CN114054042A - 带有介孔的Ag掺杂氧化镍纳米微球的制备方法及其产品 - Google Patents

带有介孔的Ag掺杂氧化镍纳米微球的制备方法及其产品 Download PDF

Info

Publication number
CN114054042A
CN114054042A CN202111333498.XA CN202111333498A CN114054042A CN 114054042 A CN114054042 A CN 114054042A CN 202111333498 A CN202111333498 A CN 202111333498A CN 114054042 A CN114054042 A CN 114054042A
Authority
CN
China
Prior art keywords
nickel oxide
mesopores
doped nickel
doped
nio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111333498.XA
Other languages
English (en)
Inventor
谢广新
张洋
黄蓉
相国涛
唐笑
胡锡奎
马星宇
贺雨萌
杨欣宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN202111333498.XA priority Critical patent/CN114054042A/zh
Publication of CN114054042A publication Critical patent/CN114054042A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及带有介孔的Ag掺杂氧化镍纳米微球的制备方法及其产品,属于氧化镍纳米微球改性技术领域。本发明首先在氩气气氛下将镍盐与加入硝酸盐和三乙醇胺形成的混合溶液搅拌形成乳液,然后在50~90℃下反应、160~200℃下进行保温处理后进行离心,经干燥后得到带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球),同时对纯氧化镍和Ag掺杂氧化镍两种纳米微球进行了高压相变研究,相变压力降低,晶体结构稳定性下降,原因在于掺杂Ag导致NiO晶格膨胀,晶体结构松弛,两相相对体积变化增加,从而导致相变势垒降低,使样品在较低压力下发生相变。另外本发明还公开了一种带有介孔的Ag掺杂氧化镍纳米微球,可以大幅度提高光催化反应效率。

Description

带有介孔的Ag掺杂氧化镍纳米微球的制备方法及其产品
技术领域
本发明属于氧化镍纳米微球改性技术领域,涉及带有介孔的Ag掺杂氧化镍纳米微球的制备方法及其产品。
背景技术
NiO是典型的宽禁带直接带隙半导体氧化物,具有较高的激子束缚能和优异的光学、电学、磁学以及气敏等物理化学特性。NiO在自然界晶体结构与NaCl相同。NiO纳米材料的性质与其结构密切相关,元素掺杂可改变NiO的晶体结构和带隙宽度,影响NiO晶体内部缺陷,是提高NiO材料性能的有效手段。
因此有必要通过对NiO进行形貌和结构可控设计、元素掺杂以及异质复合结构等方式制备新的NiO纳米材料,对NiO纳米材料进行改性,试图实现NiO纳米材料晶体形貌、尺寸控制以及掺杂金属的异质结复合结构的合成应用研究。
发明内容
有鉴于此,本发明的目的之一在于提供带有介孔的Ag掺杂氧化镍纳米微球的制备方法;本发明的目的之二在于提供带有介孔的Ag掺杂氧化镍纳米微球。
为达到上述目的,本发明提供如下技术方案:
1.带有介孔的Ag掺杂氧化镍纳米微球的制备方法,所述制备方法包括如下步骤:
(1)制备乳液:在氩气气氛下,向镍盐中加水进行充分溶解,继续加入硝酸盐和三乙醇胺形成的混合溶液,充分搅拌至乳化形成乳液;
(2)制备纳米微球:将所述乳液升温至50~90℃下反应后在160~200℃下进行保温处理10~14h,在10000~11500rpm的转速下离心后收集固体产物,反复用水和乙醇进行洗涤,干燥过夜,得到带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)。
优选的,步骤(1)中,所述镍盐为Ni(NO3)2.6H2O、Ni(Cl)2.6H2O、NiF2.4H2O或Ni(CO)4中的任意一种或几种;
所述硝酸盐为AgNO3、KNO3或NaNO3中的任意一种或几种。
优选的,步骤(1)中,所述混合溶液中AgNO3和三乙醇胺的摩尔体积比为0.033~0.1:15,mol:L。
进一步优选的,步骤(1)中,所述镍盐中镍与AgNO3的摩尔比为4~8:0.033。
优选的,步骤(2)中,所述反应时间为20~28h。
优选的,步骤(2)中,所述保温处理在聚四氟乙烯内衬的不锈钢高压釜中进行。
优选的,步骤(2)中,所述干燥的温度为70~90℃。
2.根据上述制备方法制备的带有介孔的Ag掺杂氧化镍纳米微球。
优选的,所述带有介孔的Ag掺杂氧化镍纳米微球中银(Ag)和氧化镍(NiO)的摩尔比为1:60~480。
3.根据上述带有介孔的Ag掺杂氧化镍纳米微球在制备催化剂载体方面的应用。
本发明的有益效果在于:
1、本发明公开了一种带有介孔的Ag掺杂氧化镍纳米微球的制备方法,主要是:首先在氩气气氛下将镍盐与加入硝酸盐和三乙醇胺形成的混合溶液搅拌形成乳液,然后在50~90℃下反应、160~200℃下进行保温处理后进行概述离心,经干燥后得到带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)。本发明的制备方法同时对纯氧化镍和Ag掺杂氧化镍两种纳米微球进行了高压相变研究,相变压力降低,晶体结构稳定性下降,原因在于掺杂Ag导致NiO晶格膨胀,晶体结构松弛,两相相对体积变化增加,从而导致相变势垒降低,使样品在较低压力下发生相变。
2、本发明还公开了一种带有介孔的Ag掺杂氧化镍纳米微球,可以大幅度提高光催化反应效率。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为实施例1中制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的TEM图;
图2为实施例1和实施例2中制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的SEM图,其中a、b、c和d中添加的Ni(NO3)2.6H2O的量分别为2mmol、4mmol、8mmol和16mmol;
图3为实施例1和实施例2中制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的孔径分布图,其中a、b、c和d中添加的Ni(NO3)2.6H2O的量分别为2mmol、4mmol、8mmol和16mmol;
图4为实施例1中Ag掺杂NiO样品在0~70°的XRD衍射图;
图5为实施例1制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)随体系压力增加得到的拉曼光谱图;
图6为实施例1中制备的Ag/NiO纳米微球和SiO2载体负载Mes-Acr+ClO4 -催化2H-azirines和醛进行[3+2]环加成/氧化芳基化合成2,4,5-三取代恶唑。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
实施例1
制备带有介孔的Ag掺杂氧化镍纳米微球,具体的制备方法包括以下步骤:
(1)制备乳液:在50ml三颈瓶中加入8mmol Ni(NO3)2.6H2O,抽真空通氩气,置换三次;加入预超声的60ml去离子水搅拌溶解;另取0.33ml 0.1mol/mL的AgNO3溶液和15ml三乙醇胺混合均匀后用注射器加到上述水溶液中,充分搅拌至完全乳化。形成乳液;
(2)制备纳米微球:将步骤(1)中制备的乳液先升温至70℃后反应24h,然后将其转移到100ml的聚四氟乙烯内衬的不锈钢高压釜中,在180℃下保温12h;完成后使用高速离心机以10000rpm的转速离心,收集所得固体产物,分别用水和乙醇洗涤三次,然后在80℃下干燥过夜,得到产物带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球,其中Ag和NiO的摩尔比为1:60(ICP测试))。
实施例2
实施方法和合成条件都与实施例1相同,区别在于:将实施例1中Ni(NO3)2.6H2O的量从8mmol分别变成2mmol、4mmol和16mmol,制备得到Ag和NiO比例不同的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)。
实施例3
实施方法和合成条件都与实施例1相同,区别在于:将实施例1中加入的0.33ml0.1mol/mL的AgNO3溶液分别替换为0.33ml 0.1mol/L的KNO3和0.33ml 0.1mol/L的NaNO3,制备得到不同硝酸盐参与反应下得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)。
实施例4
实施方法和合成条件都与实施例1相同,区别在于:将实施例1中加入的Ni(NO3)2.6H2O分别替换为Ni(Cl)2.6H2O、NiF2.4H2O或Ni(CO)4,制备得到不同镍盐参与反应下得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)。
实施例5
制备带有介孔的Ag掺杂氧化镍纳米微球,具体的制备方法包括以下步骤:
(1)制备乳液:在50ml三颈瓶中加入4mmol Ni(NO3)2.6H2O,抽真空通氩气,置换三次;加入预超声的60ml去离子水搅拌溶解;另取0.33ml 0.1mol/mL的AgNO3溶液和5ml三乙醇胺混合均匀后用注射器加到上述水溶液中,充分搅拌至完全乳化。形成乳液;
(2)制备纳米微球:将将步骤(1)中制备的乳液先升温至90℃后反应20h,然后将其转移到100ml的聚四氟乙烯内衬的不锈钢高压釜中,在160℃下保温14h;完成后使用高速离心机以10000rpm的转速离心,收集所得固体产物,分别用水和乙醇洗涤三次,然后在90℃下干燥过夜,得到产物带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球,其中Ag和NiO的摩尔比为1:240(ICP检测))。
实施例6
制备带有介孔的Ag掺杂氧化镍纳米微球,具体的制备方法包括以下步骤:
(1)制备乳液:在50ml三颈瓶中加入8mmol Ni(NO3)2.6H2O,抽真空通氩气,置换三次;加入预超声的60ml去离子水搅拌溶解;另取0.33ml 0.1mol/mL的AgNO3溶液和15ml三乙醇胺混合均匀后用注射器加到上述水溶液中,充分搅拌至完全乳化。形成乳液;
(2)制备纳米微球:将将步骤(1)中制备的乳液先升温至50℃后反应28h,然后将其转移到100ml的聚四氟乙烯内衬的不锈钢高压釜中,在200℃下保温10h;完成后使用高速离心机以11500rpm的转速离心,收集所得固体产物,分别用水和乙醇洗涤三次,然后在70℃下干燥过夜,得到产物带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球,其中Ag和NiO的摩尔比为1:240(ICP检测))。
图1为实施例1中制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的TEM图。从图1可以看出,银掺杂氧化镍样品的晶格较纯氧化镍膨胀,但均为六角纤镍矿晶体结构,形貌均为几十纳米尺寸小颗粒堆积形成的微球。
图2为实施例1和实施例2中制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的SEM图,其中a、b、c和d中添加的Ni(NO3)2.6H2O的量分别为2mmol、4mmol、8mmol和16mmol。从图2中可以看出,按照实施例2中的制备方法添加Ni(NO3)2.6H2O的量制备的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)表面都不平整,有大量的不同小孔;而按照实施例1中的制备方法添加Ni(NO3)2.6H2O的量制备的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)表面平整光滑,介孔大小分布均匀。
图3为实施例1和实施例2中制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的孔径分布图,其中a、b、c和d中添加的Ni(NO3)2.6H2O的量分别为2mmol、4mmol、8mmol和16mmol。从图3中可以看出,a中带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的孔径分布不均匀,孔径之间偏差较大;b孔径分布同样不均匀,较为离散;c中孔径分布均匀,集中在2~6nm;d中孔径分布与a中类似,分布不均匀的同时孔径之间存在较大偏差。
图4为实施例1中Ag掺杂NiO样品在0~70°的XRD衍射图。结果显示,带有介孔的Ag掺杂NiO样品的XRD图与标准卡片的吸收峰位置基本一致。
图5为实施例1制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)随体系压力增加得到的拉曼光谱图。带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的高压结构相变规律与纯氧化镍(NiO)相似,体系压力增加到5.3GPa以前,实施例1中制备的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)一直保持着介孔结构;当体系压力升高至5.3GPa时,纤镍矿结构氧化镍的拉曼特征峰完全消失,同时谱图中位于595cm-1处出现新的拉曼峰,表明带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)在5.3GPa左右发生了结构相变;继续对体系增加压力,属于岩盐矿结构NiO的Raman特征峰渐变强,同时Raman峰缓慢向高频移动,直至达到本实验最高压力16.2GPa时,实施例1中带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)一直保持立方岩盐矿型。由此可知,本发明制备的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)由纤镍矿变成岩盐结构的相变压力大约为7.2GPa。相对比纯NiO晶体,Ag掺杂NiO晶体在较低的压力下发生结构相变,且相变过程持续较短。
图6光照条件下,分别以Ag/NiO纳米微球载体和SiO2载体负载Mes-Acr+ClO4 -催化2H-azirines和醛进行[3+2]环加成/氧化芳基化合成2,4,5-三取代恶唑。由图6可知,Ag/NiO纳米微球催化剂在16h左右转化率即达到95%以上,而SiO2催化剂在70h左右转化率即达到90%,所以,相同条件下,Ag掺杂氧化镍纳米微球,可以大幅度提高光催化反应效率。
同样按照测试实施例1中制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的测试方法对实施例3~6中制备的制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)进行性能测试,其结果与实施例1中的结果无较大区别,说明在实施例3~6中制备过程中各项条件的变化并不影响最终制备得到的带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)的性能。
综上所述,本发明公开了一种带有介孔的Ag掺杂氧化镍纳米微球的制备方法,主要是:首先在氩气气氛下将镍盐与加入硝酸盐和三乙醇胺形成的混合溶液搅拌形成乳液,然后在50~90℃下反应、160~200℃下进行保温处理后进行概述离心,经干燥后得到带有介孔的Ag掺杂氧化镍纳米微球(Ag/NiO纳米微球)。本发明的制备方法同时对纯氧化镍和Ag掺杂氧化镍两种纳米微球进行了高压相变研究,相变压力降低,晶体结构稳定性下降,原因在于掺杂Ag导致NiO晶格膨胀,晶体结构松弛,两相相对体积变化增加,从而导致相变势垒降低,使样品在较低压力下发生相变。另外本发明还公开了一种带有介孔的Ag掺杂氧化镍纳米微球,可以大幅度提高光催化反应效率。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.带有介孔的Ag掺杂氧化镍纳米微球的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)制备乳液:在氩气气氛下,向镍盐中加水进行充分溶解,继续加入硝酸盐和三乙醇胺形成的混合溶液,充分搅拌至乳化形成乳液;
(2)制备纳米微球:将所述乳液升温至50~90℃下反应后在160~200℃下进行保温处理10~14h,在10000~11500rpm的转速下离心后收集固体产物,反复用水和乙醇进行洗涤,干燥过夜,得到带有介孔的Ag掺杂氧化镍纳米微球。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述镍盐为Ni(NO3)2.6H2O、Ni(Cl)2.6H2O、NiF2.4H2O或Ni(CO)4中的任意一种或几种;
所述硝酸盐为AgNO3、KNO3或NaNO3中的任意一种或几种。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述混合溶液中AgNO3和三乙醇胺的摩尔体积比为0.033~0.1:15,mol:L。
4.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,所述镍盐中镍与AgNO3的摩尔比为4~8:0.033。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述反应时间为20~28h。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述保温处理在聚四氟乙烯内衬的不锈钢高压釜中进行。
7.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述干燥的温度为70~90℃。
8.根据权利要求1~7任一项所述制备方法制备的带有介孔的Ag掺杂氧化镍纳米微球。
9.根据权利要求8所述的带有介孔的Ag掺杂氧化镍纳米微球,其特征在于,所述带有介孔的Ag掺杂氧化镍纳米微球中银和氧化镍的摩尔比为1:60~480。
10.根据权利要求8~9任一项所述的带有介孔的Ag掺杂氧化镍纳米微球在制备催化剂载体方面的应用。
CN202111333498.XA 2021-11-11 2021-11-11 带有介孔的Ag掺杂氧化镍纳米微球的制备方法及其产品 Pending CN114054042A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111333498.XA CN114054042A (zh) 2021-11-11 2021-11-11 带有介孔的Ag掺杂氧化镍纳米微球的制备方法及其产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111333498.XA CN114054042A (zh) 2021-11-11 2021-11-11 带有介孔的Ag掺杂氧化镍纳米微球的制备方法及其产品

Publications (1)

Publication Number Publication Date
CN114054042A true CN114054042A (zh) 2022-02-18

Family

ID=80275027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111333498.XA Pending CN114054042A (zh) 2021-11-11 2021-11-11 带有介孔的Ag掺杂氧化镍纳米微球的制备方法及其产品

Country Status (1)

Country Link
CN (1) CN114054042A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072635A1 (es) * 2000-03-28 2001-10-04 Universitat De Valencia Procedimiento de preparacion de oxidos mixtos porosos, materiales asi obtenidos y sus usos
US20140183141A1 (en) * 2012-12-31 2014-07-03 Ms. Deepika Saraswathy Kurup Photocatalytic Composition for Water Purification
CN104030371A (zh) * 2014-06-08 2014-09-10 吕仁江 一种软模板法合成介孔片状结构组成的NiO微球的方法
CN104201209A (zh) * 2014-06-11 2014-12-10 天津职业技术师范大学 一种Si/NiO:Ag异质pn结二极管
CN106350692A (zh) * 2016-09-23 2017-01-25 佛山市诺普材料科技有限公司 一种利用银镍合金废料制备银氧化镍的方法
CN108439492A (zh) * 2018-04-16 2018-08-24 沈阳建筑大学 一种银掺杂纳米氧化镍粉体的制备方法
CN109569613A (zh) * 2018-12-30 2019-04-05 中南民族大学 一种催化还原腈类化合物或醛类化合物的方法
CN111908514A (zh) * 2020-08-12 2020-11-10 重庆邮电大学 一种碗状c掺杂磁性中空介孔纳米材料的制备方法及产品
CN112864365A (zh) * 2021-04-20 2021-05-28 杭州芳闻新型材料有限公司 一种氮-硫共掺杂多孔碳负载氧化锌的负极材料及制法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001072635A1 (es) * 2000-03-28 2001-10-04 Universitat De Valencia Procedimiento de preparacion de oxidos mixtos porosos, materiales asi obtenidos y sus usos
US20140183141A1 (en) * 2012-12-31 2014-07-03 Ms. Deepika Saraswathy Kurup Photocatalytic Composition for Water Purification
CN104030371A (zh) * 2014-06-08 2014-09-10 吕仁江 一种软模板法合成介孔片状结构组成的NiO微球的方法
CN104201209A (zh) * 2014-06-11 2014-12-10 天津职业技术师范大学 一种Si/NiO:Ag异质pn结二极管
CN106350692A (zh) * 2016-09-23 2017-01-25 佛山市诺普材料科技有限公司 一种利用银镍合金废料制备银氧化镍的方法
CN108439492A (zh) * 2018-04-16 2018-08-24 沈阳建筑大学 一种银掺杂纳米氧化镍粉体的制备方法
CN109569613A (zh) * 2018-12-30 2019-04-05 中南民族大学 一种催化还原腈类化合物或醛类化合物的方法
CN111908514A (zh) * 2020-08-12 2020-11-10 重庆邮电大学 一种碗状c掺杂磁性中空介孔纳米材料的制备方法及产品
CN112864365A (zh) * 2021-04-20 2021-05-28 杭州芳闻新型材料有限公司 一种氮-硫共掺杂多孔碳负载氧化锌的负极材料及制法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SARAVANAKUMAR KARUNAMOORTHY ET AL.: "Design and synthesis of bandgap tailored porous Ag/NiO nanocomposite: an effective visible light active photocatalyst for degradation of organic pollutants", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *
郭春芳: "水热法合成ZnO纳米微球及其光吸收特性", 《中国粉体技术》 *

Similar Documents

Publication Publication Date Title
Miao et al. Superior catalytic performance of Ce 1− x Bi x O 2− δ solid solution and Au/Ce 1− x Bi x O 2− δ for 5-hydroxymethylfurfural conversion in alkaline aqueous solution
WO2019100497A1 (zh) 多孔碳负载的费托合成催化剂及其制备方法和应用
Chen et al. Benign synthesis of ceria hollow nanocrystals by a template-free method
CN111183115B (zh) 复合氧化物、金属担载物以及氨合成催化剂
CN100563881C (zh) 一种聚丙烯酸水热合成纳米金的方法
CN105366727B (zh) 二硫化钼花状纳米棒的制备方法
Wei et al. Uniform Cu2Cl (OH) 3 hierarchical microspheres: a novel adsorbent for methylene blue adsorptive removal from aqueous solution
CN108636407B (zh) 基于石墨烯负载铜纳米粒子的制备方法
Jayasree et al. Magneto-optical and catalytic properties of recyclable spinel NiAl 2 O 4 nanostructures using facile combustion methods
Lin et al. In situ encapsulation of Pd inside the MCM-41 channel
CN109647403B (zh) 一种四氧化三钴催化剂的可控制备方法及其在co甲烷化中的应用
Hao et al. Direct and generalized synthesis of carbon-based yolk–shell nanocomposites from metal-oleate precursor
CN112041271B (zh) 复合氧化物、金属担载物以及氨合成催化剂
CN113247941A (zh) 一种低温合成均一球形纳米氧化铈材料的方法
Kino et al. Synthesis of Co–Al layered double hydroxide nanoclusters as reduction nanocatalyst in aqueous media
Huang et al. β-Cyclodextrin promoted the formation of copper phyllosilicate on Cu-SiO2 microspheres catalysts to enhance the low-temperature hydrogenation of dimethyl oxalate
Wang et al. pH-controlled assembly of three-dimensional tungsten oxide hierarchical nanostructures for catalytic oxidation of cyclohexene to adipic acid
Tong et al. Improvement of catalytic activity in selective oxidation of styrene with H2O2 over spinel Mg–Cu ferrite hollow spheres in water
Zhao et al. Novel and efficient cobalt catalysts synthesized by one-step solution phase reduction for the conversion of biomass derived ethyl levulinate
Qi et al. Alkali concentration-dependent tailoring of highly controllable titanate nanostructures: From yolk-shell, hollow 3D nanospheres to 1D nanowires
Zawadzki Pd and ZnAl2O4 nanoparticles prepared by microwave-solvothermal method as catalyst precursors
CN106082298B (zh) 一种铈铋复合氧化物纳米棒材料的制备方法
Huang et al. Highly dispersed Pd clusters/nanoparticles encapsulated in MOFs via in situ auto-reduction method for aqueous phenol hydrogenation
Nafria et al. Embedding catalytic nanoparticles inside mesoporous structures with controlled porosity: Au@ TiO 2
Wang et al. Copper decorated indium oxide rods for photocatalytic CO2 conversion under simulated sun light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220218