CN114038927B - 一种高响应的铁电集成石墨烯等离子体太赫兹探测器 - Google Patents

一种高响应的铁电集成石墨烯等离子体太赫兹探测器 Download PDF

Info

Publication number
CN114038927B
CN114038927B CN202111451036.8A CN202111451036A CN114038927B CN 114038927 B CN114038927 B CN 114038927B CN 202111451036 A CN202111451036 A CN 202111451036A CN 114038927 B CN114038927 B CN 114038927B
Authority
CN
China
Prior art keywords
graphene
ferroelectric
terahertz detector
chemical potential
bottom electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111451036.8A
Other languages
English (en)
Other versions
CN114038927A (zh
Inventor
黄文�
孙润宁
龚天巡
林媛
蒋翠翠
严博远
张晓升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202111451036.8A priority Critical patent/CN114038927B/zh
Publication of CN114038927A publication Critical patent/CN114038927A/zh
Application granted granted Critical
Publication of CN114038927B publication Critical patent/CN114038927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明属于光电通信技术领域,具体涉及一种高响应的铁电集成石墨烯等离子体太赫兹探测器。解决了传统硅基器件平行石墨烯纳米带之间的电磁波传导困难的问题,主要方案包括以钛酸锶为基底,以镧锶锰氧为底电极,利用外延法在底电极上生长一层铁酸铋BFO,利用压电力显微镜或水印法获得两条平行的矩形局域极化电畴,然后在铁酸铋BFO上覆盖一层本征石墨烯,通过对底电极施加不同栅压,从而调整覆盖在矩形局域极化电畴上的石墨烯化学势,进而调整太赫兹探测器的吸收波段。

Description

一种高响应的铁电集成石墨烯等离子体太赫兹探测器
技术领域
本发明属于光电通信技术领域,具体涉及一种太赫兹光电探测器。尤其涉及一种基于铁电基底的石墨烯太赫兹探测器的结构设计。
背景技术
太赫兹(THz)波是指频率在0.1~10THz(波长为3000~30μm)范围内的电磁波。是宏观经典理论向微观量子理论的过渡区,也是电子学向光子学的过渡区。由于过去缺乏高灵敏度的探测器和相对有效的太赫兹源,这一波段也被称为称为电磁波谱的“太赫兹空隙(THz gap)”。由于太赫兹可用带宽较大,可以实现超高速率的无线数据传输,并且在传感领域也有较大的应用可能性,近年来,对于太赫兹波段探测的研究持续发展革新,许多不同的高灵敏探测器以及太赫兹源被提出,为太赫兹研究道路提供了有意义的借鉴。
在红外(IR)和太赫兹(THz)范围内,当石墨烯与入射光相互作用时,出现表面等离子体激元(SPPs)和局域表面等离子体激元(LSPs)。SPP是在材料边界处激发的表面波;这些电荷波的激发是通过适当匹配***的自由空间和表面等离激元动量来实现的。另一方面,LSP是支撑在材料中的亚波长表面波,其特征尺寸与激发波长相当。后者有助于吸收机制,并导致吸收的增强。过去几年,石墨烯基吸收剂(GBA)备受关注。柯等人,报道了实现20%吸收的十字形石墨烯阵列吸收器;肖等人,提出了周期性石墨烯环阵列,并引入了良好的角极化容限,实现了25%的吸收;方等人,通过将石墨烯纳米盘阵列纳入有源器件达到30%的吸收。虽然单层石墨烯的最大吸收量相比其前辈有了很大的提高,但最大吸收量不超过30%。因此,设计一种具有较高吸光度的石墨烯吸收剂是一个亟待解决的问题。
发明内容
本发明的在于解决传统硅基器件平行石墨烯纳米带之间的电磁波传导困难的问题,进而实现了两条高化学势石墨烯纳米带激发的等离激元作用的耦合。
针对石墨烯光吸收低以及远红外波段探测困难的问题,本发明提出一种铁电基上的两条平行高化学势石墨烯纳米带作为探测敏感层的太赫兹吸收结构,该器件在谐振频率为3.85THz处具有超高响应度(23.21A/W)。器件的表面单胞结构由两条平行对称的高化学势石墨烯纳米带和其周围的本征石墨烯组成。
本发明为了解决上述技术问题,采用以下技术手段:
一种高响应的铁电集成石墨烯等离子体太赫兹探测器,以钛酸锶(STO)为基底,以镧锶锰氧(LSMO)为底电极,利用外延法在底电极上生长一层铁酸铋BFO,利用压电力显微镜(PFM)或水印法获得两条平行的矩形局域极化电畴,然后在铁酸铋BFO上覆盖一层本征石墨烯,通过对底电极施加不同栅压,从而调整覆盖在矩形局域极化电畴上的石墨烯化学势,进而调整太赫兹探测器的吸收波段。
上述技术方案中,两条平行的矩形局域极化电畴的长为0.5um,宽为0.1um,间隔为0.5um。
上述技术方案中,铁酸铋上覆盖的本征石墨烯的边长为1um。
上述技术方案中,覆盖在矩形局域极化电畴上的石墨烯的化学势为0.4eV。
上述技术方案中,未覆盖在矩形局域极化电畴上的石墨烯的化学势为0.01eV。
本发明的优点主要有:
1.本发明证明了双条特殊条带状石墨烯可在特定的铁电畴的影响下,体现出对远红外段具有高响应的特性。
2.本发明方法具有通用性,适用于所有铁电材料的极化对图案化石墨烯在光吸收方面的影响。
3.本发明采用在本征石墨烯内部引入两条平行高化学势石墨烯纳米带的方法,解决了传统硅基器件平行石墨烯纳米带之间的电磁波传导困难的问题,进而实现了两条高化学势石墨烯纳米带激发的等离激元作用的耦合。
4.本发明的采用两条平行高化学势石墨烯纳米带解决了传统硅基器件平行石墨烯纳米带之间的电磁波传导困难的问题,实现了两条平行高化学势石墨烯纳米带激发的等离激元作用的耦合,从而增强局域表面激元,在太赫兹波段增加了光吸收。由于常规器件石墨烯下面就是基底,两个石墨烯纳米带之间的电磁波传导需要增加一个石墨烯图案来连接从而产生损耗或者制作成本。而铁电基底的极化调控可以不需要做传导图案,只需要在特定的区域添加极化获得高化学势石墨烯区域。
5、本发明的两条平行高化学势石墨烯纳米带相比与方块形,矩形短边边缘激发的等离激元作用也会产生耦合,相互增强,而方块形边长较长,对角处激发的等离激元作用难以耦合。与扇形相比,矩形结构更简单,可调的图案参数基本一致,且不需要制作中间的三角形图案作为传导,而三角形图案光刻机的精度要求很高的,特别是顶点位置。
附图说明
图1为仿真器件的结构图以及BFO畴的形状示意图
图2-图5为在固定铁电畴的形状和大小以及向下极化区域石墨烯化学势为0.01eV的条件下,向上极化区域的石墨烯电化学势分别为0.4eV、0.6eV、0.7eV、0.8eV对应的太赫兹波段光吸收的曲线。
图6-图7为在极化方向向上的铁电畴长0.5um宽0.1um,间隔为0.5um,石墨烯电化学势为0.4eV,0.8eV;以及极化方向向下的铁电畴边长1um,石墨烯化学势为0.01eV时,不同电场分布图。
具体实施方式
为了便于理解,下面结合附图对本发明作进一步的说明。所描述的实例是本发明的一部分参数实例。基于本发明中的实例,本领域普通方法人员在没有做出创造性劳动的前提下获得的所有其他实例,都属于本发明的保护范围。
本发明提供了一种基于铁电材料和石墨烯的光电探测器,包括:以钛酸锶(STO)为基底,以镧锶锰氧(LSMO)为底电极,利用外延法生长一层BFO。
铁酸铋BFO为铁电材料,利用压电力显微镜(PFM)或水印法获得两条平行的矩形局域极化电畴。
单层石墨烯层,转移至极化的铁酸铋BFO之上。
利用FDTD solution仿真软件,设计器件结构和石墨烯的图案化。通过设置光源,放置监视器,计算设计器件整体的透射率、反射率、吸收率、以及表面电场强度分布情况。
更具体地,在模型中铁电畴的表现形式为石墨烯电化学势的高低变化,而铁电畴形状的变化体现在不同电化学势石墨烯的形状不同。
图1为器件的结构图以及单位BFO铁电畴的形状图。图1上图的结构中,从下至上分别为STO、LSMO、BFO,器件表面覆盖一层石墨烯。图1中可见单胞铁电畴的结构图,由两条平行对称的高化学势石墨烯纳米带和其周围的本征石墨烯组成。白色区域是高石墨烯化学势(极化方向向上)区域(两条平行对称的高化学势石墨烯纳米带),黑色区域是本征石墨烯(极化方向向下)区域。通过利用FDTD solution仿真软件,改变不同区域与的石墨烯化学势,来实现不同的极化方向带来的影响。设置白色区域长为0.5um,宽为0.1um,间隔为0.5um,黑色区域边长为1um,材料分别设置为高化学势石墨烯以及本征化学势石墨烯,以实现黑色包裹白色区域的结构。仿真区域长宽(X,Y方向)均为1um,X,Y方向的边界条件为周期性边界条件,这样只计算一个单位区域就可以模拟大范围阵列耦合结构。Z方向的边界条件为PML,可以吸收所有电磁波。
图2为固定上述器件结构参数的情况下,不同石墨烯化学势对应的太赫兹波段吸收曲线。自上至下分别为0.4eV,0.6eV,0.7eV,0.8eV的石墨烯化学势对应的太赫兹波段吸收图。将向下极化区域(黑色区域)的石墨烯化学势设为0.01eV,向上极化区域(白色区域)的石墨烯化学势分别设为0.4eV、0.6eV、0.7eV、0.8eV。可以看出通过在底电极施加不同栅压调整不同的石墨烯化学势可以对器件的光吸收波段区域和强度进行调控,其中,随着石墨烯化学势的增加,吸收峰左移,0.4eV化学势下,光吸收峰最强。
图3为固定上述器件结构参数的情况下,不同石墨烯化学势对应的器件表面电场分布图。自上至下分别为0.4eV,0.8eV的石墨烯化学势对应的电场分布图。由图可见,电场最强的位置在白色条带与黑色区域交界处的两端,从而证实了该结构可以实现局域表面等离激元,从而增强石墨烯的光吸收能力。而不同的化学势不会影响局域表面等离激元的作用区域,只会影响强度,从而不影响吸收机制,证实了调控作用。
由上述图片可知,可以通过使用不同的铁电材料,施加不同的栅压来改变器件对光的选择性吸收。并利用上述器件结构,增强器件的光吸收强度。

Claims (4)

1.一种高响应的铁电集成石墨烯等离子体太赫兹探测器,其特征在于,以钛酸锶为基底,以镧锶锰氧为底电极,利用外延法在底电极上生长一层铁酸铋BFO,利用压电力显微镜或水印法获得两条平行的矩形局域极化电畴,然后在铁酸铋BFO上覆盖一层本征石墨烯,形成具有可调控的铁电极化基底、一对石墨烯纳米条带结构和间隔区域,利用铁电基底极化调节石墨烯的化学势,依靠铁电畴图案化的石墨烯条带结构,高导电本征石墨烯间隔区域以及可调控石墨烯等离激元耦合效应探测太赫兹波。
2.如权利要求1所述的一种高响应的铁电集成石墨烯等离子体太赫兹探测器,其特征在于,所述的图案化由一对平行对称的高化学势石墨烯纳米带和其周围的本征石墨烯组成。
3.如权利要求2所述的一种高响应的铁电集成石墨烯等离子体太赫兹探测器,其特征在于,石墨烯纳米条带长为0.5μm,宽为0.1μm,石墨烯电化学势为0.4eV或0.8eV。
4.如权利要求2所述的一种高响应的铁电集成石墨烯等离子体太赫兹探测器,其特征在于,本征石墨烯的边长为1μm,石墨烯的化学势为0.01eV。
CN202111451036.8A 2021-12-01 2021-12-01 一种高响应的铁电集成石墨烯等离子体太赫兹探测器 Active CN114038927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111451036.8A CN114038927B (zh) 2021-12-01 2021-12-01 一种高响应的铁电集成石墨烯等离子体太赫兹探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111451036.8A CN114038927B (zh) 2021-12-01 2021-12-01 一种高响应的铁电集成石墨烯等离子体太赫兹探测器

Publications (2)

Publication Number Publication Date
CN114038927A CN114038927A (zh) 2022-02-11
CN114038927B true CN114038927B (zh) 2023-12-29

Family

ID=80139410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111451036.8A Active CN114038927B (zh) 2021-12-01 2021-12-01 一种高响应的铁电集成石墨烯等离子体太赫兹探测器

Country Status (1)

Country Link
CN (1) CN114038927B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116154484B (zh) * 2023-04-04 2023-07-04 湖南工商大学 一种双通道太赫兹完全吸收器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916732A (zh) * 2014-03-12 2015-09-16 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯太赫兹波探测器及其制作方法
CN111370523A (zh) * 2020-03-16 2020-07-03 电子科技大学 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器
CN211123332U (zh) * 2019-11-04 2020-07-28 安阳师范学院 一种基于石墨烯的宽带可调太赫兹吸波器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140946A1 (en) * 2015-03-02 2016-09-09 University Of Maryland, College Park Plasmon-enhanced terahertz graphene-based photodetector and method of fabrication
WO2016209666A2 (en) * 2015-06-15 2016-12-29 University Of Maryland, College Park Hybrid metal-graphene terahertz optoelectronic system with tunable plasmonic resonance and method of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916732A (zh) * 2014-03-12 2015-09-16 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯太赫兹波探测器及其制作方法
CN211123332U (zh) * 2019-11-04 2020-07-28 安阳师范学院 一种基于石墨烯的宽带可调太赫兹吸波器
CN111370523A (zh) * 2020-03-16 2020-07-03 电子科技大学 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Junxiong Guo等.Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications.《Nanoscale》.2019,(第11期),第20869-20870页,图1. *

Also Published As

Publication number Publication date
CN114038927A (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
US8835851B2 (en) Plasmonic detectors
CN111370523B (zh) 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器
CN103943715B (zh) 集成分布布拉格反射光栅的增强型石墨烯波导探测器
CN106711271A (zh) 基于半导体超表面结构的三频带近红外吸收器
CN209981235U (zh) 一种基于声子激元增强的石墨烯中红外光探测器
CN108565301A (zh) 基于金属表面等离子诱导双波段响应的光电探测器及制备方法
US11437531B2 (en) Photodetector
CN114038927B (zh) 一种高响应的铁电集成石墨烯等离子体太赫兹探测器
John et al. Low-noise, high-detectivity, polarization-sensitive, room-temperature infrared photodetectors based on Ge quantum dot-decorated Si-on-insulator nanowire field-effect transistors
Guo et al. Ferroelectric superdomain controlled graphene plasmon for tunable mid-infrared photodetector with dual-band spectral selectivity
Mortazavifar et al. Optimization of light absorption in ultrathin elliptical silicon nanowire arrays for solar cell applications
CN105140314A (zh) 基于微纳光纤结构的宽谱石墨烯光电导探测器
CN101299445B (zh) 一种半导体量子阱光子探测器件
Wu et al. Grating Perovskite Enhanced Polarization-Sensitive GaAs-Based Photodetector
Qu et al. Graphene/GaAs Schottky Junction Near-Infrared Photodetector With a MoS 2 Quantum Dots Absorption Layer
Wang et al. Surface state induced filterless SWIR narrow-band Si photodetector
Fu et al. Optical design of ultra-thin GaAs solar cells based on trapezoidal pyramid structure
CN104422517A (zh) 太赫兹波频谱检测器
Duan et al. Photovoltaic-driven flexible single-walled carbon nanotubes for self-powered and polarization-sensitive infrared photodetection
Sun et al. Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection
Li et al. Two-dimensional topological semimetals: an emerging candidate for terahertz detectors and on-chip integration
WO2017036011A1 (zh) 一种基于双光子吸收的硅纳米线光电探测器
CN109786483A (zh) 基于bp材料的光电探测器及其制备方法
Qi et al. Tunable plasmonic absorber in THz-band range based on graphene arrow-shaped metamaterial
WO2023104176A1 (zh) 一种光调控的石墨烯异质结晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant