CN114023964A - Composite zinc foil with zinc oxide particle protective layer and preparation method and application thereof - Google Patents

Composite zinc foil with zinc oxide particle protective layer and preparation method and application thereof Download PDF

Info

Publication number
CN114023964A
CN114023964A CN202111252925.1A CN202111252925A CN114023964A CN 114023964 A CN114023964 A CN 114023964A CN 202111252925 A CN202111252925 A CN 202111252925A CN 114023964 A CN114023964 A CN 114023964A
Authority
CN
China
Prior art keywords
zinc
foil
zinc foil
composite
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111252925.1A
Other languages
Chinese (zh)
Other versions
CN114023964B (en
Inventor
麦立强
刘熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202111252925.1A priority Critical patent/CN114023964B/en
Publication of CN114023964A publication Critical patent/CN114023964A/en
Application granted granted Critical
Publication of CN114023964B publication Critical patent/CN114023964B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention relates to a composite zinc foil with a zinc oxide particle protective layer, and a preparation method and application thereof. The composite zinc foil with the zinc oxide particle protective layer is characterized by comprising a zinc oxide particle layer loaded on the zinc foil, wherein the particle layer consists of zinc oxide with the diameter of 5-10 nanometers, has polycrystalline porous characteristics, is completely covered on the surface of the zinc foil and is uniformly distributed, and comprises the following steps: 1) cutting a zinc foil with a certain thickness into a rectangle with a certain size; 2) processing the zinc foil obtained in the step 1) in an alkaline electrolyte by adopting an electrochemical reconstruction strategy to obtain the composite zinc foil with the zinc oxide particle protective layer. The invention has simple process and high preparation speed and meets the requirement of green chemistry. Compared with pure zinc foil, the obtained composite zinc foil has obviously improved cycling stability performance in a symmetrical battery, and is a water system zinc ion battery cathode material with application prospect.

Description

Composite zinc foil with zinc oxide particle protective layer and preparation method and application thereof
Technical Field
The invention belongs to the technical field of nano materials and electrochemistry, and particularly relates to a composite zinc foil with a zinc oxide particle protective layer, a preparation method and application thereof, which can be used as a cathode of a water system zinc ion battery.
Background
The material surface has a tendency of phase transition to thermodynamic stability under bias conditions, which causes the catalyst to have a wide range of surface reconstruction phenomena in various catalytic reactions, such as oxygen evolution/hydrogen evolution reaction, CO2Reduction/hydrogenation reaction. In the electrocatalytic process, the reconstituted species integrates in situ on the surface of the original catalyst and acts as the true catalytically active species. In recent years, researchers have adopted various strategies to achieve precise design of a reconstructed product with efficient catalytic activity, such as structure regulation (element doping, crystallinity regulation, size regulation), external field regulation (solution temperature, concentration), and the like. Although the reconstituted materials are largely attractive for catalytic applications, they have been rarely reported in energy storage.
The water-based zinc ion battery is one of candidates for the next generation of energy storage devices due to its characteristics of high safety, environmental friendliness, and the like. However, due to Zn2+The standard electrode potential of/Zn is lower than H+/H2The standard electrode potential of (2) inevitably causes zinc corrosion during charging and discharging. The instability of zinc cathodes (i.e. the formation of surface dendrites and the hydrogen evolution reaction leading to low coulombic efficiency and poor cycling stability) has severely hampered the scale-up of zinc ion batteries. Therefore, how to suppress the dendrite growth problem of the zinc negative electrode and reduce the occurrence of side reactions is a key to improve the cycle life of the aqueous zinc ion battery. Some researches show that the surface modification of the zinc foil can greatly improve the cycle performance of the zinc cathode, such as surface sulfuration/selenization and surface coating of TiO2/ZrO2And the like. Here, we use the idea of catalytic restructuring for surface modification of zinc foil, and use the surface instability of zinc foil under electrochemical conditions to construct a protective layer, so that the obtained composite zinc foil has improved cycling stability.
Disclosure of Invention
Aiming at the technical problems in the prior art, the invention provides a composite zinc foil with a zinc oxide particle protective layer, and a preparation method and application thereof. The preparation method is simple in process and high in preparation speed, meets the green chemical requirements, and the obtained composite zinc foil shows excellent cycling stability and is a water system zinc ion battery cathode material with an application prospect.
The technical scheme adopted by the invention aiming at the technical problems is as follows: the composite zinc foil with the zinc oxide particle protective layer is characterized in that a zinc oxide particle layer is loaded on the zinc foil, the particle layer is composed of zinc oxide with the particle size of 5-10 nanometers, and the composite zinc foil has polycrystalline porous characteristics, and is completely covered on the surface of the zinc foil and uniformly distributed.
According to the scheme, the thickness of the zinc foil is 20-100 mu m, the length is 3-4cm, and the width is 1.5-2.5 cm.
The preparation method of the composite zinc foil with the zinc oxide particle protective layer comprises the following steps:
1) cutting a zinc foil with a certain thickness into a rectangle with a certain size;
2) processing the zinc foil obtained in the step 1) in an alkaline electrolyte by adopting an electrochemical reconstruction strategy to obtain the composite zinc foil with the zinc oxide particle protective layer.
According to the scheme, the electrochemical reconstruction strategy adopted in the alkaline electrolyte in the step 2) comprises the following specific steps: building a standard three-electrode testing device, directly taking the zinc foil obtained in the step 1) as a working electrode, taking a graphite rod as a counter electrode and taking an Hg/HgO electrode as a reference electrode in alkaline electrolyte, carrying out a chronoamperometric test on a CHI 760E electrochemical workstation, quickly taking out the obtained composite zinc foil, washing with deionized water and drying at normal temperature. The electrochemical reconstruction means that the surface of the zinc foil can generate phase transition to form a zinc oxide particle layer in a chronoamperometry test.
According to the scheme, the alkaline electrolyte in the step 2) is KOH, LiOH or NaOH solution, and the concentration is 0.5-1mol L-1And the solvent is deionized water.
According to the scheme, the constant potential is 0.2-0.8V verses (vs.) Hg/HgO, and the constant potential testing time is 200-800 s.
The composite zinc foil with the zinc oxide particle protective layer is applied as a cathode of an aqueous zinc ion battery.
The zinc foil spontaneously dissolves in an alkaline solution, and the zinc dissolution is promoted by the application of an oxidation bias, so that the local ion concentration on the surface of the zinc foil is too high to cause an in-situ deposition phenomenon. By utilizing the principle, the zinc foil is directly used as a working electrode, the surface of the zinc foil is continuously subjected to a dissolution-redeposition process under the oxidation bias by an electrochemical reconstruction strategy, so that the in-situ electrochemical integration of zinc oxide particles on the surface of the zinc foil can be realized, and finally the composite zinc foil with the zinc oxide particle protective layer is obtained. The zinc oxide particle layer is loaded on the zinc foil, the particle layer is composed of zinc oxide with 5-10 nanometers, has polycrystalline porous characteristic, and is fully covered and uniformly distributed on the surface of the zinc foil. The particulate layer can induce uniform deposition of zinc and reduce the generation of zinc dendrites, thereby improving the cycle stability of the zinc foil. Therefore, the composite zinc foil is an aqueous zinc ion battery negative electrode material with application prospect.
The invention has the beneficial effects that: according to the invention, the in-situ electrochemical integration of 5-10 nanometer zinc oxide particles on the surface of the zinc foil is realized within a few minutes through an electrochemical reconstruction strategy, and the particle layer has the characteristic of polycrystalline porosity and can induce the uniform deposition of zinc and reduce the generation of zinc dendrites, thereby improving the cycling stability of the zinc foil. The surface capacity is 1mAh cm-2At 1mA cm-2Under the current density of the composite zinc foil, the button symmetrical battery based on the composite zinc foil is 2M ZnSO4The water-based electrolyte can stably circulate for 480h, while the button symmetrical battery based on pure zinc foil can stably circulate for less than 200h under the same conditions. The invention has simple process and high preparation speed, meets the green chemical requirements, and proves the composite zinc foil with excellent cycle stability and the cathode application of the water-based zinc ion battery thereof.
Drawings
FIG. 1 is a schematic diagram of the formation of a composite zinc foil having a protective layer of zinc oxide particles in example 1 of the present invention;
FIG. 2 is a scanning electron microscope photograph of the zinc foil of example 1 of the present invention after potentiostatic testing at 0.7V vs. Hg/HgO for various periods of time;
FIG. 3 is an X-ray diffraction pattern of a zinc foil according to example 1 of the present invention after potentiostatic testing at 0.7V vs. Hg/HgO for various periods of time;
fig. 4 is a high angle annular dark field image-scanning transmission electron microscope image of the composite zinc foil loaded zinc oxide particles of example 1 of the present invention;
FIG. 5 is a high resolution TEM image of composite zinc foil loaded zinc oxide particles of example 1 of the present invention;
FIG. 6 shows the 2M ZnSO of a button type symmetrical battery based on the composite zinc foil in the embodiment 1 of the invention4Cycle stability performance in aqueous electrolytes;
FIG. 7 shows a pure zinc foil based symmetrical coin cell battery of example 1 of the present invention in 2M ZnSO4Cycle stability performance in aqueous electrolytes;
FIG. 8 shows the 2M ZnSO of a button type symmetrical battery based on the composite zinc foil in the embodiment 1 of the invention4Scanning electron microscope images of the zinc foil surface after 200h testing in aqueous electrolyte;
FIG. 9 shows a pure zinc foil based symmetrical coin cell battery of example 1 of the present invention in 2M ZnSO4Scanning electron microscope images of the zinc foil surface after 200h testing in aqueous electrolyte;
detailed description of the preferred embodiment
For a better understanding of the present invention, the following description is set forth in connection with specific examples, which are not intended to limit the invention.
Example 1
A preparation method of a composite zinc foil with a zinc oxide particle protective layer comprises the following steps:
1) cutting 100 μm thick zinc foil into 2.5cm × 3.5cm rectangles;
2) in a standard three-electrode device, the zinc foil obtained in step 1) is directly used as a working electrode, a graphite rod is used as a counter electrode, an Hg/HgO electrode is used as a reference electrode, and 1M KOH is used as an electrolyte. And (3) carrying out a chronoamperometry test on a CHI 760E electrochemical workstation, wherein the constant potential is 0.7V vs. Hg/HgO, the test time is 400s, immediately taking out the working electrode after the test, washing with deionized water and drying at normal temperature to obtain the composite zinc foil with the zinc oxide particle protective layer.
Taking the composite zinc foil with the zinc oxide particle protective layer in this embodiment as an example, the electrochemical reconstruction diagram of the present invention is shown in fig. 1. When an oxidation bias is applied in an alkaline electrolyte, the zinc foil will undergo an electrochemical reconstitution process, including that the oxidation bias accelerates the dissolution of zinc and forms a gradient ion concentration distribution, and zinc oxide is deposited in situ on the surface of the zinc foil due to ion supersaturation. Figure 2 is an SEM image of zinc foil after potentiostatic testing at 0.7V vs. hg/HgO for various times. It can be seen that the initial zinc foil surface was smooth, and after application of a bias voltage of 400s, the zinc foil surface became loosely porous and consisted of many ultra small particles, and then to 1500s the particle layer gradually became dense, and by 13000s the particle layer became very dense and increased in particle size. This process can be seen as a surface reconstruction process of the zinc foil, while a dense reconstruction layer can lead to the termination of the reconstruction process. The dense restructuring layer can stop the restructuring process due to the fact that the dense restructuring layer isolates the direct contact of the internal zinc and the external alkali liquor and mass transfer processes (including the dissolution of the zinc and the permeation of electrolyte). Phase analysis was performed on the zinc foil after different test times (fig. 3) and found that after electrochemical reconstruction, a new diffraction peak appeared and was assigned to the ZnO phase (JCPDS No.65-3411), indicating that the reconstructed layer was a zinc oxide species. As shown in fig. 4 and 5, fine structure analysis was further performed on the particle layer of the zinc foil surface which was constant potential tested for 400 s. The reconstructed layer was found to consist of 5-10nm ultra-small particles with a large number of pores between the particles.
When the composite zinc foil with the zinc oxide particle protective layer prepared in the embodiment is used as an electrode of a button type symmetrical battery, the surface capacity is 1mAh cm-2At 1mA cm-2Under the current density of the composite zinc foil, the button symmetrical battery based on the composite zinc foil is 2M ZnSO4The circulation in the aqueous electrolyte can be stabilized for 480h (FIG. 6). Whereas for pure zinc foil, the cycle was stable only for less than 200h under the same test conditions (fig. 7). We also performed a topographical analysis of the electrode surface after cycling tests. As shown in FIG. 8, the composite zinc foil is at 1mAh cm-2And 1mA cm-2After the surface is circulated for 200 hours under the condition (1), the surface is relatively smooth, and no obvious zinc dendrite is generated in a large range (figure 8); while the pure zinc foil surface produced irregular dendrites and had residual separator fibers (fig. 9), which resulted in symmetrical electricityThe cause of cell shorting and failure. The composite zinc foil with the zinc oxide particle protective layer shows excellent cycling stability performance, so that the composite zinc foil is a water system zinc ion battery negative electrode material with application prospect.
Example 2
A preparation method of a composite zinc foil with a zinc oxide particle protective layer comprises the following steps:
1) cutting a zinc foil with the thickness of 50 mu m into a rectangle with the length of 2.5cm multiplied by 3.5 cm;
2) in a standard three-electrode device, the zinc foil obtained in step 1) is directly used as a working electrode, a graphite rod is used as a counter electrode, an Hg/HgO electrode is used as a reference electrode, and 1M KOH is used as an electrolyte. And (3) carrying out a chronoamperometry test on a CHI 760E electrochemical workstation, wherein the constant potential is 0.7V vs. Hg/HgO, the test time is 400s, immediately taking out the working electrode after the test, washing with deionized water and drying at normal temperature to obtain the composite zinc foil with the zinc oxide particle protective layer.
Taking the composite zinc foil with the zinc oxide particle protective layer obtained in the embodiment as an example, 2M ZnSO based on a symmetrical cell4The cycling stability performance of the test in (1) was similar to that of example 1.
Example 3
A preparation method of a composite zinc foil with a zinc oxide particle protective layer comprises the following steps:
1) cutting 100 μm thick zinc foil into 2.0cm × 3.5cm rectangles;
2) in a standard three-electrode device, the zinc foil obtained in step 1) is directly used as a working electrode, a graphite rod is used as a counter electrode, an Hg/HgO electrode is used as a reference electrode, and 1M KOH is used as an electrolyte. And (3) carrying out a chronoamperometry test on a CHI 760E electrochemical workstation, wherein the constant potential is 0.7V vs. Hg/HgO, the test time is 400s, immediately taking out the working electrode after the test, washing with deionized water and drying at normal temperature to obtain the composite zinc foil with the zinc oxide particle protective layer.
Taking the composite zinc foil with the zinc oxide particle protective layer obtained in the embodiment as an example, 2M ZnSO based on a symmetrical cell4The cycling stability performance of the test in (1) was similar to that of example 1.
Example 4
A preparation method of a composite zinc foil with a zinc oxide particle protective layer comprises the following steps:
1) cutting 100 μm thick zinc foil into 2.5cm × 3.5cm rectangles;
2) in a standard three-electrode device, the zinc foil obtained in step 1) is directly used as a working electrode, a graphite rod is used as a counter electrode, an Hg/HgO electrode is used as a reference electrode, and 1M NaOH is used as an electrolyte. And (3) carrying out a chronoamperometry test on a CHI 760E electrochemical workstation, wherein the constant potential is 0.7V vs. Hg/HgO, the test time is 400s, immediately taking out the working electrode after the test, washing with deionized water and drying at normal temperature to obtain the composite zinc foil with the zinc oxide particle protective layer.
Taking the composite zinc foil with the zinc oxide particle protective layer obtained in the embodiment as an example, 2M ZnSO based on a symmetrical cell4The cycling stability performance of the test in (1) was similar to that of example 1.
Example 5
A preparation method of a composite zinc foil with a zinc oxide particle protective layer comprises the following steps:
1) cutting 100 μm thick zinc foil into 2.5cm × 3.5cm rectangles;
2) in a standard three-electrode device, the zinc foil obtained in step 1) is directly used as a working electrode, a graphite rod is used as a counter electrode, an Hg/HgO electrode is used as a reference electrode, and 1M KOH is used as an electrolyte. And (3) carrying out a chronoamperometry test on a CHI 760E electrochemical workstation, wherein the constant potential is 0.5V vs. Hg/HgO, the test time is 400s, immediately taking out the working electrode after the test, washing with deionized water and drying at normal temperature to obtain the composite zinc foil with the zinc oxide particle protective layer.
Taking the composite zinc foil with the zinc oxide particle protective layer obtained in the embodiment as an example, 2M ZnSO based on a symmetrical cell4The cycling stability performance of the test in (1) was similar to that of example 1.
Example 6
A preparation method of a composite zinc foil with a zinc oxide particle protective layer comprises the following steps:
1) cutting 100 μm thick zinc foil into 2.5cm × 3.5cm rectangles;
2) in a standard three-electrode device, the zinc foil obtained in step 1) is directly used as a working electrode, a graphite rod is used as a counter electrode, an Hg/HgO electrode is used as a reference electrode, and 1M KOH is used as an electrolyte. And (3) carrying out a chronoamperometry test on a CHI 760E electrochemical workstation, wherein the constant potential is 0.7V vs. Hg/HgO, the test time is 600s, immediately taking out the working electrode after the test, washing with deionized water and drying at normal temperature to obtain the composite zinc foil with the zinc oxide particle protective layer.
Taking the composite zinc foil with the zinc oxide particle protective layer obtained in the embodiment as an example, 2M ZnSO based on a symmetrical cell4The cycling stability performance of the test in (1) was similar to that of example 1.

Claims (7)

1. The composite zinc foil with the zinc oxide particle protective layer is characterized in that a zinc oxide particle layer is loaded on the zinc foil, the particle layer is composed of zinc oxide with the particle size of 5-10 nanometers, and the composite zinc foil has polycrystalline porous characteristics, and is completely covered on the surface of the zinc foil and uniformly distributed.
2. The composite zinc foil with a protective layer of zinc oxide particles according to claim 1, wherein said zinc foil has a thickness of 20 to 100 μm, a length of 3 to 4cm and a width of 1.5 to 2.5 cm.
3. A method of making a composite zinc foil having a protective layer of zinc oxide particles as claimed in claim 1, comprising the steps of:
1) cutting a zinc foil with a certain thickness into a rectangle with a certain size;
2) processing the zinc foil obtained in the step 1) in an alkaline electrolyte by adopting an electrochemical reconstruction strategy to obtain the composite zinc foil with the zinc oxide particle protective layer.
4. The method for preparing a composite zinc foil with a protective layer of zinc oxide particles according to claim 3, characterized by the specific steps of step 2) of the electrochemical reconstitution strategy used in alkaline electrolyte: building a standard three-electrode testing device, directly taking the zinc foil obtained in the step 1) as a working electrode, taking a graphite rod as a counter electrode and taking an Hg/HgO electrode as a reference electrode in alkaline electrolyte, carrying out a chronoamperometric test on a CHI 760E electrochemical workstation, quickly taking out the obtained composite zinc foil, washing with deionized water and drying at normal temperature.
5. The method for preparing a composite zinc foil with a zinc oxide particle protective layer according to claim 4, wherein the alkaline electrolyte in step 2) is a KOH, LiOH or NaOH solution with a concentration of 0.5-1mol L "1, and the solvent is deionized water.
6. The method as claimed in claim 4, wherein the potentiostatic test is 0.2-0.8V verses (vs.) Hg/HgO and the potentiostatic test time is 200-.
7. Use of a composite zinc foil having a protective layer of zinc oxide particles according to claim 1 as a negative electrode for an aqueous zinc-ion battery.
CN202111252925.1A 2021-10-27 2021-10-27 Composite zinc foil with zinc oxide particle protective layer and preparation method and application thereof Active CN114023964B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111252925.1A CN114023964B (en) 2021-10-27 2021-10-27 Composite zinc foil with zinc oxide particle protective layer and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111252925.1A CN114023964B (en) 2021-10-27 2021-10-27 Composite zinc foil with zinc oxide particle protective layer and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN114023964A true CN114023964A (en) 2022-02-08
CN114023964B CN114023964B (en) 2023-03-28

Family

ID=80057909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111252925.1A Active CN114023964B (en) 2021-10-27 2021-10-27 Composite zinc foil with zinc oxide particle protective layer and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN114023964B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504911A (en) * 2023-06-25 2023-07-28 吉林大学 Amorphous zinc oxide coating modified zinc anode, preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090636A1 (en) * 2007-10-05 2009-04-09 Powergenix Systems, Inc. Tin and tin-zinc plated substrates to improve ni-zn cell performance
CN103367756A (en) * 2013-07-22 2013-10-23 山东大学 Preparation method of porous copper based lithium ion battery anode material
CN105742648A (en) * 2014-12-12 2016-07-06 中国科学院大连化学物理研究所 Metal matrix zinc material and preparation method thereof
CN107916433A (en) * 2016-10-09 2018-04-17 中国科学院大连化学物理研究所 The preparation of micro nano structure zinc electrode and zinc electrode and application
CN111081869A (en) * 2019-10-18 2020-04-28 华中科技大学 Method for integrating phase change memory cell by using electrochemical deposition
CN111261855A (en) * 2020-01-20 2020-06-09 广东省材料与加工研究所 Zinc composite electrode material, preparation method thereof and battery
US20200318241A1 (en) * 2019-04-02 2020-10-08 National Yunlin University Of Science And Technology Fabrication and structure of a nonenzymatic glucose sensor
CN113437369A (en) * 2021-05-25 2021-09-24 武汉理工大学 Nickel-zinc micro-battery based on reconstructed epitaxial phase and preparation method thereof
CN113488607A (en) * 2021-06-07 2021-10-08 暨南大学 Preparation and application of metal zinc cathode with functional nano material modification layer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090636A1 (en) * 2007-10-05 2009-04-09 Powergenix Systems, Inc. Tin and tin-zinc plated substrates to improve ni-zn cell performance
CN103367756A (en) * 2013-07-22 2013-10-23 山东大学 Preparation method of porous copper based lithium ion battery anode material
CN105742648A (en) * 2014-12-12 2016-07-06 中国科学院大连化学物理研究所 Metal matrix zinc material and preparation method thereof
CN107916433A (en) * 2016-10-09 2018-04-17 中国科学院大连化学物理研究所 The preparation of micro nano structure zinc electrode and zinc electrode and application
US20200318241A1 (en) * 2019-04-02 2020-10-08 National Yunlin University Of Science And Technology Fabrication and structure of a nonenzymatic glucose sensor
CN111081869A (en) * 2019-10-18 2020-04-28 华中科技大学 Method for integrating phase change memory cell by using electrochemical deposition
CN111261855A (en) * 2020-01-20 2020-06-09 广东省材料与加工研究所 Zinc composite electrode material, preparation method thereof and battery
CN113437369A (en) * 2021-05-25 2021-09-24 武汉理工大学 Nickel-zinc micro-battery based on reconstructed epitaxial phase and preparation method thereof
CN113488607A (en) * 2021-06-07 2021-10-08 暨南大学 Preparation and application of metal zinc cathode with functional nano material modification layer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALI BALKIS等: "Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion Reduction" *
FARID JAMALI SHEINI等: ""Observation of Photoconductivity in Sn-Doped ZnO Nanowires and Their Photoenhanced Field Emission Behavior"", 《JOURNAL OF PHYSICAL CHEMISTRY C》 *
MING-KWEI LEE等: ""Optical Emissions of Zn and ZnO in Zn-ZnO Structure Synthesized by Electrodeposition with Aqueous Solution of Zinc Nitrate-6-hydrate"", 《COMMUNICATIONS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504911A (en) * 2023-06-25 2023-07-28 吉林大学 Amorphous zinc oxide coating modified zinc anode, preparation method and application thereof
CN116504911B (en) * 2023-06-25 2023-09-05 吉林大学 Amorphous zinc oxide coating modified zinc anode, preparation method and application thereof

Also Published As

Publication number Publication date
CN114023964B (en) 2023-03-28

Similar Documents

Publication Publication Date Title
CN108520985B (en) Method for prolonging cycle life of zinc battery and application thereof
CN106898778B (en) Three-dimensional current collector for metal secondary battery cathode and preparation method and application thereof
Zhang et al. Study of zinc electrodes for single flow zinc/nickel battery application
Adler et al. Low‐zinc‐solubility electrolytes for use in zinc/nickel oxide cells
JP2010108904A (en) Metal-air battery
CN113921762B (en) Nano bismuth composite material and preparation method and application thereof
EP1570534A2 (en) Electrochemical cell
KR20200003421A (en) Extremely stable rechargeable manganese battery with solid-liquid-gas reaction
Zhipeng et al. Hierarchical porous carbon toward effective cathode in advanced zinc-cerium redox flow battery
CN113036153A (en) Copper-based current collector for inducing preferential transverse deposition of lithium metal negative electrode and preparation method and application thereof
CN112054212A (en) Porous aluminum foil for lithium ion battery current collector and preparation method and application thereof
CN114023964B (en) Composite zinc foil with zinc oxide particle protective layer and preparation method and application thereof
Vanýsek et al. In-situ AFM observations of the effect of addition of glass fibers and lignosulfonates on performance of the negative active mass of a lead-acid storage battery
US10873090B2 (en) Reduced-area current collectors for rechargeable batteries
CN113871620A (en) Ultrathin interface modified zinc metal negative electrode material, and preparation and application thereof
US20220255068A1 (en) Deeply Rechargeable Battery Systems and Methods
CN108352520B (en) Zinc negative electrode material for secondary battery
CN110444730B (en) Preparation method and application of three-dimensional network structure nano-layer zinc cathode
KR102085499B1 (en) Method for a porous electrode current collector for lithium metal battery using hydrogen bubble as a template and electrode current collector manufactured thereby
CN114243027A (en) Sodium ion battery negative current collector, preparation method thereof and sodium ion battery
Hang et al. Effect of Fe2O3 morphology on the electrochemical properties of Fe2O3/C composite electrode as Fe-air battery anode
JP2010177036A (en) Air electrode layer
CN114008813A (en) 3D ordered nano-mesh for metal-air battery
Rus et al. Structural and electrochemical characteristics of sintered nickel electrodes
KR102458871B1 (en) Zinc metal electrode, method of manufacturing the same, and secondary battery having the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant