CN114040991A - 制造涂布的切削工具的方法和涂布的切削工具 - Google Patents

制造涂布的切削工具的方法和涂布的切削工具 Download PDF

Info

Publication number
CN114040991A
CN114040991A CN202080044852.4A CN202080044852A CN114040991A CN 114040991 A CN114040991 A CN 114040991A CN 202080044852 A CN202080044852 A CN 202080044852A CN 114040991 A CN114040991 A CN 114040991A
Authority
CN
China
Prior art keywords
cutting tool
layer
ltoreq
coated cutting
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080044852.4A
Other languages
English (en)
Inventor
弗雷德里克·约瑟夫森
拉尔斯·约翰逊
马尔塔·萨赖瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Coromant AB
Original Assignee
Sandvik Coromant AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Coromant AB filed Critical Sandvik Coromant AB
Publication of CN114040991A publication Critical patent/CN114040991A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/16Cermet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/84Steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/24Titanium aluminium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/18Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/16Cermet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/84Steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23C2224/24Titanium aluminium nitride (TiAlN)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/12Boron nitride
    • B23C2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/18Ceramic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种制造用于金属加工的涂布的切削工具的方法,所述涂布的切削工具包含基材(100)和涂层(101),所述涂层包含至少一个含立方晶相的(Ti,Al)N层,所述方法包括沉积Ti1‑ xAlxN层,其中0.70≤x≤0.98,Ti1‑xAlxN包含立方晶相,所述Ti1‑xAlxN层是使用‑200V至‑400V的直流偏置电压并使用75A至250A的电弧放电电流在7Pa至15Pa的N2气体的真空室压力下通过阴极电弧蒸发沉积的。本发明还涉及一种用于金属加工的涂布的切削工具,具有涂层,所述涂层包含至少Ti1‑yAlyN和Ti1‑zAlzN的交替子层的(Ti,Al)N多层,其中0.35≤y≤0.65且0.80≤z≤0.98,仅存在立方相。

Description

制造涂布的切削工具的方法和涂布的切削工具
本发明涉及一种制造含有含立方晶体结构并具有高铝含量的(Ti,Al)N层的涂布的切削工具的方法。本发明还涉及一种涂布的切削工具。
背景技术
通过物理气相沉积(PVD)制成的(Ti,Al)N涂层通常用于金属加工用切削工具领域。
PVD涂层中(Ti,Al)N的晶体结构可以是立方(NaCl(=B1))结构或六方(纤锌矿)结构。在现有技术研究中,通常在(Ti,Al)N中较低的Al含量(例如<Al+Ti的60%)提供立方结构,而高Al含量(例如>70%)提供六方结构。用于提供单相立方结构或包含立方结构和六方结构的混合结构的Al含量水平的具体限制已经被报道并且在一定程度上取决于例如沉积条件而变化。
已知单相立方(Ti,Al)N层在硬度和弹性模量方面具有良好的特性。这些特性对于切削工具的涂层是有益的。
例如,Tanaka等人,"通过阴极电弧离子镀法制备的切削工具用(Ti1-xAlx)N涂层的特性(Properties of(Ti1-xAlx)N coatings for cutting tools prepared by thecathodic arc ion plating method)",真空科学与技术期刊A(Journal of VacuumScience&Technology A)10,1749(1992)报道了,(Ti1-xAlx)N膜直至x=0.6是单相,具有立方B1结构,而铝含量的进一步增加(x=0.85)得到纤锌矿结构。此外,Kimura等人,"Al含量对(Ti1-xAlx)N膜的硬度、晶格参数和微观结构的影响(Effects of Al content onhardness,lattice parameter and microstructure of(Ti1-xAlx)N films)",表面和涂层技术(Surface and Coatings Technology)120–121(1999)438-441报道了通过电弧离子镀法合成的(Ti1-xAlx)N膜,其中NaCl结构(x≤0.6)变为纤锌矿结构(x≥0.7)。
WO2019/048507A1公开了一种通过使用高功率脉冲磁控溅射(HIPIMS)技术制造具有高铝含量的(Ti,Al)N膜的方法,所述膜表现出结晶立方相。
当通过阴极电弧蒸发来沉积(Ti,Al)N膜时,施加偏置电压,并且反应室具有特定水平的氮气压力。通常的偏置电压水平是-30V至-150V。电压越高,等离子体中的能量就越高。
通常的氮气压力水平是2Pa至6Pa。氮气压力越高,每单位体积的氮气分子数就越高。氮气分子会抑制等离子体中离子和粒子的能量。因此,氮气压力越高,这种效果就越明显。由此,当使用高水平的偏置电压时,氮气压力在传统上一直被保持得低,以免与使用高偏置电压的期望效果相冲突。
本发明的一个目的是提供一种制造具有高铝含量并且仍含立方晶相的(Ti,Al)N层的方法。
持续需要涂布的切削工具,其中涂层对各种类型的磨损(例如后刀面磨损和月牙洼磨损)具有良好的抗性,以便在金属加工应用中提供长的工具寿命。此外,特定应用对切削工具的刃线完整性有高的要求,即需要高刃线韧性。
因此,本发明的另一个目的是提供一种具有良好的后刀面耐磨性和/或良好的月牙洼耐磨性和/或良好的刃线韧性的涂布的切削工具。
发明内容
现在已经提供了一种制造用于金属加工的涂布的切削工具的方法,所述涂布的切削工具包含基材和涂层,所述涂层包含至少一个含立方晶相并具有高铝含量的(Ti,Al)N层。
在本文中(Ti,Al)N层中立方晶相的存在定义为在θ-2θXRD分析中存在一个或多个立方峰。
所述方法包括沉积Ti1-xAlxN层,其中0.70≤x≤0.98,Ti1-xAlxN包含立方晶相,所述Ti1-xAlxN层是使用-200至-400V、优选-250V至-350V的直流偏置电压并使用75A至250A、优选100A至200A的电弧放电电流在7Pa至15Pa、优选8Pa至12Pa的N2气体的真空室压力下通过阴极电弧蒸发沉积的。
根据本方法制成的(Ti,Al)N层可以沉积为单层。则所述Ti1-xAlxN层的厚度合适地为0.2μm至10μm,优选0.5μm至5μm。
在一个实施方式中,本方法提供了一种单层(Ti,Al)N,包含铝含量(Al+Ti中的Al)为至少高达80原子%或甚至高达85原子%的立方晶体结构。所述立方(Ti,Al)N相可以以作为在(Ti,Al)N层中的单相的程度存在,或者所述立方(Ti,Al)N相可以与六方(Ti,Al)N相一起存在。由此,在本方法的一个实施方式中,所述Ti1-xAlxN层是含立方晶体结构的单层,其中0.70≤x≤0.85。在本方法的另一个实施方式中,所述Ti1-xAlxN层是包含立方晶体结构的单层,其中0.70≤x≤0.80。
在本方法的另一个实施方式中,所述Ti1-xAlxN层是含立方晶体结构的单层,其中0.75≤x≤0.85。在本方法的另一个实施方式中,所述Ti1-xAlxN层是含立方晶体结构的单层,其中0.75≤x≤0.80。
对于高于75原子%或高于80原子%的铝含量(Al+Ti中的Al),当(Ti,Al)N层是单层时,所述立方(Ti,Al)N相合适地与六方(Ti,Al)N相一起存在。对于等于或低于75原子%、优选低于或等于80原子%的铝含量,所述立方(Ti,Al)N相合适地是所存在的单一(Ti,Al)N相。
根据本方法制成的(Ti,Al)N层也可以在涂层中用作多层的一部分,其中Ti1-xAlxN子层与至少一种另外的(Ti,Al)N的子层以重复的方式存在。这样的(Ti,Al)N多层的实施方式具有至少两种不同子层(A、B、C...)的交替层,这些子层以例如A/B/C.../A/B/C.../...或A/B/A/B/....的方式重复,所述(Ti,Al)N子层A、B、C...具有彼此不同的Ti/Al比。
各(Ti,Al)N子层的平均厚度合适地为1至20nm,优选1至10nm,最优选1.5至5nm。
对于多层(Ti,Al)N,可以获得高达比单层(Ti,Al)N更高的Al含量的(Ti,Al)N子层的单相立方结构。
在一个实施方式中,所述(Ti,Al)N多层是至少Ti1-yAlyN和Ti1-zAlzN的交替子层的多层,其中0.35≤y≤0.65且0.80≤z≤0.98,仅存在立方相。
在一个实施方式中,0.35≤y≤0.65且0.85≤z≤0.96。
在一个实施方式中,0.40≤y≤0.60且0.80≤z≤0.98。
在一个实施方式中,0.40≤y≤0.60且0.85≤z≤0.96。
所述涂布的切削工具的基材可以选自硬质合金、金属陶瓷、陶瓷、立方氮化硼和高速钢。优选地,所述涂布的切削工具的基材是硬质合金。
现在还提供了一种用于金属加工的涂布的切削工具,包含基材和涂层,所述涂层包含立方(Ti,Al)N的交替子层的多层。
所述涂布的切削工具包含至少Ti1-yAlyN和Ti1-zAlzN的交替子层的多层,其中0.35≤y≤0.65且0.80≤z≤0.98,仅存在立方相(如通过XRDθ-2θ分析所检测的),单个(Ti,Al)N子层的平均厚度为1至20nm。术语“仅存在立方相”是指在θ-2θXRD分析中未见六方(Ti,Al)N峰,而只有一个或多个立方(Ti,Al)N峰。
所述子层Ti1-yAlyN的厚度对子层Ti1-zAlzN的厚度之比合适地≥0.5且<3,优选地为0.75至2。
在一个实施方式中,所述(Ti,Al)N多层包含至少三个不同子层(A、B、C...)的交替子层,其以...A/B/C.../A/B/C.../...的方式重复,任何子层A、B、C...的组成为Ti1-vAlvN,0.35≤v≤0.98,两个子层分别为Ti1-wAlwN和Ti1-rAlrN,其中0.35≤w≤0.65且0.8≤r≤0.98。
在一个实施方式中,所述(Ti,Al)N多层是Ti1-yAlyN和Ti1-zAlzN的交替子层的多层,其中0.35≤y≤0.65且0.80≤z≤0.98。
在一个实施方式中,0.35≤y≤0.65且0.85≤z≤0.96。
在一个实施方式中,0.40≤y≤0.60且0.80≤z≤0.98。
在一个实施方式中,0.40≤y≤0.60且0.85≤z≤0.96。
单个子层的平均厚度合适地为1至10nm,优选1.5至5nm。
在一个实施方式中,所述(Ti,Al)N是非周期性多层。在这种类型的多层中,子层在厚度方面可能存在一些差异,即使是相同组成的子层也是如此。这种类型的多层通常是通过在PVD室中使用旋转切削工具坯料(blanks)进行三重旋转的沉积工序产生的。
在一个实施方式中,所述(Ti,Al)N是周期性多层。在这种类型的多层中,各组成的子层具有大约相同的厚度。
所述(Ti,Al)N多层的总厚度为0.5μm至10μm,或1μm至8μm,或2μm至6μm。
所述(Ti,Al)N多层合适地是阴极电弧蒸发沉积层。
在一个实施方式中,所述涂层在所述(Ti,Al)N多层下面包含一个或多个另外的金属氮化物层。所述金属氮化物合适地是属于IUPAC元素周期表中第4至6族的一种或多种金属的氮化物,任选地与Al和/或Si一起形成所述氮化物。此类金属氮化物的实例是TiN和(Ti,Al)N。这些一个或多个金属氮化物层的总厚度可以为约0.1μm至约2μm,或约0.2μm至约1μm。
所述涂布的切削工具的基材可以选自硬质合金、金属陶瓷、陶瓷、立方氮化硼和高速钢。优选地,所述涂布的切削工具的基材是硬质合金。
所述涂布的切削工具可以是用于金属加工的切削工具刀片、钻头或整体立铣刀。所述切削工具刀片合适地是铣削、钻削或车削刀片。
本文中(Ti,Al)N层可以以至多3原子%的原子百分比(Me+Al+Ti中的Me)、或甚至至多5原子%含有少量额外金属Me作为氮化物的一部分,例如Cr、Zr和Si,而不实质改变涂层的特性。如果存在Me,则在本文使用的(Ti,Al)N式中,Me将被计为Ti。由此,(Ti,Al)N中的Ti含量于是实际上就是Ti+Me含量。
附图说明
图1显示了根据本发明的具有涂层(101)的基材(100)的示意图。
图2显示了在不同偏置电压和/或压力下沉积(Ti,Al)N层而得的样品的X射线衍射图。
图3显示了用常规方法沉积的具有不同Al含量的(Ti,Al)N单层的X射线衍射图。
图4显示了用本发明的方法沉积的具有不同Al含量的(Ti,Al)N单层的X射线衍射图。
图5显示了用常规方法沉积的具有不同Al含量的(Ti,Al)N多层的X射线衍射图。
图6显示了用本发明的方法沉积的具有不同Al含量的(Ti,Al)N多层的X射线衍射图。
图7显示了Ti0.10Al0.90N/Ti0.50Al0.50N和Ti0.05Al0.95N/Ti0.50Al0.50N多层的X射线衍射图。
实施例
实施例1:
将不同的Ti0.20Al0.80N涂层通过阴极电弧蒸发沉积在烧结硬质合金切削工具刀片坯料SNMA120808-KR上。所述硬质合金的组成为10重量%的Co,其余为WC。样品1-4使用具有销的“树(trees)”的旋转台以三重旋转沉积,坯料被安装在所述销的“树”上。反应室包含四个用于靶的法兰。将Ti0.20Al0.80靶安装在两个相对的法兰上,其余两个法兰是空的。将腔室抽至真空(小于10-2Pa)并通过腔室内部的加热器加热至约450℃。坯料在Ar等离子体中腐蚀60分钟。腔室压力(反应压力)设置为4Pa或设置为10Pa的N2气体并且样品1-4的期望直流偏置电压分别为-50V、-225V、-300V和-375V,参见表1。阴极在电弧放电模式下运行,电流为150A(各自)。沉积了3μm的层。
表1.
Figure BDA0003418062410000081
使用配备PIXcel检测器的PANalytical CubiX3衍射仪对涂布的刀片的后刀面进行X射线衍射(XRD)分析。将涂布的切削工具刀片安装在样品架中,确保样品的后刀面平行于样品架的参考表面,此外确保后刀面处于合适的高度。将Cu-Kα辐射用于测量,电压为45kV并且电流为40mA。使用1/2度的防散射狭缝和1/4度的发散狭缝。在出现相关峰的2θ角附近测量来自涂布的切削工具的衍射强度。
图2显示了样品1-4的衍射图。
得出的结论是,对于使用10Pa氮气压力以及-300V和-225V的基材偏置电压制成的样品,基本上未见到六方信号。使用常规参数的样品1在衍射图中未显示可见的立方信号(例如(2 0 0)反射)。样品4显示出立方(2 0 0)反射,但也显示出明显的六方(1 1 -2 0)反射。
实施例2:
Ti0.10-0.40Al0.60-0.90N的不同涂层是通过使用三种不同的靶Ti0.40Al0.60、Ti0.25Al0.75和Ti0.10Al0.90制成的,这些靶作为三个靶的组位于反应室中所有四个法兰上的不同高度处。由此,涂层的组成根据坯料在腔室中的位置而以渐进方式不同。
第一组样品是通过在与实施例1中的组成相同的几何结构SNMA120808-KR的切削工具刀片硬质合金坯料上、通过使用如实施例1中所述的沉积程序使用-50V的直流偏置电压和4Pa的氮气压力沉积(Ti,Al)N层而制成的。所述坯料首先在Ar等离子体中腐蚀60分钟。涂层的厚度为约3μm。
第二组样品是通过使用如实施例1中所述的沉积程序、使用-300V的直流偏置电压和10Pa的氮气压力在切削工具刀片硬质合金坯料上沉积(Ti,Al)N层而制成的。所述坯料首先在Ar等离子体中腐蚀60分钟。涂层的厚度为约3μm。
将来自反应室中14个不同水平的样品通过XRD进行分析。涂层中的Al含量(相对于Ti+Al)也通过EDS进行分析。参见表2,显示了在-50V直流偏置电压和4Pa氮气压力下沉积而得的样品5-18,表3显示了在-300V直流偏置电压和10Pa氮气压力下沉积而得的样品19-32。对于第二组样品,并非所有样品都进行了分析(参见表3),但不同样品的Al含量逐渐增加是显而易见的。
表2.
样品Ti<sub>1-x</sub>Al<sub>x</sub>N x
5 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.61
6 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.63
7 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.64
8 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.66
9 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.67
10 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.69
11 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.70
12 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.76
13 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.78
14 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.83
15 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.82
16 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.84
17 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.86
18 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.85
表3.
样品 x
19 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.60
20 Ti<sub>1-x</sub>Al<sub>x</sub>N -*
21 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.63
22 Ti<sub>1-x</sub>Al<sub>x</sub>N -*
23 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.67
24 Ti<sub>1-x</sub>Al<sub>x</sub>N -*
25 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.72
26 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.74
27 Ti<sub>1-x</sub>Al<sub>x</sub>N -*
28 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.78
29 Ti<sub>1-x</sub>Al<sub>x</sub>N -*
30 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.81
31 Ti<sub>1-x</sub>Al<sub>x</sub>N -*
32 Ti<sub>1-x</sub>Al<sub>x</sub>N 0.87
*未分析
图3显示了使用常规方法沉积的具有不同Al含量的样品5-18的(Ti,Al)N单层的X射线衍射图。
图4显示了用本发明的方法沉积的具有不同Al含量的样品19-32的(Ti,Al)N单层的X射线衍射图。
从图3(使用常规方法沉积的涂层)可以看出,直到Al含量(相对于Ti+Al)高达约66原子%时注意到立方(2 0 0)反射,并且在约63原子%的Al含量下已经开始看到清晰可见的六方反射(0 0 0 2),并且在约76原子%的Al含量下开始看到可见的六方反射(1 1 -20)和(1 0 -1 0)。
从图4(使用根据本发明的方法沉积的涂层)可以看出,直到Al含量(相对于Ti+Al)高达约80原子%时注意到立方(2 0 0)反射,并且仅对于在约81原子%处开始的Al含量,看到清晰可见的六方反射(1 1 -2 0)和(1 0 -1 0)。
得出的结论是,根据本发明的方法在高达比常规方法高得多的Al含量下提供了立方结构。
实施例3:
通过使用三种不同的靶Ti0.40Al0.60、Ti0.25Al0.75和Ti0.10Al0.90制成不同的Ti0.10- 0.40Al0.60-0.90N/Ti0.50Al0.50N多层涂层,所述靶作为三个靶的组位于反应室中两个相对法兰上的不同高度处,并且Ti0.50Al0.50靶位于两个剩余的相对法兰上。由此,多层涂层中一个子层的组成根据腔室中坯料的位置而以渐进的方式不同。
第一组样品是通过在与实施例1中的组成相同的几何结构SNMA120808-KR的切削工具刀片硬质合金坯料上、通过使用如实施例1中所述的沉积程序使用-50V的直流偏置电压和4Pa的氮气压力沉积多层而制成的。将坯料在Ar等离子体中腐蚀60分钟。首先使用-50V的直流偏置电压和4Pa的氮气压力在硬质合金基材上沉积约0.3μmTi0.50Al0.50N的起始层。涂层的厚度为约3μm。提供了非周期性多层。所述两种不同类型子层的平均子层厚度各为约2nm。
第二组样品是通过使用如实施例1中所述的沉积程序、使用-300V的直流偏置电压和10Pa的氮气压力在切削工具刀片硬质合金坯料上沉积多层而制成的。将坯料在Ar等离子体中腐蚀60分钟。首先使用-50V的直流偏置电压和4Pa的氮气压力在硬质合金基材上沉积约0.3μm Ti0.50Al0.50N的起始层。涂层的厚度为约3μm。提供了非周期性多层。所述两种不同类型子层的平均子层厚度各为约1.5nm。
将来自反应室中17个不同水平的样品通过XRD进行分析。涂层中的Al含量(相对于Ti+Al)也通过EDS进行分析。由各EDS结果,除了Ti0.50Al0.50N之外的子层Ti1-xAlxN的子层组成是根据靶组成并假设Ti1-xAlxN和Ti0.50Al0.50N的子层厚度相等而估计的。
参见表4,显示了在-50V的直流偏置电压和4Pa氮气压力下沉积而得的样品33-49,表5显示了在-300V直流偏置电压和10Pa氮气压力下沉积而得的样品50-66。从表中可以看出,并非所有样品都进行了分析,但不同样品的Al含量逐渐增加是显而易见的。
表4.
Figure BDA0003418062410000131
*未分析
表5.
Figure BDA0003418062410000132
*未分析
图5显示了整个(Ti,Al)N多层的样品33-49的X射线衍射图,其中所有子层都是用常规方法沉积的。
图6显示了整个(Ti,Al)N多层的样品50-66的X射线衍射图,其中所有子层都是用本发明的方法沉积的。
由图5(使用常规方法沉积的多层涂层)可以看出,从一个子层中的Al含量(相对于Ti+Al)为约77原子%开始,可以看到清晰可见的六方反射(0 0 0 2)。
根据图6(使用根据本发明的方法沉积的多层涂层),即使在一个子层中的Al含量(相对于Ti+Al)为约87原子%时,也完全看不到六方反射。
结论是,根据本发明的方法在高达比常规方法高得多的Al含量下提供了单相立方结构。此外,在根据本发明的多层中提供了单相立方结构,所述多层在一个子层中具有至少87原子%的Al含量(相对于Ti+Al)。
实施例4:
通过使用位于反应室中的两个相对法兰上的Ti0.10Al0.90靶(或Ti0.05Al0.95靶)和位于其余两个相对法兰上的Ti0.50Al0.50靶,制造了Ti0.10Al0.90N/Ti0.50Al0.50N和Ti0.05Al0.95N/Ti0.50Al0.50N的多层涂层的其它样品。
一组样品(“样品67和68”)通过在车削刀片几何结构CNMG120804-MM(样品67a和68a)和铣削刀片几何结构R390-11T308M-PM(样品67b和68b)的切削工具刀片硬质合金坯料上分别沉积Ti0.10Al0.90N/Ti0.50Al0.50N和Ti0.05Al0.95N/Ti0.50Al0.50N的交替子层的多层而制成。所述硬质合金具有与实施例1中相同的组成、并通过使用-50V的直流偏置电压和4Pa的氮气压力使用如实施例1中所述的沉积程序。将坯料在Ar等离子体中腐蚀60分钟。首先使用-50V的直流偏置电压和4Pa的氮气压力在硬质合金基材上沉积约0.3μmTi0.50Al0.50N的起始层。涂层的厚度为约3μm。提供了非周期性多层。各样品中所述两种不同类型的子层的平均子层厚度各为约2nm。
然后通过在车削刀片几何结构CNMG120804-MM(样品69a和70a)和铣削刀片几何结构R390-11T308M-PM(样品69b和70b)的切削工具刀片硬质合金坯料上分别沉积Ti0.10Al0.90N/Ti0.50Al0.50N和Ti0.05Al0.95N/Ti0.50Al0.50N的交替子层的多层来制造一组样品(“样品69和70”)。所述硬质合金具有与实施例1中相同的组成、并通过使用-300V的直流偏置电压和10Pa的氮气压力使用如实施例1中所述的沉积程序。将坯料在Ar等离子体中腐蚀60分钟。首先使用-50V的直流偏置电压和4Pa的氮气压力在硬质合金基材上沉积约0.3μmTi0.50Al0.50N的起始层。涂层的厚度为约3μm。提供了非周期性多层。相应样品中所述两种不同类型的子层的平均子层厚度各为约1.5nm。
没有对多层的实际组成进行分析,但估计多层的组成与靶组成非常相似,即Ti0.10Al0.90N/Ti0.50Al0.50N和Ti0.05Al0.95N/Ti0.50Al0.50N。可能存在几个百分点的差异。
图7显示了用常规方法制造的样品67a和68a以及用根据本发明的方法制成的样品69a和70a的整个Ti0.10Al0.90N/Ti0.50Al0.50N和Ti0.05Al0.95N/Ti0.50Al0.50N多层的X射线衍射图。
从图7可以得出结论,具有使用常规方法沉积的多层涂层的样品在衍射图中具有清晰可见的六方(0 0 0 2)反射。具有使用根据本发明的方法沉积的多层涂层的样品没有显示六方反射。
结论是,根据本发明的方法在高达比常规方法高得多的Al含量下提供了单相立方结构。此外,在根据本发明的多层中提供了单相立方结构,所述多层在一个子层中具有至少约95原子%的Al含量(相对于Ti+Al)。
对实施例5-7中使用的术语的解释:
以下表达/术语常用于金属切削,但在下表中进行了解释:
Vc(m/分钟):切削速度(米/分钟)
fn(mm/转):每转进给率(车削中)
ap(mm):轴向切削深度(毫米)
实施例5:
后刀面磨损测试:
纵向车削
工件材料:Uddeholm Sverker 21(工具钢),硬度~210HB,D=180,L=700mm,
Vc=125m/分钟
fn=0.072mm/转
ap=2mm
无切削液
工具寿命的截止标准是0.15mm的后刀面磨损VB。
将通过常规方法制造的含有六方相的样品67a的涂层即Ti0.10Al0.90N/Ti0.50Al0.50N与通过根据本发明的方法制造并具有单相立方结构的样品69a的涂层即Ti0.10Al0.90N/Ti0.50Al0.50N进行比较。
实施例6:
月牙洼磨损测试:
纵向车削
工件材料:Ovako 825B,滚珠轴承钢。经热轧和退火,硬度~200HB,D=160,L=700mm,
Vc=160m/分钟
fn=0.3mm/转
ap=2mm
有切削液
工具寿命结束的标准是月牙洼面积为0.8mm2
将通过常规方法制造的含有六方相的样品67a的涂层即Ti0.10Al0.90N/Ti0.50Al0.50N与通过根据本发明的方法制造并具有单相立方结构的样品69a的涂层即Ti0.10Al0.90N/Ti0.50Al0.50N进行比较。
实施例7:
抗热裂纹性(“梳状裂纹”抗性)测试
铣削
工件材料:Toolox33,PK158 600x200x100mm,P2.5.Z.HT
z=1
Vc=250m/分钟
fz=0.20mm
ae=12.5mm
ap=3.0
有切削液
当裂纹导致刃碎裂>0.30mm时,达到截止标准。工具寿命表示为达到这些标准的切入次数。
将通过常规方法制造的含有六方相的样品67b的涂层即Ti0.10Al0.90N/Ti0.50Al0.50N与通过根据本发明的方法制造并具有单相立方结构的样品69b的涂层即Ti0.10Al0.90N/Ti0.50Al0.50N进行比较。
实施例5-7中的测试结果见表6。
表6.
Figure BDA0003418062410000181
得出的结论是,根据本发明的样品相比于比较样品具有更好的对后刀面磨损、月牙洼磨损和梳状裂纹的抗性。

Claims (14)

1.一种制造用于金属加工的涂布的切削工具的方法,所述涂布的切削工具包含基材和涂层,所述涂层包含至少一个含立方晶相的(Ti,Al)N层,所述方法包括沉积Ti1-xAlxN层,其中0.70≤x≤0.98,Ti1-xAlxN包含立方晶相,所述Ti1-xAlxN层是使用-200V至-400V的直流偏置电压并使用75A至250A的电弧放电电流在7Pa至15Pa的N2气体的真空室压力下通过阴极电弧蒸发沉积的。
2.根据权利要求1所述的方法,其中所述Ti1-xAlxN层是在8Pa至12Pa的N2气体的真空室压力下沉积的。
3.根据权利要求1-2中任一项所述的方法,其中所述Ti1-xAlxN层是使用-250V至-350V的直流偏置电压沉积的。
4.根据权利要求1-3中任一项所述的方法,其中所述Ti1-xAlxN层是包含立方晶体结构的单层,其中0.70≤x≤0.85。
5.根据权利要求1-3中任一项所述的方法,其中所述Ti1-xAlxN(Ti,Al)N层作为子层是多层的一部分,所述Ti1-xAlxN子层与至少一种另外的(Ti,Al)N的子层以重复的方式存在。
6.根据权利要求5所述的方法,其中所述(Ti,Al)N多层是至少Ti1-yAlyN和Ti1-zAlzN的交替子层的多层,其中0.35≤y≤0.65且0.80≤z≤0.98,仅存在立方相。
7.根据权利要求6所述的方法,其中各(Ti,Al)N子层的平均厚度为1nm至20nm。
8.一种用于金属加工的涂布的切削工具,具有涂层,所述涂层包含至少Ti1-yAlyN和Ti1- zAlzN的交替子层的(Ti,Al)N多层,其中0.35≤y≤0.65且0.80≤z≤0.98,仅存在立方相,单个(Ti,Al)N子层的平均厚度为1nm至20nm。
9.根据权利要求8所述的涂布的切削工具,其中0.40≤y≤0.6且0.85≤z≤0.96。
10.根据权利要求8-9中任一项所述的涂布的切削工具,其中所述单个子层的平均厚度为1.5nm至5nm。
11.根据权利要求8-10中任一项所述的涂布的切削工具,其中所述(Ti,Al)N多层的总厚度为0.5μm至10μm。
12.根据权利要求8-11中任一项所述的涂布的切削工具,其中所述(Ti,Al)N多层是阴极电弧蒸发沉积多层。
13.根据权利要求8-12中任一项所述的涂布的切削工具,其中所述涂布的切削工具的所述基材选自硬质合金、金属陶瓷、陶瓷、立方氮化硼和高速钢。
14.根据权利要求8-13中任一项所述的涂布的切削工具,其中所述涂布的切削工具是用于金属加工的切削工具刀片、钻头或整体立铣刀。
CN202080044852.4A 2019-06-19 2020-06-17 制造涂布的切削工具的方法和涂布的切削工具 Pending CN114040991A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP19181096.9 2019-06-19
EP19181096 2019-06-19
PCT/EP2020/066801 WO2020254429A1 (en) 2019-06-19 2020-06-17 A method of producing a coated cutting tool and a coated cutting tool

Publications (1)

Publication Number Publication Date
CN114040991A true CN114040991A (zh) 2022-02-11

Family

ID=66998255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080044852.4A Pending CN114040991A (zh) 2019-06-19 2020-06-17 制造涂布的切削工具的方法和涂布的切削工具

Country Status (6)

Country Link
US (1) US20220297196A1 (zh)
EP (1) EP3987078A1 (zh)
JP (1) JP2022540554A (zh)
KR (1) KR20220024491A (zh)
CN (1) CN114040991A (zh)
WO (1) WO2020254429A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240004534A (ko) * 2021-04-30 2024-01-11 발터 악티엔게젤샤프트 코팅된 절삭 공구
CN113249689B (zh) * 2021-05-12 2021-12-10 东莞市华升真空镀膜科技有限公司 工件涂层及其制备方法与应用
JP7319600B6 (ja) * 2021-12-10 2023-08-18 株式会社タンガロイ 被覆切削工具
WO2023232869A1 (en) * 2022-06-01 2023-12-07 Ab Sandvik Coromant A coated cutting tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952482A (zh) * 2008-02-21 2011-01-19 山高刀具公司 多层涂覆的切削工具
EP3441168A1 (en) * 2016-04-07 2019-02-13 Tungaloy Corporation Coated cutting tool
US20190071792A1 (en) * 2016-04-14 2019-03-07 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526339C2 (sv) * 2002-09-04 2005-08-23 Seco Tools Ab Skär med slitstark refraktär beläggning med kompositstruktur
WO2011131460A2 (en) * 2010-04-23 2011-10-27 Sulzer Metaplas Gmbh Pvd coating for metal machining
CN111032915B (zh) * 2017-08-31 2022-05-03 瓦尔特公开股份有限公司 含有TiAlN纳米层膜的耐磨PVD工具涂层
CN110573645B (zh) 2017-09-05 2021-08-17 欧瑞康表面处理解决方案股份公司普费菲孔 富铝的AlTiN基膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952482A (zh) * 2008-02-21 2011-01-19 山高刀具公司 多层涂覆的切削工具
EP3441168A1 (en) * 2016-04-07 2019-02-13 Tungaloy Corporation Coated cutting tool
US20190071792A1 (en) * 2016-04-14 2019-03-07 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method of producing the same

Also Published As

Publication number Publication date
KR20220024491A (ko) 2022-03-03
EP3987078A1 (en) 2022-04-27
WO2020254429A1 (en) 2020-12-24
JP2022540554A (ja) 2022-09-16
US20220297196A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
US11872636B2 (en) Surface-coated cutting tool and method for manufacturing same
KR101520962B1 (ko) 다층 피복 절삭 공구
KR101635488B1 (ko) 절삭 공구
CN114040991A (zh) 制造涂布的切削工具的方法和涂布的切削工具
KR101635487B1 (ko) 절삭 공구
KR101685450B1 (ko) 절삭 공구
EP2602037B1 (en) Coated tool
US9579728B2 (en) Cutting tool
KR101079902B1 (ko) 표면 피복 절삭 공구
JP5956576B2 (ja) 切削工具
KR101082655B1 (ko) 표면 피복 절삭 공구
KR101635486B1 (ko) 절삭 공구
CN112368094A (zh) 表面被覆切削工具及其制造方法
CN114008245B (zh) 涂布的切削工具
JP7226688B2 (ja) 切削工具
JP7486045B2 (ja) 表面被覆切削工具
JP6743350B2 (ja) 切削工具
JP6743349B2 (ja) 切削工具
JP2023531295A (ja) 被覆切削工具
CN117940599A (zh) 涂覆的切削工具
WO2023232869A1 (en) A coated cutting tool
CN115488429A (zh) 包覆切削工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination