CN114052723A - 一种基于步态特征的跌倒风险评估方法及跌倒识别装置 - Google Patents

一种基于步态特征的跌倒风险评估方法及跌倒识别装置 Download PDF

Info

Publication number
CN114052723A
CN114052723A CN202111574867.4A CN202111574867A CN114052723A CN 114052723 A CN114052723 A CN 114052723A CN 202111574867 A CN202111574867 A CN 202111574867A CN 114052723 A CN114052723 A CN 114052723A
Authority
CN
China
Prior art keywords
gait
task
data
walking
participant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111574867.4A
Other languages
English (en)
Inventor
陶帅
常蒙月
王毅
韩星
陈一源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN202111574867.4A priority Critical patent/CN114052723A/zh
Publication of CN114052723A publication Critical patent/CN114052723A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • A61B5/1117Fall detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6807Footwear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/08Elderly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Fuzzy Systems (AREA)
  • Primary Health Care (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种基于步态特征的跌倒风险评估方法及跌倒识别装置,属于医工结合技术领域,包括如下步骤:S1、通过吉步恩获取对象仅步行时的单任务步态数据和对象边步行边执行其他任务时的多任务步态数据;S2、根据单任务步态数据,确定对象的步态变异系数;S3、根据单任务步态数据和多任务步态数据,确定对象在两种任务下的步态消耗数据;S4、根据单/双任务步态数据、步态变异系数和步态消耗数据,评估对象的跌倒风险系数。本发明首次结合单双任务步态参数、步态变异系数和双任务步态消耗与跌倒风险系数的关系,快速的通过客观量化的步态参数得到准确的跌倒风险的评估结果,能够针对老人进行前期跌倒风险评估,后期康复训练和指导治疗。

Description

一种基于步态特征的跌倒风险评估方法及跌倒识别装置
技术领域
本发明属于医工结合技术领域,具体涉及一种基于步态特征的跌倒风险评估方法。
背景技术
近年来研究表明,人行走时呈现的步态特征与信息能够反映人的行为功能情况,行为功 能障碍常表现为谨慎步态、步态平衡性降低等特征。大量临床试验通过步态检测的步态参数, 如步幅、步速、步频和跨步时间变化率等反映步态异常情况,进而评估受试者的运动功能情 况,并没有将这些客观参数应用到临床跌倒风险的评估。目前,跌倒风险评估方法主要有量 表诊断法或医生根据自身经验评估法,其具有较强的主观性,会根据医生的经验不同得出不 同的诊断结果,不具有客观性。近年来研究也缺少一种方法,可以将单、双任务评估的步态 数据转化为关于个人跌倒状态的临床可操作的知识。
发明内容
为了解决上述存在的问题,本发明提出:一种基于步态特征的跌倒风险评估方法,技术 方案如下:包括如下步骤:
S1、通过吉步恩获取对象仅步行时的单任务步态数据和对象边步行边执行其他任务时 的多任务步态数据;
S2、根据单任务步态数据,确定对象的步态变异系数;
S3、根据单任务步态数据和多任务步态数据,确定对象在两种任务下的步态消耗数据;
S4、根据单/双任务步态数据、步态变异系数和步态消耗数据,评估对象的跌倒风险系 数。
进一步地,所述步骤S1中,得到的步态数据如下:
Fv:在自由行走实验下的步速;
Fo:在自由行走实验下的摆动时间;
Ab:在动物流畅性实验下的制动力;
Bl:在倒数100实验下的步幅;
Btc:在倒数100试验下的步时变异性;
自由行走即参与者按照舒适的速度进行行走;动物流畅性即参与者以舒适的速度行走的 同时边思考动物的名字并大声说出来;倒数100即参与者以舒适的速度行走的同时边从100 开始倒数,100、99、98...;
步态数据去除走路过程中的第一步和最后一步。
进一步地,所述步骤S2中,步态变异系数的研究对象是参与者的左脚多个时间点的步 态数据,
步态变异系数Atc:在动物流畅性实验下,患者行走一步对应一个时间段,患者行走若 干步对应若干个时间段,计算所述若干个时间段的标准偏差和平均值的比值,即标准偏差与 平均值的比率,用百分比表示;
公式为Atc=SD/mean*100%
SD为多时间点步态标准偏差,mean为多时间点步态平均值。
进一步地,所述步骤S3中,双任务步态消耗的研究对象是参与者一个时间点的自由行 走和动物流畅性的步态数据,FAd:在单任务自由行走和双任务动物流畅性下的步态消耗,
双任务步态消耗FAd:单任务步态值与双任务步态值的差值与单任务步态值的比率,用 百分比表示;
公式为DTC=(ST-DT)/ST*100%
ST为一个时间点单任务步态值,DT为一个时间点双任务步态值。
进一步地,所述步骤S4中,参与者在自由行走状态下的步速Fv、摆动时间Fo、参与者在动物流畅性状态下制动力Ab、步时变异系数Atc、参与者在倒数100实验中的步幅Bl、步时变异性Btc以及在双任务动物流畅性实验和单任务自由行走实验中的步态消耗作为训练集,参与者跌倒风险评估表得分CA作为标签值,通过神经网络算法建立的定量分析模型进行跌倒风险评估,
最终得出跌倒风险系数K与7个步态参数的权重矩阵为:
K=[1.45,-0.10,-1.45,6.62,-0.02,-1.24,-0.04,-0.01]
即:
跌倒风险评分CA=K*[Fv,Fo,Ab,Atc,Bl,Btc,FAd]T
进一步地,包括一双智能鞋和5个高精度低功耗的惯性传感器模块,采集数据时参与 者穿上智能鞋和用尼龙带将惯性传感器模块分别固定在参与者的左右大腿、左右小腿和躯 干,将采集到的运动信号传输到软件***中,经过计算,输出的步态参数。
本发明的有益效果为:
本发明首次结合单双任务步态参数、步态变异系数和双任务步态消耗与跌倒风险系数的 关系,快速的通过客观量化的步态参数得到准确的跌倒风险的评估结果,能够针对60岁以 上人群进行前期跌倒风险评估,后期康复训练和指导治疗。本发明克服了之前诊断的不足, 研究了一种基于步态参数的跌倒风险的评估方法。本方法力争通过简单的步态检测快速得到 评估结果,增加临床效率,节省人力物力。而且本方法模拟现实生活中的多任务情况,计算 出双任务步态参数及步态消耗,首次融合了单任务和双任务步态参数作为临床可操作的知 识,作为跌倒风险评估的关键指标。
该方法特别适于60岁以上的老年人,跌倒风险稍高的运动障碍患者,***能够针对老 年人群进行前期跌倒风险评估,后期康复训练和指导治疗。与同领域已有产品相比,该方法 的特点是,融合单双任务步态参数、步态变异系数和双任务步态消耗,自动分析并快速得到 评估结果。
附图说明
图1为本发明的流程图;
图2为本发明的吉步恩佩戴位置图。
具体实施方式
一种基于步态特征的跌倒风险评估方法,技术方案如下:如图1所示,包括如下步骤:
S1、通过吉步恩获取对象仅步行时的单任务步态数据和对象边步行边执行其他任务时 的多任务步态数据;
S2、根据单任务步态数据,确定对象的步态变异系数;
S3、根据单任务步态数据和多任务步态数据,确定对象在两种任务下的步态消耗数据;
S4、根据单/双任务步态数据、步态变异系数和步态消耗数据,评估对象的跌倒风险系 数。
其中,所述步骤S1中,得到的步态数据如下:
Fv:在自由行走实验下的步速;
Fo:在自由行走实验下的摆动时间;
Ab:在动物流畅性实验下的制动力;
Bl:在倒数100实验下的步幅;
Btc:在倒数100试验下的步时变异性;
自由行走即参与者按照舒适的速度进行行走;动物流畅性即参与者以舒适的速度行走的 同时边思考动物的名字并大声说出来;倒数100即参与者以舒适的速度行走的同时边从100 开始倒数,100、99、98...;
步态数据去除走路过程中的第一步和最后一步。
其中,所述步骤S2中,步态变异系数的研究对象是参与者的左脚多个时间点的步态数 据,
步态变异系数Atc:在动物流畅性实验下,患者行走一步对应一个时间段,患者行走若 干步对应若干个时间段,计算所述若干个时间段的标准偏差和平均值的比值,即标准偏差与 平均值的比率,用百分比表示;
公式为Atc=SD/mean*100%
SD为多时间点步态标准偏差,mean为多时间点步态平均值。
其中,所述步骤S3中,双任务步态消耗的研究对象是参与者一个时间点的自由行走和 动物流畅性的步态数据,FAd:在单任务自由行走和双任务动物流畅性下的步态消耗,
双任务步态消耗FAd:单任务步态值与双任务步态值的差值与单任务步态值的比率,用 百分比表示;
公式为DTC=(ST-DT)/ST*100%
ST为一个时间点单任务步态值,DT为一个时间点双任务步态值。
其中,所述步骤S4中,所述步骤S4中,参与者在自由行走状态下的步速Fv、摆动时间Fo、参与者在动物流畅性状态下制动力Ab、步时变异系数Atc、参与者在倒数100实验 中的步幅Bl、步时变异性Btc以及在双任务动物流畅性实验和单任务自由行走实验中的步 态消耗作为训练集,参与者跌倒风险评估表得分CA作为标签值,通过神经网络算法建立的 定量分析模型进行跌倒风险评估,
最终得出跌倒风险系数K与7个步态参数的权重矩阵为:
K=[1.45,-0.10,-1.45,6.62,-0.02,-1.24,-0.04,-0.01]
即:
跌倒风险评分CA=K*[Fv,Fo,Ab,Atc,Bl,Btc,FAd]T
本发明是融合单任务与双任务的步态参数快速评估跌倒风险,解决了以往研究评估跌倒 风险的主观问题。本发明的创新点:结合单、双任务步态参数、步态变异系数和任务步态消 耗与跌倒风险的相关性,快速准确的评估患者的跌倒风险系数。
其中,包括一双智能鞋和5个高精度低功耗的惯性传感器模块,采集数据时参与者穿 上智能鞋和用尼龙带将惯性传感器模块分别固定在参与者的左右大腿、左右小腿和躯干,将 采集到的运动信号传输到软件***中,经过计算,输出的步态参数。
本发明特别适于60岁以上的老年人,跌倒风险稍高的运动障碍患者,***能够针对老 年人群进行前期跌倒风险评估,后期康复训练和指导治疗。与同领域已有产品相比,该方法 的特点是,融合单双任务步态参数、步态变异系数和双任务步态消耗,自动分析并快速得到 评估结果。
其中,如图2所示,包括一双智能鞋和5个高精度低功耗的惯性传感器模块,采集数据 时参与者穿上智能鞋和用尼龙带将惯性传感器模块分别固定在参与者的左右大腿、左右小腿 和躯干,将采集到的运动信号传输到软件***中,经过计算,输出的步态参数。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何 熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其构思加 以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种基于步态特征的跌倒风险评估方法,其特征在于,包括如下步骤:
S1、通过吉步恩获取对象仅步行时的单任务步态数据和对象边步行边执行其他任务时的多任务步态数据;
S2、根据单任务步态数据,确定对象的步态变异系数;
S3、根据单任务步态数据和多任务步态数据,确定对象在两种任务下的步态消耗数据;
S4、根据单/双任务步态数据、步态变异系数和步态消耗数据,评估对象的跌倒风险系数。
2.如权利要求1所述的基于步态特征的跌倒风险评估方法,其特征在于,所述步骤S1中,得到的步态数据如下:
Fv:在自由行走实验下的步速;
Fo:在自由行走实验下的摆动时间;
Ab:在动物流畅性实验下的制动力;
Bl:在倒数100实验下的步幅;
Btc:在倒数100试验下的步时变异性;
自由行走即参与者按照舒适的速度进行行走;动物流畅性即参与者以舒适的速度行走的同时边思考动物的名字并大声说出来;倒数100即参与者以舒适的速度行走的同时边从100开始倒数,100、99、98...;
步态数据去除走路过程中的第一步和最后一步。
3.如权利要求1所述的基于步态特征的跌倒风险评估方法,其特征在于,所述步骤S2中,步态变异系数的研究对象是参与者的左脚多个时间点的步态数据,
步态变异系数Atc:在动物流畅性实验下,患者行走一步对应一个时间段,患者行走若干步对应若干个时间段,计算所述若干个时间段的标准偏差和平均值的比值,即标准偏差与平均值的比率,用百分比表示;
公式为Atc=SD/mean*100%
SD为多时间点步态标准偏差,mean为多时间点步态平均值。
4.如权利要求1所述的基于步态特征的跌倒风险评估方法,其特征在于,所述步骤S3中,双任务步态消耗的研究对象是参与者一个时间点的自由行走和动物流畅性的步态数据,FAd:在单任务自由行走和双任务动物流畅性下的步态消耗,
双任务步态消耗FAd:单任务步态值与双任务步态值的差值与单任务步态值的比率,用百分比表示;
公式为DTC=(ST-DT)/ST*100%
ST为一个时间点单任务步态值,DT为一个时间点双任务步态值。
5.如权利要求1所述的基于步态特征的跌倒风险评估方法,其特征在于,所述步骤S4中,参与者在自由行走状态下的步速Fv、摆动时间Fo、参与者在动物流畅性状态下制动力Ab、步时变异系数Atc、参与者在倒数100实验中的步幅Bl、步时变异性Btc以及在双任务动物流畅性实验和单任务自由行走实验中的步态消耗作为训练集,参与者跌倒风险评估表得分CA作为标签值,通过神经网络算法建立的定量分析模型进行跌倒风险评估,
最终得出跌倒风险系数K与7个步态参数的权重矩阵为:
K=[1.45,-0.10,-1.45,6.62,-0.02,-1.24,-0.04,-0.01]
即:
跌倒风险评分CA=K*[Fv,Fo,Ab,Atc,Bl,Btc,FAd]T
6.一种基于步态特征的跌倒识别装置,其特征在于,包括一双智能鞋和5个高精度低功耗的惯性传感器模块,采集数据时参与者穿上智能鞋和用尼龙带将惯性传感器模块分别固定在参与者的左右大腿、左右小腿和躯干,将采集到的运动信号传输到软件***中,经过对加速度数据和姿态数据进行融合,并利用四元互补滤波技术计算输出步态参数。
CN202111574867.4A 2021-12-21 2021-12-21 一种基于步态特征的跌倒风险评估方法及跌倒识别装置 Pending CN114052723A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111574867.4A CN114052723A (zh) 2021-12-21 2021-12-21 一种基于步态特征的跌倒风险评估方法及跌倒识别装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111574867.4A CN114052723A (zh) 2021-12-21 2021-12-21 一种基于步态特征的跌倒风险评估方法及跌倒识别装置

Publications (1)

Publication Number Publication Date
CN114052723A true CN114052723A (zh) 2022-02-18

Family

ID=80230114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111574867.4A Pending CN114052723A (zh) 2021-12-21 2021-12-21 一种基于步态特征的跌倒风险评估方法及跌倒识别装置

Country Status (1)

Country Link
CN (1) CN114052723A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120116244A1 (en) * 2009-12-02 2012-05-10 The Cleveland Clinic Foundation Postural stability in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming
US20140276130A1 (en) * 2011-10-09 2014-09-18 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Virtual reality for movement disorder diagnosis and/or treatment
JP2015085037A (ja) * 2013-10-31 2015-05-07 テルモ株式会社 診断装置
CN110960195A (zh) * 2019-12-25 2020-04-07 中国科学院合肥物质科学研究院 一种方便快捷的神经认知功能评估方法及装置
CN111539328A (zh) * 2020-04-23 2020-08-14 四川大学华西医院 基于步态标准差的轻度认知障碍识别方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120116244A1 (en) * 2009-12-02 2012-05-10 The Cleveland Clinic Foundation Postural stability in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming
US20140276130A1 (en) * 2011-10-09 2014-09-18 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Virtual reality for movement disorder diagnosis and/or treatment
JP2015085037A (ja) * 2013-10-31 2015-05-07 テルモ株式会社 診断装置
CN110960195A (zh) * 2019-12-25 2020-04-07 中国科学院合肥物质科学研究院 一种方便快捷的神经认知功能评估方法及装置
CN111539328A (zh) * 2020-04-23 2020-08-14 四川大学华西医院 基于步态标准差的轻度认知障碍识别方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
根据单任务步态数据,确定对象的步态变异系数; S3、根据单任务步态数据和多任务步态数据,确定对象在两种任务下的步态消耗数据; S4、根据单/双任务步态数据、步态变异系数和步态消耗数据,评估对象的跌倒风险系数。: "Pathological Gait Signatures of Post-stroke Dementia With Toe-Off and Heel-to-Ground Angles Discriminate From Alzheimer’s Disease", FRONTIERS IN AGING NEUROSCIENCE, pages 1 - 15 *

Similar Documents

Publication Publication Date Title
CN109480858B (zh) 一种用于量化检测帕金森患者运动迟缓症状的可穿戴智能***及方法
Karantonis et al. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring
Ghasemzadeh et al. A body sensor network with electromyogram and inertial sensors: Multimodal interpretation of muscular activities
Fulk et al. Identifying activity levels and steps of people with stroke using a novel shoe-based sensor
Zhang et al. Chair rise peak power in daily life measured with a pendant sensor associates with mobility, limitation in activities, and frailty in old people
CN108814617A (zh) 冻结步态识别方法和装置及步态检测仪
EP3731238A1 (en) Device for calculating, during one step or each successive step of the gait of a subject, the push-off of the subject
Malik et al. An intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG features
CN112656406A (zh) 一种基于可穿戴传感器的帕金森病下肢运动检测方法
Moufawad El Achkar et al. Classification and characterization of postural transitions using instrumented shoes
CN206979491U (zh) 穿戴式人体平衡能力监测仪
Duong et al. Ecological validation of machine learning models for spatiotemporal gait analysis in free-living environments using instrumented insoles
Moghadam et al. The effect of imu sensor location, number of features, and window size on a random forest model’s accuracy in predicting joint kinematics and kinetics during gait
CN114052723A (zh) 一种基于步态特征的跌倒风险评估方法及跌倒识别装置
Low et al. Lower extremity kinematics walking speed classification using long short-term memory neural frameworks
CN113768471B (zh) 一种基于步态分析的帕金森疾病辅助诊断***
Lueken et al. Identification of individually altered gait behavior using an unobtrusive imu sensor setup
Stetter Wearable Sensors and Machine Learning based Human Movement Analysis–Applications in Sports and Medicine
Senanayake et al. Master-slave IoT for active healthy life style
Baritz et al. Human gait analyzed by complex and interconnected system
CN115054237B (zh) 基于决策树模型的实时跌倒预测及助力恢复方法
Long et al. Predicting ankle and knee sagittal kinematics and kinetics using an ankle-mounted inertial sensor
Derie Running on good vibes: music induced running-style adaptations for lower impact running
Zhang et al. Intelligent prediction of dynamic characteristics during exercise in stroke patients
Pollicini Why should 3D Gait Analysis be included in the Walking Pattern Assessment of individuals with Spinal Cord Injury?: Biomechanical analysis of gait and gait patterns in individuals with spinal cord injury

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination