate generally comprises the steps of reacting ferric trichloride or ferric nitrate solution with phosphoric acid, and then decomposing and volatilizing hydrogen chloride or nitric acid at high temperature to obtain the ferric phosphate.
However, lithium iron phosphate has low electron conductivity and ion diffusion rate at room temperature of 10 due to its inherent characteristics (respectively -8 -10 -10 S/cm and 10 -12 -10 -14 cm 2 S) results in a significant degradation of the charge and discharge properties of the lithium iron phosphate as a positive electrode material at low temperatures.
Disclosure of Invention
The invention aims to provide lithium iron phosphate, a preparation method and application thereof, which can obviously improve the low-temperature performance of the lithium iron phosphate.
In order to achieve the above purpose, the present invention adopts the technical scheme that:
the invention discloses a preparation method of lithium iron phosphate, which comprises the following steps:
(1) Ferric salt, phytic acid and phosphate are mixed and reacted in water to obtain ferric phosphate precursor liquid;
(2) Filtering, drying and calcining the ferric phosphate precursor liquid obtained in the step (1) to obtain ferric phosphate;
(3) Mixing the ferric phosphate obtained in the step (2), lithium salt and a carbon source in water, and then drying and calcining to obtain the lithium iron phosphate.
As a preferred technical scheme, in the step (1), the ferric salt includes, but is not limited to, one or a mixture of ferric chloride, ferric nitrate and ferric sulfate.
As a preferred embodiment, in the step (1), the phosphate includes, but is not limited to, H 3 PO 4 、(NH 4 ) 3 PO 4 、(NH 4 ) 2 HPO 4 、(NH 4 )H 2 PO 4 One or more of the following.
As a preferable technical scheme, in the step (1), the molar ratio of the phytic acid to the phosphate is 1:999-999:1.
In the step (1), alkali liquor is added into the reaction system to control the pH value to be less than 7.
As a preferred technical scheme, the alkali liquor comprises one or a mixture of more than one of ammonia water, sodium hydroxide solution, sodium acetate solution and ammonium acetate solution.
In a preferred embodiment, in the step (1), the reaction is a normal temperature reaction.
In the step (2), alkali liquor is added for dilution before the filtration of the ferric phosphate precursor liquid or alkali liquor is added for washing during the filtration of the ferric phosphate precursor liquid.
In the step (2), the calcination temperature is 100-800 ℃.
As a preferred technical scheme, in the step (3), the lithium salt includes, but is not limited to, one or more of lithium carbonate, lithium hydroxide, lithium nitrate and lithium oxalate.
As a preferred technical scheme, in the step (3), the carbon source includes, but is not limited to, one or a mixture of several of glucose, sucrose, carbon nanotubes and graphene.
The invention also discloses application of the lithium iron phosphate prepared by the preparation method in a positive electrode material of a lithium ion battery.
The invention has the beneficial effects that:
the invention utilizes phytic acid and phosphate to form phosphate groups as a phosphorus source, synthesizes ferric phosphate with ferric salt, and then prepares lithium iron phosphate by taking the ferric phosphate as a precursor. According to the invention, through the matching use of the phytic acid and the phosphate, the low-temperature performance of the prepared lithium iron phosphate is obviously improved.
Drawings
FIG. 1 is a process flow diagram for preparing ferric phosphate from ferric salts;
FIG. 2 is a block diagram of an apparatus for producing ferric phosphate from ferric salt;
FIG. 3 is a process flow diagram for preparing lithium iron phosphate from iron phosphate;
FIG. 4 is a block diagram of an apparatus for preparing lithium iron phosphate from ferric phosphate;
FIG. 5 is an SEM image of lithium iron phosphate of example 1;
FIG. 6 is a graph of specific discharge capacity at-20℃for a 0.2C button cell made from lithium iron phosphate of example 1;
FIG. 7 is a graph of specific 0.2C discharge capacity at-20℃for a button cell made of lithium iron phosphate of example 2;
fig. 8 is a graph showing the specific discharge capacity of the lithium iron phosphate of comparative example 1 at-20C at 0.2C.
Detailed Description
The present invention will be further described with reference to the accompanying drawings, in order to make the objects, technical solutions and advantages of the present invention more apparent.
Example 1
As shown in fig. 1 to 4, lithium iron phosphate was prepared by the following steps:
(1) Ferric chloride solution, phytic acid, (NH) 4 )H 2 PO 4 Adding ammonia water into the reaction kettle to control phytic acidAnd (NH) 4 )H 2 PO 4 The molar ratio of (2) is 1:99, controlling the addition amount of ammonia water to adjust the pH value of the system to about 2, and then mixing and stirring the mixture in a reaction kettle at normal temperature for reaction for 1 hour; and pumping the reaction slurry into an aging kettle for aging for 1 hour, and pumping the obtained ferric phosphate precursor liquid into a finished product tank for temporary storage.
(2) Adding ammonia water into the ferric phosphate precursor liquid obtained in the step (1) for dilution, then pumping the diluted ferric phosphate precursor liquid into a plate-frame filter for filtration, and washing the diluted ferric phosphate precursor liquid to be neutral; and then the wet material is added into a flash dryer for flash drying, and then is added into a rotary kiln for calcination at 400 ℃ to obtain the ferric phosphate.
(3) Adding the ferric phosphate, lithium carbonate and glucose obtained in the step (2) into a dispersion kettle filled with water for full dispersion, adding the slurry into a grinding tank for grinding, and then performing spray drying by spray drying equipment, sintering by a sintering furnace and crushing by an air flow crusher to obtain the lithium iron phosphate.
Example 2
As shown in fig. 1 to 4, lithium iron phosphate was prepared by the following steps:
(1) Ferric chloride solution, phytic acid and H 3 PO 4 Adding ammonia water into the reaction kettle, and controlling phytic acid and H 3 PO 4 The molar ratio of (2) is 1:99, controlling the addition amount of ammonia water to adjust the pH value of the system to about 2, and then mixing and stirring the mixture in a reaction kettle at normal temperature for reaction for 1 hour; and pumping the reaction slurry into an aging kettle for aging for 1 hour, and pumping the obtained ferric phosphate precursor liquid into a finished product tank for temporary storage.
(2) Adding ammonia water into the ferric phosphate precursor liquid obtained in the step (1) for dilution, then pumping the diluted ferric phosphate precursor liquid into a plate-frame filter for filtration, and washing the diluted ferric phosphate precursor liquid to be neutral; and then the wet material is added into a flash dryer for flash drying, and then is added into a rotary kiln for calcination at 400 ℃ to obtain the ferric phosphate.
(3) Adding the ferric phosphate, lithium carbonate and glucose obtained in the step (2) into a dispersion kettle filled with water for full dispersion, adding the slurry into a grinding tank for grinding, and then performing spray drying by spray drying equipment, sintering by a sintering furnace and crushing by an air flow crusher to obtain the lithium iron phosphate.
Comparative example 1
The lithium iron phosphate is prepared by the following steps:
(1) Ferric chloride solution, H 3 PO 4 Adding ammonia water into a reaction kettle, controlling the adding amount of the ammonia water to adjust the pH value of the system to about 2, and then mixing and stirring the ammonia water in the reaction kettle at normal temperature for reaction for 1 hour; and pumping the reaction slurry into an aging kettle for aging for 1 hour, and pumping the obtained ferric phosphate precursor liquid into a finished product tank for temporary storage.
(2) Adding ammonia water into the ferric phosphate precursor liquid obtained in the step (1) for dilution, then pumping the diluted ferric phosphate precursor liquid into a plate-frame filter for filtration, and washing the diluted ferric phosphate precursor liquid to be neutral; and then the wet material is added into a flash dryer for flash drying, and then is added into a rotary kiln for calcination at 400 ℃ to obtain the ferric phosphate.
(3) Adding the ferric phosphate, lithium carbonate and glucose obtained in the step (2) into a dispersion kettle filled with water for full dispersion, adding the slurry into a grinding tank for grinding, and then performing spray drying by spray drying equipment, sintering by a sintering furnace and crushing by an air flow crusher to obtain the lithium iron phosphate.
Fig. 5 is an SEM image of the lithium iron phosphate produced in example 1, from which it can be seen that the lithium iron phosphate produced in example 1 has a uniform particle size.
The lithium iron phosphate prepared in example 1, example 2 and comparative example 1 were used as positive electrode materials, respectively, and positive electrode sheets were prepared first: and (3) carrying out positive electrode material proportioning on the positive electrode material, the binder and the conductive agent to obtain uniform positive electrode slurry, and uniformly coating the prepared positive electrode slurry on a positive electrode current collector aluminum foil to obtain a positive electrode plate. And winding the positive plate, the negative plate and the diaphragm to prepare a lithium ion battery core, and injecting electrolyte to prepare the button cell.
FIG. 6 is a graph showing that the specific discharge capacity of the button cell made of the lithium iron phosphate of example 1 at-20 ℃ is 0.2C, and the specific discharge capacity of the button cell at-20 ℃ can reach 80mAh/g.
FIG. 7 is a graph showing the specific discharge capacity of the button cell made of the lithium iron phosphate of example 2 at-20 ℃ of 0.2C, wherein the specific discharge capacity of the button cell at-20 ℃ can reach 83mAh/g.
FIG. 8 is a graph showing the specific discharge capacity of the button cell made of the lithium iron phosphate of comparative example 1 at-20 ℃ of 0.2C, wherein the specific discharge capacity of the button cell at-20 ℃ can reach 54mAh/g.
As can be seen from the comparison, compared with the comparison example using only phosphoric acid, the low-temperature performance of the prepared lithium iron phosphate is obviously improved through the matched use of the phytic acid and the phosphate.
The foregoing has shown and described the basic principles, principal features and advantages of the invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, and that the above embodiments and descriptions are merely illustrative of the principles of the present invention, and various changes and modifications may be made without departing from the spirit and scope of the invention, which is defined in the appended claims. The scope of the invention is defined by the appended claims and equivalents thereof.

Claims (11)

1. A preparation method of lithium iron phosphate is characterized in that: the method comprises the following steps:
(1) Ferric salt, phytic acid and phosphate are mixed and reacted in water to obtain ferric phosphate precursor liquid;
(2) Filtering, drying and calcining the ferric phosphate precursor liquid obtained in the step (1) to obtain ferric phosphate;
(3) Mixing the ferric phosphate obtained in the step (2) with lithium salt and a carbon source in water, and then drying and calcining to obtain lithium iron phosphate;
in the step (1), the molar ratio of the phytic acid to the phosphate is 1:999-1:99.
2. The method for preparing lithium iron phosphate according to claim 1, wherein: in the step (1), the ferric salt comprises one or a mixture of several of ferric chloride, ferric nitrate and ferric sulfate.
3. The method for preparing lithium iron phosphate according to claim 1, wherein: in step (1), the phosphate includes, but is not limited to, H 3 PO 4 、(NH 4 ) 3 PO 4 、(NH 4 ) 2 HPO 4 、(NH 4 )H 2 PO 4 One or more of the following.
4. The method for preparing lithium iron phosphate according to claim 1, wherein: in the step (1), alkali liquor is added into the reaction system, and the pH value is controlled to be less than 7.
5. The method for producing lithium iron phosphate according to claim 4, wherein: the alkali liquor comprises one or a mixture of several of ammonia water, sodium hydroxide solution, sodium acetate solution and ammonium acetate solution.
6. The method for preparing lithium iron phosphate according to claim 1, wherein: in the step (1), the reaction is a normal temperature reaction.
7. The method for preparing lithium iron phosphate according to claim 1, wherein: in the step (2), alkali liquor is added for dilution before the filtration of the ferric phosphate precursor liquid or alkali liquor is added for washing during the filtration of the ferric phosphate precursor liquid.
8. The method for preparing lithium iron phosphate according to claim 1, wherein: in the step (2), the calcining temperature is 100-800 ℃.
9. The method for preparing lithium iron phosphate according to claim 1, wherein: in the step (3), the lithium salt comprises one or a mixture of several of lithium carbonate, lithium hydroxide, lithium nitrate and lithium oxalate.
10. The method for preparing lithium iron phosphate according to claim 1, wherein: in the step (3), the carbon source includes, but is not limited to, one or a mixture of several of glucose, sucrose, carbon nanotubes and graphene.
11. Use of lithium iron phosphate prepared by the preparation method of any one of claims 1 to 10 in a positive electrode material of a lithium ion battery.
CN202111387890.2A 2021-11-22 2021-11-22 Lithium iron phosphate and preparation method and application thereof Active CN114057176B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111387890.2A CN114057176B (en) 2021-11-22 2021-11-22 Lithium iron phosphate and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111387890.2A CN114057176B (en) 2021-11-22 2021-11-22 Lithium iron phosphate and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN114057176A CN114057176A (en) 2022-02-18
CN114057176B true CN114057176B (en) 2023-09-19

Family

ID=80279002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111387890.2A Active CN114057176B (en) 2021-11-22 2021-11-22 Lithium iron phosphate and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN114057176B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114506832A (en) * 2022-03-08 2022-05-17 青岛九环新越新能源科技股份有限公司 Zero-emission recycling production method of iron phosphate and lithium iron phosphate
CN116154152B (en) * 2022-12-16 2023-12-26 贵州胜泽威化工有限公司 Lithium iron phosphate battery positive electrode slurry and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803590A (en) * 2005-12-22 2006-07-19 上海交通大学 Method for preparing lithium ion battery anode material lithium ion phosphate
CN101993054A (en) * 2010-11-17 2011-03-30 河北师范大学 Method for preparing lithium ion phosphate material
CN102173402A (en) * 2011-01-17 2011-09-07 深圳科雷拉能源科技有限公司 Low-temperature continuous production process for lithium iron phosphate and dedicated device therefor
CN102208625A (en) * 2011-05-04 2011-10-05 合肥国轩高科动力能源有限公司 Preparation method of lithium iron phosphate of cathode material of lithium ion secondary battery
KR20140090951A (en) * 2013-01-10 2014-07-18 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
CN105789573A (en) * 2016-03-04 2016-07-20 贵州安达科技能源股份有限公司 Positive electrode active material of lithium ion battery, preparation method for positive electrode active material, lithium ion battery positive electrode, and lithium ion battery
CN107565132A (en) * 2017-08-24 2018-01-09 高延敏 The preparation method of the ferric phosphate and its ferric phosphate of preparation, the LiFePO4 and lithium battery of the preparation method of LiFePO4 and its preparation
CN108735997A (en) * 2018-05-28 2018-11-02 深圳市贝特瑞纳米科技有限公司 A kind of LiFePO4 based composites, preparation method and the usage more than LiFePO4 theoretical capacity
CN111217347A (en) * 2018-11-23 2020-06-02 深圳市贝特瑞纳米科技有限公司 High-compaction lithium iron phosphate material and preparation method thereof
CN112142030A (en) * 2020-08-31 2020-12-29 合肥国轩高科动力能源有限公司 Preparation method of low-cost low-temperature lithium iron phosphate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130177784A1 (en) * 2010-09-29 2013-07-11 Ocean's King Lighting Science & Technology Co, Ltd Lithium iron phosphate composite material, production method and use thereof
CN102683697B (en) * 2012-05-14 2014-12-17 国光电器股份有限公司 Preparation method of graphene-based LiFePO4/C composite material
CN104716320B (en) * 2015-03-10 2017-06-16 中国科学院过程工程研究所 A kind of LiFePO4 of composite cladding, its preparation method and lithium ion battery
US10957910B2 (en) * 2019-05-01 2021-03-23 Global Graphene Group, Inc. Particulates of conducting polymer network-protected cathode active material particles for lithium batteries

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803590A (en) * 2005-12-22 2006-07-19 上海交通大学 Method for preparing lithium ion battery anode material lithium ion phosphate
CN101993054A (en) * 2010-11-17 2011-03-30 河北师范大学 Method for preparing lithium ion phosphate material
CN102173402A (en) * 2011-01-17 2011-09-07 深圳科雷拉能源科技有限公司 Low-temperature continuous production process for lithium iron phosphate and dedicated device therefor
CN102208625A (en) * 2011-05-04 2011-10-05 合肥国轩高科动力能源有限公司 Preparation method of lithium iron phosphate of cathode material of lithium ion secondary battery
KR20140090951A (en) * 2013-01-10 2014-07-18 주식회사 엘지화학 Method for preparing lithium iron phosphate nanopowder
CN105789573A (en) * 2016-03-04 2016-07-20 贵州安达科技能源股份有限公司 Positive electrode active material of lithium ion battery, preparation method for positive electrode active material, lithium ion battery positive electrode, and lithium ion battery
CN107565132A (en) * 2017-08-24 2018-01-09 高延敏 The preparation method of the ferric phosphate and its ferric phosphate of preparation, the LiFePO4 and lithium battery of the preparation method of LiFePO4 and its preparation
CN108735997A (en) * 2018-05-28 2018-11-02 深圳市贝特瑞纳米科技有限公司 A kind of LiFePO4 based composites, preparation method and the usage more than LiFePO4 theoretical capacity
CN111217347A (en) * 2018-11-23 2020-06-02 深圳市贝特瑞纳米科技有限公司 High-compaction lithium iron phosphate material and preparation method thereof
CN112142030A (en) * 2020-08-31 2020-12-29 合肥国轩高科动力能源有限公司 Preparation method of low-cost low-temperature lithium iron phosphate

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LFP/C掺杂型PVDF-HFP隔膜及其电化学性能研究;赵虔等;化学研究与应用(07);158-164 *
正极材料LiFePO_4掺碳改性研究进展;钟艳君等;材料导报(17);35-139 *
磷酸铁锂微球制备及其电化学性能研究;葛权等;功能材料(13);84-86 *
镁掺杂磷酸铁锂的碳热还原法制备及表征;李超等;有色金属(冶炼部分)(10);64-67 *

Also Published As

Publication number Publication date
CN114057176A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
US20200328406A1 (en) Layered lithium-rich manganese-based cathode material with olivine structured limpo4 surface modification and preparation method thereof
WO2021104055A1 (en) Nanomaterial and preparation method therefor, electrode, and secondary battery
CN105552344A (en) Positive plate of lithium ion battery, lithium ion battery and preparation method of lithium ion battery
CN114057176B (en) Lithium iron phosphate and preparation method and application thereof
CN102104144B (en) Method for preparing lithium iron phosphate compound anode material
CN114105115B (en) Production method and application of ferric phosphate and lithium iron phosphate
CN109103433B (en) Nitrogen-doped carbon-coated lithium iron phosphate composite material and preparation method thereof
CN107482182B (en) Carbon-coated ion-doped manganese phosphate lithium electrode material and preparation method thereof
CN115020855B (en) Recycling method of lithium iron phosphate waste batteries
CN103779559A (en) Preparation method of lithium ion battery cathode material Li2Mn1-xMxSiO4/C
CN112520705A (en) Preparation method and application of bismuth selenide/molybdenum selenide heterostructure electrode material
CN105226267A (en) Three dimensional carbon nanotubes modifies spinel nickel lithium manganate material and its preparation method and application
CN113942988B (en) Ferric phosphate and preparation method thereof
CN103378355B (en) Alkali metal secondary battery and the preparation method of negative electrode active material, negative material, negative pole and negative electrode active material
CN110620217A (en) Zinc-doped lithium iron phosphate/carbon composite material and preparation method thereof
CN114084879B (en) Lithium iron phosphate and production method and application thereof
CN102412399B (en) A kind of preparation method of manganese phosphate lithium front body
CN113066979B (en) S @ VxSy composite positive electrode material, preparation method thereof and lithium-sulfur battery
CN102468481B (en) Method for preparing polyanionic cathode material used for lithium ion battery
CN114864945A (en) Preparation method and application of high-conductivity lithium iron phosphate
CN114566647A (en) Calcium phosphate coated high-nickel ternary cathode material and preparation method and application thereof
CN114014292A (en) Preparation method of lithium iron manganese phosphate
CN112615000A (en) Preparation method of graphene-coated lithium iron phosphate positive electrode material
CN117285024B (en) Ruthenium doped lithium iron manganese phosphate material and preparation method thereof
CN114436234B (en) Use of FePO 4 Lithium iron phosphate material prepared from/C composite material and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant