CN114040471B - 基于蓝牙网络的分布式拓扑控制方法及终端 - Google Patents

基于蓝牙网络的分布式拓扑控制方法及终端 Download PDF

Info

Publication number
CN114040471B
CN114040471B CN202111496615.4A CN202111496615A CN114040471B CN 114040471 B CN114040471 B CN 114040471B CN 202111496615 A CN202111496615 A CN 202111496615A CN 114040471 B CN114040471 B CN 114040471B
Authority
CN
China
Prior art keywords
mesh
nodes
ring
node
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111496615.4A
Other languages
English (en)
Other versions
CN114040471A (zh
Inventor
余志民
林剑萍
王琨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yango University
Original Assignee
Yango University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yango University filed Critical Yango University
Priority to CN202111496615.4A priority Critical patent/CN114040471B/zh
Publication of CN114040471A publication Critical patent/CN114040471A/zh
Application granted granted Critical
Publication of CN114040471B publication Critical patent/CN114040471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了基于蓝牙网络的分布式拓扑控制方法及终端,通过主节点的确定和领导主节点的选择,微微网数量的确定与网状‑环形子网的形成,以及通过每个网状‑环形子网中每个主节点关联的桥节点与不同的其他网状‑环形子网连接,能够得到分布式拓扑全局分散网,从而提高蓝牙网络形成效率;并且执行分层自路由策略进行,能够合理进行蓝牙负载分配,保证网络数据传输性能。

Description

基于蓝牙网络的分布式拓扑控制方法及终端
技术领域
本发明涉及蓝牙网络技术领域,特别涉及一种基于蓝牙网络的分布式拓扑控制方法及终端。
背景技术
蓝牙低能耗(Bluetooth Low Energy,BLE)是物联网(Internet of Things,IOT)应用中最有前途的技术之一。由于简单、低功耗和低成本,BLE已广泛应用于短距离通信技术,适用于物联网应用。近年来,在需要相对较小的设备来实现的智能家居应用中,蓝牙也被认为是一种有吸引力的低功耗和低成本解决方案。然而,由于新技术的发展和广泛的应用,在实现蓝牙方面存在两个新挑战:一个是将低功耗蓝牙设备集成在一起时在传感器之间分配数据,另一个是为专用应用设计的网络形成配置。
在BLE中,多个微微网可以在给定区域内协作,因为每个微微网拥有不同的跳频信道。为了提高网络容量,微微网可以通过桥节点互连,形成一个更大的多跳子网,这被称为分散网。BLE 4.1版的主要特点是传感器可以扮演双重角色,作为激活微微网间通信的桥梁。在多个微微网中,网桥能够从一个微微网接收数据并以分时方式将其转发到另一个微微网。对网桥的角色分配没有具体限制,网桥可以是一个微微网中的主节点,而在其他微微网中作为从节点(master/slave,M/S),也可以是多个微微网中的从节点(slave/slave,S/S)。桥节点设计增加了为BLE设备采用分散网络拓扑控制和多跳路由的可能性。
迄今为止,多跳路由网络的发展经历了一些内在的挑战。主要研究问题包括拓扑构建和高效路由策略。拓扑构建问题涉及如何有效地开发单个微微网并将它们共同关联成一个分散网,路由协议专注于如何在这样一个定义良好的BLE网络中联合传递消息。
一般来说,拓扑结构可以分为树、环和网状拓扑。树形拓扑是形成分散网的最简单方法,而环形结构对于表驱动路由很简单,但会产生更长的数据包传输路径长度,尤其是当网络规模增加时。网状连接可以减少数据包传输的路径长度,减少延迟,但比其他拓扑引入了更大的形成复杂性。针对这些缺点,一种新颖的方法是将传统的树形、环形或网状拓扑组合成专用的拓扑。提出了一种混合环树(hybrid-ring tree,HRT)拓扑,将单个环子网应用于密集区域,同时将树子网扩展到其他稀疏区域。基于HRT拓扑,提出了一种双环树(dual-ring tree,DRT)拓扑,用于为新定义的单跳/多跳场景分布式构建散射网。
如何在生成的分散网上进行有效路由是另一个重要的研究问题。现有文献已经提出了许多著名的路由协议,包括用于蓝牙网络的主动式、反应式和混合路由方案。使用本地或全局路由表,已经提出了集中式或分布式形成方案来生成树分散网,其中使用主动路由协议转发数据包传输。现有技术中实现的反应式路由协议只能在小规模传感器网络中运行良好,因为路由发现开销随着网络规模的增长而增加。为了减轻流量泛洪,提出了一种基于集群的泛洪方案来减少路由路径发现的数据包泛洪,并且它比传统的泛洪方案获得了更好的路由性能。但是现有技术中还存在蓝牙网络形成效率较低,蓝牙负载分配不合理的问题。
发明内容
本发明所要解决的技术问题是:提供了基于蓝牙网络的分布式拓扑控制方法及终端,能够提高蓝牙网络形成效率,并且能够合理进行蓝牙负载分配。
为了解决上述技术问题,本发明采用的技术方案为:
基于蓝牙网络的分布式拓扑控制方法,包括步骤:
根据预设条件得到主节点,从所述主节点中选择领导主节点;
通过所述领导主节点计算所需的微微网数量;
根据所述微微网数量为每个所述领导主节点分发微微网连接信息,形成每个领导主节点对应的网状-环形子网;
通过每个所述网状-环形子网中每个主节点关联的桥节点与不同的其他网状-环形子网连接,得到分布式拓扑全局分散网;
执行分层自路由策略,所述分层自路由策略包括网状-环形子网内路由和网状-环形子网间路由。
为了解决上述技术问题,本发明采用的技术方案为:
基于蓝牙网络的分布式拓扑控制终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述基于蓝牙网络的分布式拓扑控制方法的各个步骤。
本发明的有益效果在于:通过主节点的确定和领导主节点的选择,微微网数量的确定与网状-环形子网的形成,以及通过每个网状-环形子网中每个主节点关联的桥节点与不同的其他网状-环形子网连接,能够得到分布式拓扑全局分散网,从而提高蓝牙网络形成效率;并且执行分层自路由策略进行,能够合理进行蓝牙负载分配,保证网络数据传输性能。
附图说明
图1为根据本发明实施例的基于蓝牙网络的分布式拓扑控制方法的流程图;
图2为根据本发明实施例的基于蓝牙网络的分布式拓扑控制终端的示意图;
图3为根据本发明实施例的基于蓝牙网络的分布式拓扑控制方法的分布式拓扑全局分散网拓扑示意图;
图4为根据本发明实施例的基于蓝牙网络的分布式拓扑控制方法的DTC-HSR协议流程图;
图5为根据本发明实施例的基于蓝牙网络的分布式拓扑控制方法的二进制寻址中封包字段示意图;
图6为DTC-HSR、DRT和CBM的平均数据接收率图;
图7为DTC-HSR、DRT和CBM的数据传输速率性能图;
图8为DTC-HSR、DRT和CBM的平均电流消耗率分布图;
图9为DTC-HSR、DRT和CBM中最拥塞节点的电流消耗平均值图;
图10为DTC-HSR、DRT和CBM能源利用的公平性图。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。
请参照图1,本发明实施例提供了一种基于蓝牙网络的分布式拓扑控制方法,包括步骤:
根据预设条件得到主节点,从所述主节点中选择领导主节点;
通过所述领导主节点计算所需的微微网数量;
根据所述微微网数量为每个所述领导主节点分发微微网连接信息,形成每个领导主节点对应的网状-环形子网;
通过每个所述网状-环形子网中每个主节点关联的桥节点与不同的其他网状-环形子网连接,得到分布式拓扑全局分散网;
执行分层自路由策略,所述分层自路由策略包括网状-环形子网内路由和网状-环形子网间路由。
从上述描述可知,本发明的有益效果在于:通过主节点的确定和领导主节点的选择,微微网数量的确定与网状-环形子网的形成,以及通过每个网状-环形子网中每个主节点关联的桥节点与不同的其他网状-环形子网连接,能够得到分布式拓扑全局分散网,从而提高蓝牙网络形成效率;并且执行分层自路由策略进行,能够合理进行蓝牙负载分配,保证网络数据传输性能。
进一步地,所述根据预设条件得到主节点包括:
在预设区域内选择全功能设备作为主节点,将预设区域内剩余的节点作为从节点。
由上述描述可知,保留处理能力较好的全功能设备默认承担主节点角色,能够预先确定设备中的主节点,便于后续进行领导主节点的选举。
进一步地,从所述主节点中选择领导主节点包括:
将每个所述主节点设置为扫描模式,将每个所述从节点设置为广告模式,使每一个所述主节点扫描收集相邻的从节点列表,直至达到预设收集时间并且每一个所述主节点均收集到相邻的从节点列表;
将每一个所述主节点以相等概率随机切换至扫描模式或者广告模式,将任意两个主节点对应的从节点数量进行比较,若两个主节点的从节点数量相等,则将蓝牙编号小的主节点作为领导主节点,否则,将从节点数量多的主节点作为领导主节点,直至所有主节点都进行比较并得到最后一个领导主节点。
由上述描述可知,主节点进入扫描模式,从节点进入广告模式,能够使每一个主节点扫描收集相邻的从节点列表,因此每个节点不需要为了发现相邻节点而交替地将其角色进行切换;主节点的相邻从节点收集完成之后,每个主节点以相等的概率随机切换到扫描或者广告模式,根据两个主节点的从节点数量和蓝牙编号确定领导主节点,能够合理进行蓝牙网络中的节点分配。
进一步地,通过所述领导主节点计算所需的微微网数量包括:
根据领导主节点收集的节点数N,确定网状-环形子网数量Nr
根据网状-环形子网数量Nr计算领导主节点计算所需的微微网数量M:
M=4Nr
由上述描述可知,根据领导主节点收集的节点数确定网状-环形子网的数量,并进一步计算领导主节点所需的微微网数量,因此当领导主节点选举阶段参与节点数大于8时,负载均衡微微网数由M=4Nr给出,便于后续进行建立网状-环形拓扑。
进一步地,根据所述微微网数量为每个所述领导主节点分发微微网连接信息,形成每个领导主节点对应的网状-环形子网包括:
所述微微网数量等于主节点数量;
判断总关联主节点数量K是否大于主节点数量M,若是,则将(K-M)个主节点分配为桥内节点或者桥间节点;
将领导主节点和(M-1)个主节点分配为主节点,第M个节点作为桥内节点,(N-MNr)个节点作为桥间节点或者从节点,剩余的从节点均匀分布在不同的微微网中。
由上述描述可知,根据总关联主节点的数量,分配桥内节点或者桥间节点,并将(N-MNr)个节点作为桥间节点或者从节点,从而实现节点角色的合理分配。
进一步地,所述网状-环形子网包括四个主节点和四个内部网桥:
通过每个所述内部网桥连接两个不同的主节点,形成环状子网;
在所述环状子网中生成网状链路连接,形成所述网状-环形子网。
由上述描述可知,通过内部网桥连接两个不同的主节点得到环状子网,并对环状子网生成网状链路连接,形成本地网状-环形子网,便于后续基于多个网状-环形子网建立分布式拓扑全局分散网。
进一步地,所述通过每个所述网状-环形子网中每个主节点关联的桥节点与不同的其他网状-环形子网连接,得到分布式拓扑全局分散网包括:
在每个所述网状-环形子网中找到桥间节点,判断所述网状-环形子网是否有多个桥间节点,若是,则选择任意一个桥间节点与另一个网状-环形子网建立互连;
在两个互连的网状-环形子网间,子网节点数量多的作为获胜者,所述获胜者获取两个子网的网状环和微微网的编号信息。
由上述描述可知,在两个互连的网状-环形子网间,将子网节点数量多的主节点作为获胜者,并且获胜者能够获取两个子网的网状环和微微网的编号信息,因此任何两个本地网状-环形子网都可以合并,局部拓扑可以通过全局散射网形成过程扩展到更大的网状-环形子网,并且将两个网状-环形子网之间的桥接节点数量限制为一个,能够减少微微网切换过载的情况。
进一步地,所述分层自路由策略包括二进制寻址方案,所述二进制寻址方案包括分散网寻址和微微网寻址;
所述分散网寻址包括不同网状-环形子网的地址和网状-环形子网中不同主节点的地址;
所述微微网寻址包括每个微微网中的活动网桥和从节点的地址。
由上述描述可知,二进制寻址方案包括分散网和微微网寻址,分散网寻址可以分为不同网状-环形子网的地址和网状-环形子网中不同主节点的地址;微微网寻址包括每个微微网中的活动网桥和从节点。因此,结合分散网和微微网寻址方案,便于后续通过分层自路由方案发现本地和全局网络中的任何节点。
请参照图2,本发明实施例提供了一种基于蓝牙网络的分布式拓扑控制终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述方案的一种基于蓝牙网络的分布式拓扑控制方法。
本发明上述的一种基于蓝牙网络的分布式拓扑控制方法及终端,在蓝牙低功耗网络中提出了一种具有分层自路由的分布式拓扑控制方法。为了实现负载均衡设计的目标,提出取代传统的星型微微网的网状-环形子网,进而形成分布式拓扑全局分散网。以下通过具体的实施方式进行说明:
实施例一
请参照图1、图3至图10,一种基于蓝牙网络的分布式拓扑控制方法,包括步骤:
S1、根据预设条件得到主节点,从所述主节点中选择领导主节点。
具体的,在本实施例中,WSN(Wireless Sensor Networks,无线传感器网络)中节点随机分布在给定区域,保留更好处理能力的BLE全功能设备(full function device,FFD)默认承担主节点(master)角色,所有其他节点都是从节点(slave)。
领导主节点选择阶段本身由两个阶段组成,包括邻居收集和协调者选举程序,分别用于有效地发现邻居和确定领导主节点:
在邻居收集过程中,每个主节点均保持扫描模式,所有从节点均进入广告模式。此时,每个主节点在扫描来自相邻节点的广告消息时作为扫描仪来收集其相邻信息。在与相邻的主节点交换信息后,从节点进入连接模式,等待进一步的指令。主节点在从从节点获得广告消息时更新其邻居列表,每个从节点也更新其收集的主列表。重复该过程,直到邻居收集时间T1到期,并且所有主节点都已收集到必要的邻居节点信息。因此默认的角色分配方案遵循了蓝牙规范,可用于提高连接概率并减少发现时间,每个节点不需要因发现相邻节点而交替地将其角色切换为master或slave,这与传统方案不同。因此,每个主节点最终都会收集其关联的从节点,并且每个从节点都有其主节点信息。
在邻居收集过程之后,在这个阶段进行本地领导主节点的异步分布式选举,称为协调器选举过程,用于决定邻居数量和参与节点在本地网状-环形子网中的角色。本地网状-环形子网可以包含多个基本网状-环形子网。在这个阶段,每个主节点以相等的概率随机切换到扫描或广告模式。
最初,每个主节点在选举定时器T2启动后交替作为扫描仪或广告者运行。任意两个主节点通过比较它们收集的邻居数量来发现对方并开始一对一的竞争。结果,拥有最多邻居的主节点赢得了竞争。如果邻居数量相等,则获胜者是蓝牙ID(编号)较小的主节点。然后,失败的主节点将其邻居列表以及所有收集的跳频序列(frequency hopping sequence,FHS)数据包传送给获胜者。
其中,FHS数据包包含收集到的节点的身份和时钟消息,选举的协调器可以使用它来连接它们。以这种方式,失败的主节点断开连接并等待来自最后一个协调器的进一步连接指令以获取其FHS信息。然后从领导者选举过程中删除失败的主节点,并为拓扑构建协议的下一阶段做好准备。在收到FHS数据包后,获胜的主节点通过包括失败的主节点的邻居计数值来更新其邻居计数。重复领导主节点选择过程,直到最后一个领导主节点被确定,然后终止该过程,直到领导主节点选择时间T2期满。
S2、通过所述领导主节点计算所需的微微网数量。
具体的,在邻居收集过程中,每个主节点收集其关联从节点的信息,每个从节点收集其相邻主节点的信息。在协调器选举阶段之后,作为协调器的领导主节点可以了解所有收集到的相邻节点的身份和时钟,包括所有关联的主从节点。给定每个领导者主节点网络的本地场景,协调器可以确定每个节点的角色,以及由此产生的网状-环形子网中的连接性。在协调器选举过程中,每个网状-环形子网中每个节点的FHS和具体的形成标准可以通过领导主节点进行通信。除了每个微微网和网状-环形子网中的均匀连接之外,这些设计标准还可用于导出满足特定目标的拓扑。
其中,拓扑构建可以分布式执行,以提高建网效率。在启动过程中,每个设备异步连接,没有任何事先共享身份或邻居数量的信息。为了微微网和分散网的开发具有均匀连接配置的负载平衡协议,指出了以下约束以实现合成网络拓扑的首选网状-环形子网数量,这使我们能够获得更容易控制的拓扑。
R1)每个master的度数最多为7个slave:该限制针对微微网中的分组吞吐量和分组延迟性能的传输效率。
R2)每个微微网都可以通过S/S桥与所有其他微微网互连:尽管拓扑发生变化,但早期完全连接的散射网仍会产生高鲁棒性。对于S/S网桥,路由策略很简单,因为每个微微网都可以通过S/S网桥联系其他微微网。
R3)每个S/S网桥的度数最多限制为4个微微网:在时分方案中,网桥节点可以通过微微网之间交替切换来传输数据包。便携式设备可能具有有限的处理能力,并且四个微微网的最大数量可以防止网桥因多个微微网通信而过载。此外,可以限制多个微微网所需的切换时间。
R4)一个基本的子网结构由多个节点和链路数为偶数的微微网组成:可以定义一个基本的网状-环形子网组件,使微微网中的链路和子网中的节点数尽可能均匀。借助网状-环形子网中的均匀连接功能,可以预期负载平衡、延迟容限和吞吐量优势。因此,网状-环形子网中的master可以通过S/S设备作为内桥进行连接,每个网状-环形子网可以通过作为桥间节点的S/S设备进行互连。
此时考虑具体的形成标准R1-R4,以实现基本的网状环连接,并假设本地协调器选举阶段的参与节点数大于8。设N为本地拓扑的每个领导主节点收集的节点数,负载均衡微微网数由M=4Nr给出,其中M为本地网状-环形子网中的微微网数,Nr为本地拓扑的网状-环形子网的最大整数个。在本地网状环拓扑中,至少有MNr个节点,并且需要Nr-I个桥间(inter-bridge)节点。
其中,
S3、根据所述微微网数量为每个所述领导主节点分发微微网连接信息,形成每个领导主节点对应的网状-环形子网。
具体的,如果总关联主节点K小于所需主节点M,则领导主节点可以从池中选择额外的主节点。当K大于M时,可以将其他K-M主节点分配为桥内节点(intra-bridge)或桥间节点(inter-bridge)。
协调器决定自己和M-1个节点作为分配的主节点,M个节点作为桥内节点,N-MNr个节点作为桥间节点或从节点。其余的从节点均匀分布在不同的微微网中,为微微网和网状-环形子网建立相似数量的从节点链路;它们在协调器和其他主节点之间平均分配。在节点加入或离开MMR(多网状环)分散网时,可以在以下拓扑维护阶段执行微微网和网状-环形子网的均匀链路连接标准。
角色决定后,领导主节点为自己和所有其他主节点构造一个连接列表集[master_table(i),intra_bridge_table(i),inter_bridge_table(i),slave_table(i)]。每个连接列表都包含FHS信息,以帮助分配的主节点立即与其关联的从节点连接。
之后,每个主节点接收连接列表集合信息,包括用于微微网链路的slave_table(i),用于微微网内链路的intra_bridge_table(i),以及用于微微网间链路和mesh链路的inter_bridge_table(i)。微微网链路包含每个单独微微网中的所有从节点。每个网状-环形子网中的上下游主节点根据intra-bridge信息通过微微网内链路连接。此外,微微网间链路涉及桥间信息以与其他网状环主节点互连,以便使多个网状-环形子网良好连接。
此外,协调器和所有其他主节点激活连接程序以生成本地网状环形散射网。每个主节点连接到连接列表集合信息中提供的相应从节点和网桥。一旦一个节点被其主节点通知充当网桥,它就会根据R2约束等待主节点连接。发生这种情况时,桥节点向其关联的主节点发送连接响应消息。当从节点收到来自其主节点的连接通知时,它还向其关联的主节点发送链路连接响应。当每个主节点收到其所有指定网桥和从节点的链路连接响应时,建立一个由M个微微网组成的全连接分散网,并终止本地网状环拓扑结构。
S4、通过每个所述网状-环形子网中每个主节点关联的桥节点与不同的其他网状-环形子网连接,得到分布式拓扑全局分散网。
具体的,领导者选择阶段,每个从节点学习所有收集到的相邻主节点的身份和时钟。在邻居收集阶段,从节点可能成为收集两个以上主节点的桥候选节点。在每个网桥节点中,将相邻的主节点列表信息发送给领导主节点,用于形成后续的全局散布网络。在本地网状-环形子网形成过程之后,每个本地网状-环形子网以分布式方式形成为一个网状环、两个网状环、三个网状-环形子网等。
其中,在每个本地网状-环形子网中找到桥间节点以连接隔离的网状-环形子网。在全局分散网形成阶段,每个领导主节点选择具有额外相邻master的slave节点作为桥间节点,连接不包含在自己的网状-环形子网中的相邻网状-环形子网。当master在同一个相邻子网中发现多个候选桥间节点时,master随机选择一个桥节点建立本地网状-环形子网之间的互连。同时,桥间节点在其邻居列表上更新其微微网主节点ID,并将更新的信息传递给其连接的两个主节点。此外,两个连接的领导者主节点将比较其子网中的节点数量。获胜者是超级主候选者,将获得两个子网的网状环和微微网编号信息。这样,任何两个本地网状-环形子网都可以合并,并且可以确定一个超级主节点,直到定时器超时。因此,局部拓扑可以通过全局散射网形成过程扩展到更大的网状-环形子网。所提出的方案将两个网状-环形子网之间的桥接节点数量限制为一个,以减少微微网切换过载。另外,为了避免丢包和交换开销,主节点不能作为桥节点。
确定桥间节点后,每个本地网状-环形子网都可以通过更大的环间子网互连。在环间子网内,每个主节点可能会连接一个新的桥间链路以生成更大的网状环散射网。在分布式拓扑环境中,环间子网中的网状链路数量可以从0到连接的微微网数量不等。最后,可以实现本地网状-环形子网的设计目标和DTC-HSR(Distributed Topology Control andHierarchical Self-Routing,分层自路由的分布式拓扑控制)的全局网状环配置。
请参照图3和图4,为了满足约束R1到R4,网状-环形子网的本地结构由四个主节点和四个内部网桥组成。intra-bridge用于连接两个微微网,而inter-bridge则用于通过两个不同的网状-环形子网互连。网状环架构被设计为基本的散射网组件,分布式网状-环形子网可以通过中间环间互连,形成全局的DTC-HSR拓扑。此外,可以在互连的环子网中生成网状链路连接,以减少环间连接内数据包传输的路由路径长度。Mesh链路的数量可以从0到8不等,这取决于分布式应用环境中的实际连接情况。从分层路由协议设计的角度来看,自路由方案适用于每个本地网状-环形子网,并且可以联合设计二进制微微网寻址方案用于全局网状环结构的地址映像。因此,分层自路由策略旨在利用路由发现的流量负载减少,以及通过负载平衡DTC-HSR拓扑有效地传送数据包。
S5、执行分层自路由策略,所述分层自路由策略包括网状-环形子网内路由和网状-环形子网间路由。
具体的,为了在配置良好的DTC-HSR分散网中有效地传送数据包,提出了一种分层自路由协议,该协议包含每个本地网状-环形子网和全局分散网的二进制地址映像方案。与传统路由协议相比,分层路由算法可以实现分散网络由发现开销较小的优点。在设计分层自路由协议之前,分析了DTC-HSR架构以确定如何在这样的网络中有效地传递路由数据包。
DTC-HSR拓扑的主要子网组件由本地和全局配置中的网状-环形子网生成。全局网状-环形子网形成后,本地网状-环形子网中的每个领导主节点都拥有网状环路由信息和中间相邻网状环路由信息。在本地网状-环形子网中,每个节点都可以沿环子网传输数据包,也可以从网状链路传送数据包,因为每个主节点都具有网状-环形子网中的路由信息。从全局路由的角度来看,每个数据包都可以通过连接的网桥轻松转发到其他网状-环形子网。
请参照图5,基于DTC-HSR拓扑结构的特点,开发了一种二进制微微网寻址方案来实现分层自路由协议。二进制微微网寻址方案包括分散网和微微网寻址中的设计点。分散网寻址可以分为两部分。第一部分称为环ID(Ring-ID),使用四位来定义不同网状-环形子网的地址。在全局分散网形成过程中,称为超级主节点的领导主节点获取网状-环形子网的总数,并为每个网状-环形子网中的其他主节点分配Ring-ID。网状环ID的位长可以根据网状-环形子网的总数而变化。第二部分称为Master-ID,采用两位来定义网状-环形子网中不同主节点的地址。称为Slave-ID的微微网地址使用三位来定义每个微微网中的活动网桥和从节点。为了结合分散网和微微网寻址方案,可以通过分层自路由方案发现本地和全球网络中的任何节点。二进制寻址方案从0000到1111的Ring-ID、从00到11的Master-ID和从000到111的Slave-ID开始。
根据本实施例中的基于蓝牙网络的分布式拓扑控制方法进行网络进行的测试:
1.模拟设置。
在Matlab中开发了一个离散事件仿真器,以使用以下参数评估DTC-HSR网络性能。模拟场景包括100个随机分布的节点,用于比较三种散射网协议的网络性能,包括DTC-HSR、双环树(DRT)和基于集群的网格(CBM)方案。基于不同微微网中的信道跳跃,在微微网和分散网中实现时分双工(TDD)调度以进行分组传输。在每个节点中,数据包是根据泊松过程模型创建的,数据到达率定义为每秒生成的新数据包数。在每个节点中,安排了一个长度为80个数据包的先进先出(FIFO,first-in-first-out)队列,并在每个路由周期内随机选择源-目的对。当FIFO缓冲区溢出时,每个节点都考虑采用尾部丢弃机制来丢弃新接收的数据包。因此,数据包通过所提议的DTC-HSR拓扑与分层自路由协议进行转发。
2.验证DTC-HSR的网络性能。
构建DTC-HSR拓扑后,验证了DTC-HSR、DRT和CBM配置的数据接收率(DRR)的传输性能。在每个拓扑中,DRR定义为成功接收数据包总数占网络创建的数据包总数的百分比。请参照图6,随着数据包到达率的增加,DTC-HSR实现了比DRT和CBM更好的DRR性能。在DTC-HSR方案中,研究了五种配置以评估不同网状链路数下的性能。环间散射网中的网状链路越多,DRR性能的提高就越多。此外,DTC-HSR的级联网状环配置实现了比基于双环的DRT拓扑和CBM配置更好的路由能力。当数据包到达率小于4时,DTC-HSR的DRR几乎为100%。因此,DTC-HSR在DRR上实现了比其他两种配置更好的路由性能,因为分层自路由协议结合了对称网状环拓扑和互连网状-环形子网,可以大大改善网络路由效率。
网络数据速率测量用于计算传输性能,以评估三种配置的网络容量。平均数据传输速率定义为在总操作时间内成功接收数据包的总量(以秒为单位)。DTC-HSR、DRT和CBM的网络数据速率仿真结果请参照图7。根据统计结果,网络数据速率性能随着数据包到达率的增加而不断提高。在DTC-HSR方案中,中间环间散射网中的网状链路越多,数据传输速率性能的提高就越多。此外,与其他两种策略相比,DTC-HSR实现了最佳网络数据速率,因为在本地和全局网状-环形子网上的分层自路由可以使数据包传输比DRT和自路由更高效。CBM的基于集群的路由,从而提高整体网络容量。在峰值数据速率方面,环间具有四个网状链路的DTC-HSR比DRT的数据速率提高了约50%,比CBM的数据速率提高了200%。这是因为DTC-HSR在环中生成更多的网状链路,特别是在高流量区域,当数据到达速率约为10时。
3.测试DTC-HSR的能效。
为了评估数据包传输的功耗,对于三种拓扑,每个节点都会生成99个到所有其他目的地的路由会话。基于BLE功耗模型,在每1秒的唤醒时间2.675ms内考虑数据包传输和接收过程中的电流消耗,所有设备的电池初始容量为230mAh。因此,数据包通过提出的DTC-HSR拓扑和分层自路由协议进行转发。在自路由方案中,DTC-HSR和DRT在每一跳中都增加了9位寻址开销来传送数据包。使用基于集群的泛洪方案,CBM为路由请求(RREQ)和路由回复(RREP)数据包引入了592比特(bit),以发现用于数据包传输的预期路由路径。为了公平地比较这三种方法,在每个拓扑中生成近似路由数据包,每个节点记录其传输的数据包总数。每个节点的当前消耗率与每个路由周期内记录的数据包总量成正比。
从负载平衡和能效的角度来看,图8展示了DTC-HSR、DRT和CBM三种方法从最大节点到最低节点的平均电流消耗率分布。DTC-HSR实现了比其他两种方法更低的平均电流消耗,因为可以有效地减轻热点节点上的大部分流量,以实现拓扑形成目标的能量平衡。对于60到100个不太拥挤的节点,DRT和CBM实现了较好的性能。
请参照图9,DTC-HSR实现了比其他两种方法更低的电流消耗平均值,因为级联网状-环形子网中相等的微微网和分散网连接可以成功地为每个网状网分配大量的路由流量。最拥塞的节点通过当前电流消耗率从高到低排序来表示,包括最大消耗率前10%的节点、前20%的节点等等。在1%拥塞情况下,DTC-HSR、DRT和CBM的最大电流消耗平均值分别为0.81、1.56和2.74。根据单个节点的电流消耗,网络生命周期可以定义为第一个节点耗尽其电池容量时的最大运行轮次。因此,通过DTC-HSR方法获得的网络生命周期分别比DRT和CBM的生命周期长近两倍和三倍。此外,能源利用的资源公平性通过Jain指数进行评估,请参照图10,DTC-HSR方法在节点之间的能源利用分配上比DRT和CBM方法实现了更好的公平性。
实施例二
请参照图2,一种基于蓝牙网络的分布式拓扑控制终端,包括存储器、处理器及存储在所述存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现实施例一中的基于蓝牙网络的分布式拓扑控制方法。
综上所述,本发明提供的一种基于蓝牙网络的分布式拓扑控制方法及终端,通过主节点的确定和领导主节点的选择,微微网数量的确定与网状-环形子网的形成,以及通过每个网状-环形子网中每个主节点关联的桥节点与不同的其他网状-环形子网连接,能够得到分布式拓扑全局分散网,从而提高蓝牙网络形成效率;并且执行分层自路由策略进行,能够合理进行蓝牙负载分配,保证网络数据传输性能。因此本发明用设计的网状环子网代替传统的星型微微网。为实现负载均衡设计,该方法分为两个阶段,包括领导者选择和拓扑构建,以生成首选DTC-HSR拓扑。在领导者选择过程中,产生领导者主节点并通过预定义的公式形成本地网状环子网。在拓扑构建过程中,任何本地网状环子网都可以相互组合成一个更大的网状环拓扑,并确定一个超级主节点来管理DTC-HSR上的自路由寻址。在拓扑维护阶段,提出节点恢复和拓扑合并方案来处理拓扑变化和可扩展性问题。最后,设计了一种基于分层自路由的二进制微微网寻址方案,以减少路由发现开销,并通过各种网状环子网有效地传递路由数据包。仿真结果表明,DTC-HSR拓扑的偶连接特性在网络传输和能效性能方面优于DRT和CBM方法。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (6)

1.一种基于蓝牙网络的分布式拓扑控制方法,其特征在于,包括步骤:
根据预设条件得到主节点,从所述主节点中选择领导主节点;
通过所述领导主节点计算所需的微微网数量;
根据所述微微网数量为每个所述领导主节点分发微微网连接信息,形成每个领导主节点对应的网状-环形子网;
通过每个所述网状-环形子网中每个主节点关联的桥节点与不同的其他网状-环形子网连接,得到分布式拓扑全局分散网;
执行分层自路由策略,所述分层自路由策略包括网状-环形子网内路由和网状-环形子网间路由;
从所述主节点中选择领导主节点包括:
将每个所述主节点设置为扫描模式,将每个从节点设置为广告模式,使每一个所述主节点扫描收集相邻的从节点列表,直至达到预设收集时间并且每一个所述主节点均收集到相邻的从节点列表;
将每一个所述主节点以相等概率随机切换至扫描模式或者广告模式,将任意两个主节点对应的从节点数量进行比较,若两个主节点的从节点数量相等,则将蓝牙编号小的主节点作为领导主节点,否则,将从节点数量多的主节点作为领导主节点,直至所有主节点都进行比较并得到最后一个领导主节点;
通过所述领导主节点计算所需的微微网数量包括:
根据领导主节点收集的节点数N,确定网状-环形子网数量Nr
根据网状-环形子网数量Nr计算领导主节点计算所需的微微网数量M:
M=4Nr
根据所述微微网数量为每个所述领导主节点分发微微网连接信息,形成每个领导主节点对应的网状-环形子网包括:
所述微微网数量等于主节点数量;
判断总关联主节点数量K是否大于主节点数量M,若是,则将(K-M)个主节点分配为桥内节点或者桥间节点;
将领导主节点和(M-1)个主节点分配为主节点,第M个节点作为桥内节点,(N-MNr)个节点作为桥间节点或者从节点,剩余的从节点均匀分布在不同的微微网中。
2.根据权利要求1所述的基于蓝牙网络的分布式拓扑控制方法,其特征在于,所述根据预设条件得到主节点包括:
在预设区域内选择全功能设备作为主节点,将预设区域内剩余的节点作为从节点。
3.根据权利要求1所述的基于蓝牙网络的分布式拓扑控制方法,其特征在于,所述网状-环形子网包括四个主节点和四个内部网桥:
通过每个所述内部网桥连接两个不同的主节点,形成环状子网;
在所述环状子网中生成网状链路连接,形成所述网状-环形子网。
4.根据权利要求1所述的基于蓝牙网络的分布式拓扑控制方法,其特征在于,所述通过每个所述网状-环形子网中每个主节点关联的桥节点与不同的其他网状-环形子网连接,得到分布式拓扑全局分散网包括:
在每个所述网状-环形子网中找到桥间节点,判断所述网状-环形子网是否有多个桥间节点,若是,则选择任意一个桥间节点与另一个网状-环形子网建立互连;
在两个互连的网状-环形子网间,子网节点数量多的作为获胜者,所述获胜者获取两个子网的网状环和微微网的编号信息。
5.根据权利要求1所述的基于蓝牙网络的分布式拓扑控制方法,其特征在于,所述分层自路由策略包括二进制寻址方案,所述二进制寻址方案包括分散网寻址和微微网寻址;
所述分散网寻址包括不同网状-环形子网的地址和网状-环形子网中不同主节点的地址;
所述微微网寻址包括每个微微网中的活动网桥和从节点的地址。
6.一种基于蓝牙网络的分布式拓扑控制终端,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述权利要求1-5任一项所述的基于蓝牙网络的分布式拓扑控制方法。
CN202111496615.4A 2021-12-09 2021-12-09 基于蓝牙网络的分布式拓扑控制方法及终端 Active CN114040471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111496615.4A CN114040471B (zh) 2021-12-09 2021-12-09 基于蓝牙网络的分布式拓扑控制方法及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111496615.4A CN114040471B (zh) 2021-12-09 2021-12-09 基于蓝牙网络的分布式拓扑控制方法及终端

Publications (2)

Publication Number Publication Date
CN114040471A CN114040471A (zh) 2022-02-11
CN114040471B true CN114040471B (zh) 2023-12-29

Family

ID=80140191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111496615.4A Active CN114040471B (zh) 2021-12-09 2021-12-09 基于蓝牙网络的分布式拓扑控制方法及终端

Country Status (1)

Country Link
CN (1) CN114040471B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115955404B (zh) * 2023-03-09 2023-05-09 广东金朋科技有限公司 物联网场景管理方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104982049A (zh) * 2013-02-07 2015-10-14 交互数字专利控股公司 用于定向网格初始化的方法和装置
CN110267320A (zh) * 2019-06-05 2019-09-20 阳光学院 基于蓝牙网络的多网状-环形拓扑控制方法及存储介质
CN110431877A (zh) * 2017-03-17 2019-11-08 泰勒维克健康护理股份有限公司 供在包括蓝牙le链路的网络中使用的主节点和包括该主节点的网络
KR102083796B1 (ko) * 2019-12-13 2020-05-15 주식회사 엠에이티 원격검침에 사용되는 블루투스 메쉬 네트워크에서 트래픽 최적화 설정방법
CN112584364A (zh) * 2019-09-30 2021-03-30 阿里巴巴集团控股有限公司 蓝牙网络及其通信方法、设备和存储介质
CN112689275A (zh) * 2020-12-23 2021-04-20 阳光学院 一种用于ble网格网络的新型非均匀功率形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7904569B1 (en) * 1999-10-06 2011-03-08 Gelvin David C Method for remote access of vehicle components
CN113411789A (zh) * 2020-03-16 2021-09-17 瑞昱半导体股份有限公司 具有控制权分享机制的蓝牙网格网络***及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104982049A (zh) * 2013-02-07 2015-10-14 交互数字专利控股公司 用于定向网格初始化的方法和装置
CN110431877A (zh) * 2017-03-17 2019-11-08 泰勒维克健康护理股份有限公司 供在包括蓝牙le链路的网络中使用的主节点和包括该主节点的网络
CN110267320A (zh) * 2019-06-05 2019-09-20 阳光学院 基于蓝牙网络的多网状-环形拓扑控制方法及存储介质
CN112584364A (zh) * 2019-09-30 2021-03-30 阿里巴巴集团控股有限公司 蓝牙网络及其通信方法、设备和存储介质
KR102083796B1 (ko) * 2019-12-13 2020-05-15 주식회사 엠에이티 원격검침에 사용되는 블루투스 메쉬 네트워크에서 트래픽 최적화 설정방법
CN112689275A (zh) * 2020-12-23 2021-04-20 阳光学院 一种用于ble网格网络的新型非均匀功率形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chih-Min Yu ; et al.Joint layer-based formation and self-routing algorithm for bluetooth multihop networks.《IEEE systems journal》.2016,全文. *
基于蓝牙mesh智能设备控制技术研究;杨望卓;《中国优秀硕士学位论文辑》;全文 *

Also Published As

Publication number Publication date
CN114040471A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
CN110267320B (zh) 基于蓝牙网络的多网状-环形拓扑控制方法及存储介质
Persson et al. Bluetooth scatternets: criteria, models and classification
Fariborzi et al. EAMTR: energy aware multi-tree routing for wireless sensor networks
Cuomo et al. Distributed self-healing and variable topology optimization algorithms for QoS provisioning in scatternets
Basagni et al. A performance comparison of scatternet formation protocols for networks of Bluetooth devices
Setiawan et al. An optimum multiple metrics gateway selection mechanism in MANET and infrastructured networks integration
Yu et al. Joint topology construction and hybrid routing strategy on load balancing for Bluetooth low energy networks
CN114040471B (zh) 基于蓝牙网络的分布式拓扑控制方法及终端
Ok et al. Self-organizing mesh topology formation in internet of things with heterogeneous devices
Miao et al. Study on research challenges and optimization for internetworking of hybrid MANET and satellite networks
Yu et al. Enhanced Bluetree: A mesh topology approach forming Bluetooth scatternet
Kumar et al. A novel minimum delay maximum flow multicast algorithm to construct a multicast tree in wireless mesh networks
Kawamoto et al. A two-phase scatternet formation protocol for Bluetooth wireless personal area networks
Yu et al. Joint layer-based formation and self-routing algorithm for Bluetooth multihop networks
Loscri et al. Performance evaluation of on-demand multipath distance vector routing protocol over two MAC layers in mobile ad hoc networks
CN112689275A (zh) 一种用于ble网格网络的新型非均匀功率形成方法
Mai et al. Connectivity-based clustering scheme for mobile ad hoc networks
Vural et al. Asynchronous clustering of multihop wireless sensor networks
Le et al. An efficient hybrid routing approach for hybrid wireless mesh networks
Wei et al. SRPA: SDN-based routing protocol for ad hoc networks
Yu et al. DTC-HSR: Distributed Topology Control and Hierarchical Self-Routing for Bluetooth Load Balancing Networks
Li et al. A New Distributed CDS Algorithm of Ad Hoc Network Based on Weight
Adebanjo et al. An evaluation of improved cluster-based routing protocol in ad-hoc wireless network
Adekiigbe et al. Using fuzzy logic to improve cluster based routing protocol in mesh client networks
Zeng et al. Efficient opportunistic multicast via tree backbone for wireless mesh networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant