CN114021469A - 一种基于混合序列网络进行一段炉过程监测的方法 - Google Patents

一种基于混合序列网络进行一段炉过程监测的方法 Download PDF

Info

Publication number
CN114021469A
CN114021469A CN202111348802.8A CN202111348802A CN114021469A CN 114021469 A CN114021469 A CN 114021469A CN 202111348802 A CN202111348802 A CN 202111348802A CN 114021469 A CN114021469 A CN 114021469A
Authority
CN
China
Prior art keywords
network
decoder
output
hidden layer
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111348802.8A
Other languages
English (en)
Other versions
CN114021469B (zh
Inventor
宋执环
钱金传
文成林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202111348802.8A priority Critical patent/CN114021469B/zh
Publication of CN114021469A publication Critical patent/CN114021469A/zh
Application granted granted Critical
Publication of CN114021469B publication Critical patent/CN114021469B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明公开一种基于混合序列网络进行一段炉过程监测的方法,网络结构包括编码器,模态识别网络和解码器三部分,编码器由一组RNN组成,其最后一个隐层输出经过解码器对序列最后一个时刻的样本进行重构。解码器由多个子解码器部分组成,并且通过模态识别网络输出的权重,加权得到最终的重构值。网络参数通过加权重构误差来进行训练,并且在损失函数中加入针对权重的信息熵,以得到更准确的模态识别效果,同时防止网络向单一模态坍缩。最后,基于所设计的神经网络模型,构建了加权平方预测误差来指示过程中是否发生故障,并且通过贡献度对故障变量进行识别。本发明的方法能够准确地对一段炉进行过程监测,故障检测和识别准确率高。

Description

一种基于混合序列网络进行一段炉过程监测的方法
技术领域
本发明属于一段炉过程故障检测和故障识别领域,具体涉及一种基于混合序列网络进行一段炉过程监测的方法。
背景技术
为了维持生产过程的平稳运行,过程监测技术今年来收到了较大的重视,故障检测和故障识别是过程监测中的主要组成部分,故障检测的目的是检测出当前运行的工业过程中是否存在故障,而故障识别是在确定故障发生之后,对故障变量进行定位,以帮助工程师进行故障排查和恢复。
一段炉是合成氨工艺过程中的核心生产装置,它主要将天然气转换成原料氢气,该过程反应步骤较为复杂,过程变量之间往往存在较强的非线性关系,因此,传统的基于线性假设的数据驱动故障检测方法应用在该过程中往往无法表现出较好的检测性能。此外,由于操作工况变化和过程原材料的变化,一段炉过程数据往往表现出多模态的特性,这也使得传统的在单一工况或者稳态假设下的数据驱动模型难以有效的进行过程监测。近年来,深度学习成为了研究热点,其主要包括一些基于神经网络的特征提取模型,并且由于其在处理非线性数据上具有优良的表现,深度学习模型已经被广泛应用到工业相关的各个领域。
自编码器是常用的深度学习模型,可用于挖掘数据中的复杂特征,但是自编码器无法对数据中的动态特征进行挖掘,此外,面对数据中表现出来的多模态的特征,直接使用自编码器,可能会造成多个模态的特征之间的混淆,导致监测性能的下降。
发明内容
为了一段炉过程中的非线性、多模态等问题,本发明提出一种基于混合序列网络进行一段炉过程监测的方法,方法利用了神经网络的特征挖掘能力,并且根据所建立的模型特点设计了相关故障指标,实现了对一段炉过程中故障检测,并且对故障相关的变量进行识别。
本发明的具体技术方案如下:
一种基于混合序列网络进行一段炉过程监测的方法,该方法包括如下步骤:
S1:构建基于混合序列网络的过程监测模型,用于对一段炉过程进行特征挖掘;
所述过程监测模型包括编码器、模态识别网络和解码器三部分;其中编码器为RNN,用于挖掘过程中的动态特征;模态识别网络接在编码器最后一个时刻的隐层输出后,经过一个隐层后,通过一个softmax层输出一组权重,用于指示当前序列样本所属的模态;解码器也接在编码器最后一个时刻的隐层输出后,用于重构输入序列中最后一个时刻的样本;所述解码器由多个单层神经网络组成,通过模态识别网络输出的权重,对每个神经网络输出进行加权求和后得到最终的重构值;
S2:收集一段炉过程正常工况下的的过程数据,构建数据集,同时设置序列长度L,对数据集进行序列化,将所得到的序列数据集作为用于模型训练的训练数据集X;其中,第n个输入序列为
Figure BDA0003355204050000021
S3:将训练数据集X输入基于混合序列网络的过程监测模型中,进行前向传播,得到重构值,并通过迭代的方法最小化损失函数,直到模型参数收敛或者达到最大迭代次数,得到训练好的过程监测模型;
S4:利用训练数据计算检测指标WSPE,利用核密度估计方法计算控制限conwspe
S5:利用一段炉在线检测样本x与前L-1个时刻的样本构建出所需长度L的输入序列,代入S4中训练好的过程监测模型,得到x的解码器的重构输出以及模态识别网络的输出p=[p1 p2 … pK];将第i个子解码器的重构输出记为
Figure BDA0003355204050000026
S6:利用在线样本和其重构输出计算检测指标WSPEo,并将该检测指标与控制限conwspe进行比较,当WSPEo≤conwspe时,该在线样本为正常样本;当WSPEo>conwspe,则认为当前样本为故障样本,将该故障样本进一步进行故障识别;设在线样本为x=[x1 x2 … xm],带入模型后的第i个解码器的重构值为
Figure BDA0003355204050000022
第j个变量的贡献度指标计算方法如下:
Figure BDA0003355204050000023
S7:根据需要将贡献度较高的变量视为故障变量。
进一步地,所述S3通过如下的子步骤来实现:
(1)将Xn带入S1构建的过程监测模型,Xn前向传播过程,得到RNN的隐层输出
Figure BDA0003355204050000024
其中,其中Ue表示将输入映射到RNN的隐层特征的权重,
Figure BDA0003355204050000025
m为输入样本的变量个数;We表示将RNN中t-1时刻的隐层输出映射到RNN中t时刻的隐层输出的权重,
Figure BDA0003355204050000031
he为RNN隐层的节点数;
Figure BDA0003355204050000032
Figure BDA0003355204050000033
分别代表t时刻和t-1时刻的隐层输出,
Figure BDA0003355204050000034
代表的是t时刻的输入样本,f(*)代表RNN中的非线性激活函数;
(2)Xn经过L次前向映射,得到特征输出
Figure BDA0003355204050000035
RNN的特征输出经过模态识别网络的前向映射,得到
Figure BDA0003355204050000036
记为
Figure BDA0003355204050000037
K为解码器个数;其中,hm为模态识别网络隐层的节点数;Wm、bm分别表示将输入映射到模态识别网络的隐层特征的权重和偏置,
Figure BDA0003355204050000038
Figure BDA0003355204050000039
Wp、bp分别表示将模态识别网络的隐层特征映射到模态识别网络的输出的权重和偏置,
Figure BDA00033552040500000310
(3)RNN的特征输出经过第i个解码器的前向映射,得到
Figure BDA00033552040500000311
其中,σ(*)为非线性激活函数;
Figure BDA00033552040500000312
分别表示将输入映射到第i个解码器的隐层特征的权重和偏置,
Figure BDA00033552040500000313
分别表示将第i个解码器的隐层特征映射到第i个解码器的输出的权重和偏置,
Figure BDA00033552040500000314
hd为解码器网络隐层的节点数;
训练过程中,损失函数定义为下式:
Figure BDA00033552040500000315
其中,N为用于训练模型的序列数量,α和β为可以调节的超参数,
Figure BDA00033552040500000316
和Lentr2为通过模态识别网络输出得到的信息熵,用于得到更加准确的模态识别精度,同时防止模型在训练过程中向单一模态坍缩,落入局部最优解,计算方法如下面各式所示:
Figure BDA00033552040500000317
Figure BDA00033552040500000318
进一步地,所述S4检测指标WSPE的计算方式如下:
Figure BDA00033552040500000319
所述S5中的检测指标WSPEo
Figure BDA0003355204050000041
进一步地,所述S3中通过梯度下降法最小化损失函数。
本发明的有益效果如下:
(1)本发明的过程检测模型,针对一段炉过程动态性和非线性强的特点,编码器部分由一组循环神经网络的组成,其最后一个隐层输出经过解码器对序列最后一个时刻的样本进行重构。此外,由于一段炉过程存在多模态的情况,为了防止多个模态的特征之间出现混淆,解码器部分由多个子解码器部分组成,并且通过模态识别网络输出的权重,加权得到最终的重构值。网络参数通过加权重构误差来进行训练,并且在损失函数中加入针对权重的信息熵,以得到更准确的模态识别效果,同时防止网络向单一模态坍缩。最后,基于所设计的神经网络模型,构建了加权平方预测误差来指示过程中是否发生故障,并且通过贡献度对故障变量进行识别。
(2)由于本发明的方法是基于深度学习的,因此,相比与传统的过程监测模型,具有更强的过程复杂特征挖掘能力。此外,由于RNN结构的加入,本发明的模型能够有效的提取过程中的动态信息,使得模态的识别更加准确,同时,所挖掘的动态特征能够很好的辅助过程监测中的各种任务,从而提升监测准确率。而相比与传统的基于单一模型的过程监测模型,本发明在模型结构设计中加入了多个解码器,使得针对各个模态的特征提取更加精准,使其在面向多模态数据的过程监测任务中有进一步的性能提升。
附图说明
图1是基于混合序列网络进行一段炉过程监测的方法的流程图;
图2是混合序列网络的模型结构示意图。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的基于混合序列网络的过程监测模型,在原始自编码器的基础上将编码器改为一个循环神经网络,以挖掘数据间的动态特征,此外,考虑到一段炉过程中的多模态特性,解码器部分由多个子解码器组成,同时构建模态识别网络输出模态辨识权重,用于后续加权重构。
如图1所示,本发明的基于混合序列网络进行一段炉过程监测的方法,主要包括离线建模和在线监测两个部分,其中在线监测部分包括故障检测和针对故障样本的故障识别;本发明的方法具体步骤如下:
S1:构建基于混合序列网络的过程监测模型,用于对一段炉过程进行特征挖掘;
如图2所示,过程监测模型包括编码器、模态识别网络和解码器三部分;其中编码器为RNN,用于挖掘过程中的动态特征;模态识别网络接在编码器最后一个时刻的隐层输出后,经过一个隐层后,通过一个softmax层输出一组权重,用于指示当前序列样本所属的模态;解码器也接在编码器最后一个时刻的隐层输出后,用于重构输入序列中最后一个时刻的样本;所述解码器由多个单层神经网络组成,通过模态识别网络输出的权重,对每个神经网络输出进行加权求和后得到最终的重构值;
S2:收集一段炉过程正常工况下的过程数据,构建数据集,同时设置序列长度L,对数据集进行序列化,将所得到的序列数据集作为用于模型训练的训练数据集X;其中,第n个输入序列为
Figure BDA0003355204050000051
S3:将训练数据集X输入基于混合序列网络的过程监测模型中,进行前向传播,在得到模态识别网络输出和各个解码器输出后,进行加权求和得到重构值,将重构误差作为损失函数,并通过迭代的方法最小化该损失函数(利用梯度下降等优化方法对模型参数进行迭代更新),直到模型参数收敛或者达到最大迭代次数,得到训练好的过程监测模型;具体包括如下子步骤:
(1)将Xn带入S1构建的过程监测模型,Xn前向传播过程,得到RNN的隐层输出
Figure BDA0003355204050000052
其中,其中Ue表示将输入映射到RNN的隐层特征的权重,
Figure BDA0003355204050000053
m为输入样本的变量个数;We表示将RNN中t-1时刻的隐层输出映射到RNN中t时刻的隐层输出的权重,
Figure BDA0003355204050000054
he为RNN隐层的节点数;
Figure BDA0003355204050000055
Figure BDA0003355204050000056
分别代表t时刻和t-1时刻的隐层输出,
Figure BDA0003355204050000057
代表的是t时刻的输入样本,f(*)代表RNN中的非线性激活函数,依次将Xn各个元素带入该映射中进行迭代,则可以得到最终的RNN特征输出;
(2)Xn经过L次前向映射,得到RNN的特征输出
Figure BDA0003355204050000058
RNN的特征输出经过模态识别网络的前向映射,得到
Figure BDA0003355204050000059
用于指示模态信息,记为
Figure BDA00033552040500000510
K为解码器个数,其中每个元素的大小指示当前序列样本属于某个模态的概率大小;其中,hm为模态识别网络隐层的节点数;Wm、bm分别表示将输入映射到模态识别网络的隐层特征的权重和偏置,
Figure BDA0003355204050000061
Wp、bp分别表示将模态识别网络的隐层特征映射到模态识别网络的输出的权重和偏置,
Figure BDA0003355204050000062
Figure BDA0003355204050000063
(3)RNN的特征输出经过第i个解码器的前向映射得到第i个解码器的重构值,其映射函数为
Figure BDA0003355204050000064
其中,σ(*)为非线性激活函数;
Figure BDA0003355204050000065
分别表示将输入映射到第i个解码器的隐层特征的权重和偏置,
Figure BDA0003355204050000066
分别表示将第i个解码器的隐层特征映射到第i个解码器的输出的权重和偏置,
Figure BDA0003355204050000067
Figure BDA0003355204050000068
hd为解码器网络隐层的节点数;
训练过程中,损失函数定义为下式:
Figure BDA0003355204050000069
其中,N为用于训练模型的序列数量,α和β为可以调节的超参数,
Figure BDA00033552040500000610
和Lentr2为通过模态识别网络输出得到的信息熵,用于得到更加准确的模态识别精度,同时防止模型在训练过程中向单一模态坍缩,落入局部最优解,计算方法如下面各式所示:
Figure BDA00033552040500000611
Figure BDA00033552040500000612
Figure BDA00033552040500000613
S4:通过建立基于加权平方预测误差的检测指标来指示一段炉过程是否出现故障。即,利用训练数据计算检测指标WSPE,
Figure BDA00033552040500000614
在得到所有训练数据的WSPE集后,利用核密度估计方法计算控制限conwspe
S5:利用一段炉在线检测样本x与前L-1个时刻的样本构建出所需长度L的输入序列,代入S4中训练好的过程监测模型,得到x的解码器的重构输出以及模态识别网络的输出p=[p1 p2 … pK];将第i个子解码器的重构输出记为
Figure BDA00033552040500000615
S6:利用在线样本和其重构输出计算检测指标WSPEo
Figure BDA0003355204050000071
并将该检测指标与控制限conwspe进行比较,由于当样本为正常时,模型能够很好的重构输入,因此,当WSPEo≤conwspe时,该在线样本为正常样本;当WSPEo>conwspe,则认为当前样本为故障样本,将该故障样本进一步进行故障识别,即识别出故障变量;利用在线样本和各个解码器输出的重构值分别计算对应变量对故障指标的贡献度,之后利用模态识别网络输出的权重对各个结果进行加权得到最终的变量贡献度,以指示该变量发生故障的可能性。设在线样本为x=[x1 x2 … xm],带入模型后的第i个解码器的重构值为
Figure BDA0003355204050000072
第j个变量的贡献度指标计算方法如下:
Figure BDA0003355204050000073
S7:根据需要将贡献度较高的变量视为故障变量。
为了检测本发明提出的基于混合序列网络的过程监测模型的故障检测效果,利用离线数据分别计算本发明的模型在的检出率(FDR)和误报率(FAR)
Figure BDA0003355204050000074
其中Nf为故障样本数,Nn为正常样本数,Nfa和Nna分别为故障和正常样本中报警的样本数。
以下结合一段炉过程的实际过程实验来说明本发明的方法的优越性。本实验中的数据通过现场采集得到,通过调查操作日志和观察数据分布,提取了两个模态下的正常过程数据用于模型的训练,同时在每个模态下选出了一组故障数据集用于故障检测实验。对比方法包括传统的多模态故障检测方法GMM-PCA和基于深度学习的方法SAE,MAE。实验中所有模型的参数通过在正常数据集中实现小于5%的FAR来调节确定。各方法的故障检出率如下表所示。
表1一段炉过程故障检测结果
Figure BDA0003355204050000075
从表1所示的结果中可见,混合序列网络相比与其他三种方法明显的性能提升,在每个模态下的故障检出率都有10%以上的提升。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (4)

1.一种基于混合序列网络进行一段炉过程监测的方法,其特征在于,该方法包括如下步骤:
S1:构建基于混合序列网络的过程监测模型,用于对一段炉过程进行特征挖掘;
所述过程监测模型包括编码器、模态识别网络和解码器三部分;其中编码器为RNN,用于挖掘过程中的动态特征;模态识别网络接在编码器最后一个时刻的隐层输出后,经过一个隐层后,通过一个softmax层输出一组权重,用于指示当前序列样本所属的模态;解码器也接在编码器最后一个时刻的隐层输出后,用于重构输入序列中最后一个时刻的样本;所述解码器由多个单层神经网络组成,通过模态识别网络输出的权重,对每个神经网络输出进行加权求和后得到最终的重构值;
S2:收集一段炉过程正常工况下的的过程数据,构建数据集,同时设置序列长度L,对数据集进行序列化,将所得到的序列数据集作为用于模型训练的训练数据集X;其中,第n个输入序列为
Figure FDA0003355204040000011
S3:将训练数据集X输入基于混合序列网络的过程监测模型中,进行前向传播,得到重构值,并通过迭代的方法最小化损失函数,直到模型参数收敛或者达到最大迭代次数,得到训练好的过程监测模型;
S4:利用训练数据计算检测指标WSPE,利用核密度估计方法计算控制限conwspe
S5:利用一段炉在线检测样本x与前L-1个时刻的样本构建出所需长度L的输入序列,代入S4中训练好的过程监测模型,得到x的解码器的重构输出以及模态识别网络的输出p=[p1 p2…pK];将第i个子解码器的重构输出记为
Figure FDA0003355204040000012
S6:利用在线样本和其重构输出计算检测指标WSPEo,并将该检测指标与控制限conwspe进行比较,当WSPEo≤conwspe时,该在线样本为正常样本;当WSPEo>conwspe,则认为当前样本为故障样本,将该故障样本进一步进行故障识别;设在线样本为x=[x1 x2…xm],带入模型后的第i个解码器的重构值为
Figure FDA0003355204040000013
第j个变量的贡献度指标计算方法如下:
Figure FDA0003355204040000014
S7:根据需要将贡献度较高的变量视为故障变量。
2.根据权利要求1所述的基于混合序列网络进行一段炉过程监测的方法,其特征在于,所述S3通过如下的子步骤来实现:
(1)将Xn带入S1构建的过程监测模型,Xn前向传播过程,得到RNN的隐层输出
Figure FDA0003355204040000021
其中,其中Ue表示将输入映射到RNN的隐层特征的权重,
Figure FDA0003355204040000022
m为输入样本的变量个数;We表示将RNN中t-1时刻的隐层输出映射到RNN中t时刻的隐层输出的权重,
Figure FDA0003355204040000023
he为RNN隐层的节点数;
Figure FDA0003355204040000024
Figure FDA0003355204040000025
分别代表t时刻和t-1时刻的隐层输出,
Figure FDA0003355204040000026
代表的是t时刻的输入样本,f(*)代表RNN中的非线性激活函数;
(2)Xn经过L次前向映射,得到特征输出
Figure FDA0003355204040000027
RNN的特征输出经过模态识别网络的前向映射,得到
Figure FDA0003355204040000028
记为
Figure FDA0003355204040000029
K为解码器个数;其中,hm为模态识别网络隐层的节点数;Wm、bm分别表示将输入映射到模态识别网络的隐层特征的权重和偏置,
Figure FDA00033552040400000210
Figure FDA00033552040400000211
Wp、bp分别表示将模态识别网络的隐层特征映射到模态识别网络的输出的权重和偏置,
Figure FDA00033552040400000212
(3)RNN的特征输出经过第i个解码器的前向映射,得到
Figure FDA00033552040400000213
其中,σ(*)为非线性激活函数;
Figure FDA00033552040400000214
分别表示将输入映射到第i个解码器的隐层特征的权重和偏置,
Figure FDA00033552040400000215
Figure FDA00033552040400000216
分别表示将第i个解码器的隐层特征映射到第i个解码器的输出的权重和偏置,
Figure FDA00033552040400000217
hd为解码器网络隐层的节点数;
训练过程中,损失函数定义为下式:
Figure FDA00033552040400000218
其中,N为用于训练模型的序列数量,α和β为可以调节的超参数,
Figure FDA00033552040400000219
和Lentr2为通过模态识别网络输出得到的信息熵,用于得到更加准确的模态识别精度,同时防止模型在训练过程中向单一模态坍缩,落入局部最优解,计算方法如下面各式所示:
Figure FDA0003355204040000031
Figure FDA0003355204040000032
3.根据权利要求1所述的基于混合序列网络进行一段炉过程监测的方法,其特征在于,所述S4检测指标WSPE的计算方式如下:
Figure FDA0003355204040000033
所述S5中的检测指标WSPEo
Figure FDA0003355204040000034
4.根据权利要求1所述的基于混合序列网络进行一段炉过程监测的方法,其特征在于,所述S3中通过梯度下降法最小化损失函数。
CN202111348802.8A 2021-11-15 2021-11-15 一种基于混合序列网络进行一段炉过程监测的方法 Active CN114021469B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111348802.8A CN114021469B (zh) 2021-11-15 2021-11-15 一种基于混合序列网络进行一段炉过程监测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111348802.8A CN114021469B (zh) 2021-11-15 2021-11-15 一种基于混合序列网络进行一段炉过程监测的方法

Publications (2)

Publication Number Publication Date
CN114021469A true CN114021469A (zh) 2022-02-08
CN114021469B CN114021469B (zh) 2024-06-21

Family

ID=80064227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111348802.8A Active CN114021469B (zh) 2021-11-15 2021-11-15 一种基于混合序列网络进行一段炉过程监测的方法

Country Status (1)

Country Link
CN (1) CN114021469B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854920A (zh) * 2022-05-06 2022-08-05 浙江大学 高斯混合模型嵌入的gru自编码器高炉异常监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150277416A1 (en) * 2014-03-31 2015-10-01 Mitsubishi Electric Research Laboratories, Inc. Method for Anomaly Detection in Discrete Manufacturing Processes
CN107798425A (zh) * 2017-10-16 2018-03-13 中国科学院地理科学与资源研究所 一种基于大数据的时空混淆暴露度评估***及方法
CN109800875A (zh) * 2019-01-08 2019-05-24 华南理工大学 基于粒子群优化和降噪稀疏编码机的化工故障检测方法
US20190393903A1 (en) * 2018-06-20 2019-12-26 Disney Enterprises, Inc. Efficient encoding and decoding sequences using variational autoencoders

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150277416A1 (en) * 2014-03-31 2015-10-01 Mitsubishi Electric Research Laboratories, Inc. Method for Anomaly Detection in Discrete Manufacturing Processes
CN107798425A (zh) * 2017-10-16 2018-03-13 中国科学院地理科学与资源研究所 一种基于大数据的时空混淆暴露度评估***及方法
US20190393903A1 (en) * 2018-06-20 2019-12-26 Disney Enterprises, Inc. Efficient encoding and decoding sequences using variational autoencoders
CN109800875A (zh) * 2019-01-08 2019-05-24 华南理工大学 基于粒子群优化和降噪稀疏编码机的化工故障检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邵伟明;葛志强;李浩;宋执环;: "基于循环神经网络的半监督动态软测量建模方法", 电子测量与仪器学报, no. 11, 15 November 2019 (2019-11-15) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854920A (zh) * 2022-05-06 2022-08-05 浙江大学 高斯混合模型嵌入的gru自编码器高炉异常监测方法

Also Published As

Publication number Publication date
CN114021469B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
Xie et al. Supervised variational autoencoders for soft sensor modeling with missing data
CN108875771B (zh) 一种基于稀疏高斯伯努利受限玻尔兹曼机和循环神经网络的故障分类模型及方法
CN111046961B (zh) 基于双向长短时记忆单元和胶囊网络的故障分类方法
CN113011085A (zh) 一种设备数字孪生建模方法及***
CN115758290A (zh) 一种基于lstm的风机齿轮箱高速轴温度趋势预警方法
CN113836783B (zh) 斜拉桥主梁温致挠度监测基准值的数字回归模型建模方法
CN114254695B (zh) 一种航天器遥测数据自适应异常检测方法及装置
CN111598187A (zh) 一种基于核宽度学习***的渐进式集成分类方法
WO2023231374A1 (zh) 机械设备半监督故障检测分析方法、装置、终端及介质
CN117076931B (zh) 一种基于条件扩散模型的时间序列数据预测方法和***
CN115510975A (zh) 基于并行Transofmer-GRU的多变量时序异常检测方法及***
CN114781744A (zh) 基于编码解码器的深度学习多步长辐照度预测方法
Zhu et al. A coupled model for dam foundation seepage behavior monitoring and forecasting based on variational mode decomposition and improved temporal convolutional network
CN110580213A (zh) 一种基于循环标记时间点过程的数据库异常检测方法
CN114169091A (zh) 工程机械部件剩余寿命的预测模型建立方法及预测方法
CN112731890A (zh) 一种电厂设备故障的检测方法和装置
CN114021469B (zh) 一种基于混合序列网络进行一段炉过程监测的方法
Zhou et al. A novel algorithm system for wind power prediction based on RANSAC data screening and Seq2Seq-Attention-BiGRU model
CN114897103A (zh) 一种基于近邻成分损失优化多尺度卷积神经网络的工业过程故障诊断方法
He et al. A faster dynamic feature extractor and its application to industrial quality prediction
CN116894180B (zh) 一种基于异构图注意力网络的产品制造质量预测方法
CN114239397A (zh) 基于动态特征提取与局部加权深度学习的软测量建模方法
Chen et al. Application of Data‐Driven Iterative Learning Algorithm in Transmission Line Defect Detection
CN115963788A (zh) 多采样率工业过程关键质量指标在线预测方法
CN115630582A (zh) 一种多滑窗模型融合的软岩隧道围岩变形预测方法及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant