CN114006655B - 基于延时的单端频率比对装置与比对方法 - Google Patents

基于延时的单端频率比对装置与比对方法 Download PDF

Info

Publication number
CN114006655B
CN114006655B CN202111179372.1A CN202111179372A CN114006655B CN 114006655 B CN114006655 B CN 114006655B CN 202111179372 A CN202111179372 A CN 202111179372A CN 114006655 B CN114006655 B CN 114006655B
Authority
CN
China
Prior art keywords
optical
unit
optical frequency
port
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111179372.1A
Other languages
English (en)
Other versions
CN114006655A (zh
Inventor
胡亮
王龙
吴龟灵
刘娇
陈建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202111179372.1A priority Critical patent/CN114006655B/zh
Publication of CN114006655A publication Critical patent/CN114006655A/zh
Application granted granted Critical
Publication of CN114006655B publication Critical patent/CN114006655B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种基于延时的单端频率比对装置与比对方法,该装置由本地端、传递链路和远端组成。本发明通过使用延时频率比对的方法,实现了将双向光学频率传递单端频率比对法的残余相位噪声进一步降低的效果,达到了与双向光学频率传递双端频率比对法相同的水平。

Description

基于延时的单端频率比对装置与比对方法
技术领域
本发明涉及时间频率传递,特别是一种基于延时的单端频率比对装置与比对方法。
背景技术
高精度的时间频率同步技术在导航定位、深空探测、射电天文学、基础物理研究等领域发挥着至关重要的作用。如今,随着光原子钟的准确度和稳定度的不断提升,光学频率标准已经成为了下一代时间频率基准的有力竞争者。但是,在以上所提的应用中,分布在不同地理位置的光原子钟需要形成一个时间频率同步的***。为此,国内外的学者们开展了光学频率比对等相关技术的研究。目前,光学频率比对技术主要有两种方法:双向光学频率传递双端频率比对法[参见C,E,Calosso,et al.Frequency transfer via a two-wayoptical phase comparison on a multiplexed fiber network[J].Optics Letters,2014.]以及双向光学频率传递单端频率比对法[参见W.K.Lee,et al.Hybrid fber linksfor accurate optical frequency comparison[J].Applied Physics B,2017]。但是,双向光学频率传递双端频率比对法需要在光学频率的两个发射端分别独立地进行数据的获取和采集,因此数据获取的同步性将得不到保证,这将影响甚至恶化光学频率间的比对精度。双向光学频率传递单端频率比对法是在单端进行数据获取,因此可以很容易地保证数据获取的同步性。但是,从相关的理论上来看,双向光学频率传递单端频率比对法中由传递链路引入的残余相位噪声的功率谱密度是双向光学频率传递双端频率比对法的四倍,这将使得双向光学频率传递单端频率比对法的光学频率比对的稳定度和准确度低于双向光学频率传递双端频率比对法。
发明内容
本发明的目的在于针对现有技术的不足,提供一种基于延时的单端频率比对装置与比对方法。通过使用延时频率比对的方法,实现了将双向光学频率传递单端频率比对法的残余相位噪声进一步降低的效果,达到了双向光学频率传递双端频率比对法相同的水平。
本发明的技术解决方案如下:
一种基于延时的单端频率比对装置,其特点在于,包括本地端、传递链路和远端,
所述的本地端由第一光隔离器单元、第一光耦合器、第一法拉第旋转镜、第一声光移频器、第一微波源和光学频率比对单元组成,所述的第一光隔离器单元的输入端为待比对的第一光学频率信号在本地端的输入端,所述的第一光隔离器单元的输出端与所述的第一光耦合器的1端口相连,所述的第一光耦合器的2、3、4端口分别与所述的光学频率比对单元的输入端、所述的第一法拉第旋转镜、所述的第一声光移频器的1端口相连,所述的第一声光移频器的2端口与所述的第一微波源的输出端相连,所述的第一声光移频器的3端口与所述的传递链路的一端相连;
所述的远端由第二声光移频器、第二微波源、第二光耦合器、第二法拉第旋转镜和第二光隔离器单元组成,所述的第二光隔离器单元的输入端为待比对的第二光学频率信号在远端的输入端,所述的第二光隔离器单元的输出端与所述的第二光耦合器的2端口相连,所述的第二光耦合器的1、3端口分别与所述的第二声光移频器的3端口、所述的第二法拉第旋转镜相连,所述的第二声光移频器的1、2端口分别与所述的传递链路的另一端、所述的第二微波源的输出端相连。
所述的传递链路为光纤链路或者自由空间链路。
所述的光学频率比对单元可以由第三光耦合器、可调光延迟单元、第一光电转换单元、第二光电转换单元、第一微波滤波器、第二微波滤波器和混频器单元组成,所述的第一光耦合器的2端口与所述的第三光耦合器的1端口相连,所述的第三光耦合器的2、3端口分别于所述的可调光延迟单元的输入端、所述的第二光电转换单元的输入端相连,所述的可调光延迟单元的输出端与所述的第一光电转换单元的输入端相连,所述的第一光电转换单元的输出端与所述的第一微波滤波器的输入端相连,所述的第一微波滤波器的输出端与所述的混频器单元的1端口相连,所述的第二光电转换单元的输出端与所述的第二微波滤波器的输入端相连,所述的第二微波滤波器的输出端与所述的混频器单元的2端口相连,所述的混频器单元的3端口输出待比对的光学频率信号之间的频率差。
所述的光学频率比对单元还可以由第三光电转换单元、第一电耦合器、可调电延迟单元、第一微波滤波器、第二微波滤波器和混频器单元组成;所述的第一光耦合器的2端口与所述的第三光电转换单元的输入端相连,所述的第三光电转换单元的输出端与所述的第一电耦合器的1端口相连,所述的第一电耦合器的2端口与所述的可调电延迟单元的输入端相连,所述的可调电延迟单元的输出端与所述的第一微波滤波器的输入端相连,所述的第一微波滤波器的输出端与所述的混频器单元的1端口相连,所述的第一电耦合器的3端口与所述的第二微波滤波器的输入端相连,所述的第二微波滤波器的输出端与所述的混频器单元的2端口相连,所述的混频器单元的3端口输出待比对的光学频率信号之间的频率差。
利用上述基于延时的单端频率比对装置进行光学频率信号的比对方法,具体步骤如下:
1)所述的本地端的待比对的第一光学频率信号E1经过所述的第一光隔离器单元、所述的第一光耦合器后分为两部分:一部分第一光学频率信号E1经所述的第一法拉第旋转镜反射通过所述的第一光耦合器的2端口输入至所述的光学频率比对单元作为本地参考光ELo;另一部分第一光学频率信号E1经所述的第一声光移频器后进入所述的传递链路,所述的第一微波源输出的微波信号加载到所述的第一声光移频器的微波信号的频率为Ω1;所述的第一光学频率信号E1经过所述的传递链路到达所述的远端后,经过所述的第二声光移频器和所述的第二光耦合器后被所述的第二法拉第旋转镜反射沿原路返回至所述的本地端,所述的第二微波源输出的微波信号加载到所述的第二声光移频器的微波信号的频率为Ω2到达所述的本地端后,第一光学频率信号E1通过所述的第一声光移频器和所述的第一光耦合器的2端口输入至所述的光学频率比对单元;
2)输入所述的远端的第二光学频率信号E2经过第二光隔离器单元、所述的第二光耦合器、所述的第二声光移频器和所述的传递链路传输至所述的本地端,第二光学频率信号E2通过所述的第一声光移频器和所述的第一光耦合器的2端口输入至所述的光学频率比对单元;
3)所述的光学频率比对单元可以采用由所述的可调光延迟单元等器件组成的结构,也可以选择由所述的可调电延迟单元等器件组成的结构,二者可以达到相同的效果。对于所述的光学频率比对单元的两种结构,其无可调延迟单元一路的由本地参考光ELo、第一光学频率信号(E1)和第二光学频率信号(E2)产生的三种不同频率的微波信号包含一下三种:
式中,其中,为第一光学频率信号E1在所述的传递链路中往返传播过程中引入的相位噪声,为第二光学频率信号E2在所述的传递链路中向所述的本地端传播过程中引入的相位噪声,为第一光学频率信号E1在所述的传递链路中向所述的远端传播过程中引入的相位噪声,为第一光学频率信号E1和第二光学频率信号E2之间的相对相位;
4)对于所述的光学频率比对单元的两种结构,其有可调延迟单元一路的由本地参考光ELo、第一光学频率信号(E1)和第二光学频率信号(E2)产生的三种不同频率的微波信号包含一下三种:
式中, 其中,δτ为所述的可调光延迟单元或所述的可调电延迟单元引入的时间延迟;
假设所述的传递链路引入的是慢变的相位噪声,那么有如下关系:
5)通过对所述的第一微波滤波器、第二微波滤波器选择合适的中心通带频率和通带带宽,可以选择上述两组拍频信号间的不同组合输入至所述的混频器单元来获得第一光学频率信号E1和第二光学频率信号E2之间的相对相位;此外,对于不同的拍频信号的组合,也可以调节所述的可调延迟单元施加不同的时间延迟,因此,可以通过下面三种方法消除所述的传递链路引入的相位噪声,同时获得第一光学频率信号E1和第二光学频率信号E2之间的相对相位
方法1:
方法2:
方法3:实际上,即使假设所述的传递链路引入的是慢变的相位噪声,在使用所述的方法1-3时,所述的传递链路引入的相位噪声仍有一部分残余,对于所述的方法1-3,所述的传递链路引入的残余相位噪声的功率谱密度可以表示为:
其中,τ表示光信号在所述的传递链路中的传播时间,S0(ω)为光信号在所述的传递链路中单次传播引入的相位噪声功率谱密度;
对于传统的不含有延时(δτ=0)的双向光学频率传递单端频率比对方法,上述三种获得第一光学频率信号E1和第二光学频率信号E2之间的相对相位的方法的残余相位噪声的功率谱密度均为:
6)对于获得第一光学频率信号E1和第二光学频率信号E2之间的相对相位的方法1-3分别施加时间延迟τ/2、τ/2和τ时,可以将所述的传递链路引入的残余相位噪声的功率谱密度进一步降低为:
与现有技术相比,本发明的有益效果是:
本发明通过使用延时频率比对的方法,实现了将双向光学频率传递单端频率比对法的残余相位噪声进一步降低的效果,达到了与双向光学频率传递双端频率比对法相同的水平。同时,与双向光学频率传递双端频率比对法相对,数据获取在单端完成,保证了数据获取的同步性,进而确保了光学频率比对的准确性。
附图说明
图1是本发明基于延时的单端频率比对装置实施例的结构示意图;
图2是本发明基于延时的单端频率比对装置的光学频率比对单元实施例1的结构示意图;
图3是本发明基于延时的单端频率比对装置的光学频率比对单元实施例2的结构示意图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明,本实施例以本发明的技术方案为前提进行实施,给出了详细的实施方式和和具体的工作流程,但本发明的保护范围不限于下述的实施例。
图1为本发明基于延时的单端频率比对装置的实施例的结构示意图,由图可见,本发明基于延时比对的双向光学频率传递单端频率比对装置包括本地端1、传递链路2和远端3;
所述的本地端1由第一光隔离器单元4、第一光耦合器5、第一法拉第旋转镜6、第一声光移频器7、第一微波源8和光学频率比对单元9组成。所述的第一光隔离器单元4的输入端为待比对光学频率信号在本地端的输入端,所述的第一光隔离器单元4的输出端与所述的第一光耦合器5的1端口相连,所述的第一光耦合器5的2、3、4端口分别与所述的光学频率比对单元9的输入端、所述的第一法拉第旋转镜6、所述的第一声光移频器7的1端口相连,所述的第一声光移频器7的2端口与所述的第一微波源8的输出端相连,所述的第一声光移频器7的3端口与所述的传递链路2的一端相连。
所述的远端3由第二声光移频器10、第二微波源11、第二光耦合器12、第二法拉第旋转镜13和第二光隔离器单元14组成。所述的第二光隔离器单元14的输入端为待比对光学频率信号在远端的输入端,所述的第二光隔离器单元14的输出端与所述的第二光耦合器12的2端口相连,所述的第二光耦合器12的1、3端口分别于所述的第二声光移频器10的3端口、所述的第二法拉第旋转镜13相连,所述的第二声光移频器10的1、2端口分别与所述的传递链路2、所述的第二微波源11的输出端相连。
实施例中,所述的传递链路2由光纤链路构成,本地端1位于传递链路2的一端,远端3位于传递链路2的另一端。
光学频率比对单元9有两种结构:
结构一(如图2所示)包括第三光耦合器9-1a、可调光延迟单元9-2a、第一光电转换单元9-3a、第二光电转换单元9-3b、第一微波滤波器9-5、第二微波滤波器9-6和混频器单元9-7。
所述的第一光耦合器5的2端口与所述的第三光耦合器9-1a的1端口相连,所述的第三光耦合器9-1a的2、3端口分别于所述的可调光延迟单元9-2a的输入端、所述的第二光电转换单元9-3b的输入端相连,所述的可调光延迟单元9-2a的输出与所述的第一光电转换单元9-3a的输入端相连,所述的第一光电转换单元9-3a的输出端与所述的第一微波滤波器9-5的输入端相连,所述的第一微波滤波器9-5的输出端与所述的混频器单元9-7的1端口相连,所述的第二光电转换单元9-3b的输出端与所述的第二微波滤波器9-6的输入端相连,所述的第二微波滤波器9-6的输出端与所述的混频器单元9-7的2端口相连,所述的混频器单元9-7的3端口输出待比对的光学频率信号之间的频率差。
结构二(如图3所示)包括第一光电转换单元9-3、第一电耦合器9-1b、可调电延迟单元9-2b、第一微波滤波器9-5、第二微波滤波器9-6和混频器单元9-7。
所述的第一光耦合器5的2端口与所述的第一光电转换单元9-3的输入端相连,所述的第一光电转换单元9-3的输出端与所述的第一电耦合器9-1b的1端口相连,所述的第一电耦合器9-1b的2端口与所述的可调电延迟单元9-2b的输入端相连,所述的可调电延迟单元9-2b的输出端与所述的第一微波滤波器9-5的输入端相连,所述的第一微波滤波器9-5的输出端与所述的混频器单元9-7的1端口相连,所述的第一电耦合器9-1b的3端口与所述的第二微波滤波器9-6的输入端相连,所述的第二微波滤波器9-6的输出端与所述的混频器单元9-7的2端口相连,所述的混频器单元9-7的3端口输出待比对的光学频率信号之间的频率差。
利用上述基于延时的单端频率比对装置进行光学频率信号的比对方法,具体步骤如下:
1)所述的本地端1的第一光学频率信号E1经过所述的第一光隔离器单元4、所述的第一光耦合器5后分为两部分:第一光学频率信号E1的一部分经所述的第一法拉第旋转镜6反射通过所述的第一光耦合器5的2端口输入至所述的光学频率比对单元作为本地参考光ELo。第一光学频率信号E1的另一部分经所述的第一声光移频器7后进入所述的传递链路2,所述的第一微波源8输出的微波信号加载到所述的第一声光移频器7的微波信号的频率为Ω1。待比对的光学频率信号E1经过所述的传递链路2到达所述的远端3后,经过所述的第二声光移频器10和所述的第二光耦合器12后被所述的第二法拉第旋转镜13反射沿原路返回至所述的本地端1,其中,所述的第二微波源11输出的微波信号加载到所述的第二声光移频器10的微波信号的频率为Ω2。到达所述的本地端1后,第一光学频率信号E1通过所述的第一声光移频器7和所述的第一光耦合器5的2端口输入至所述的光学频率比对单元9。
2)所述的远端3的第二光学频率信号E2经过第二光隔离器单元14、所述的第二光耦合器12、所述的第二声光移频器10和所述的传递链路2传输至所述的本地端1。到达所述的本地端1后,第二光学频率信号E2通过所述的第一声光移频器7和所述的第一光耦合器5的2端口输入至所述的光学频率比对单元9。
3)在所述的光学频率比对单元9无可调延迟单元一路中,本地参考光ELo、第一光学频率信号E1和第二光学频率信号E2经光电转换单元探测后,产生的三种不同频率的微波信号为:
式中,其中,为第一光学频率信号E1在所述的传递链路2中往返传播过程中引入的相位噪声,为第二光学频率信号E2在所述的传递链路2中向所述的本地端1传播过程中引入的相位噪声,为第一光学频率信号E1在所述的传递链路2中向所述的远端3传播过程中引入的相位噪声,为第一光学频率信号E1和第二光学频率信号E2之间的相对相位。
4)在所述的光学频率比对单元9有可调延迟单元一路中,本地参考光ELo、第一光学频率信号E1和第二光学频率信号E2经光电转换单元探测后,产生的三种不同频率的微波信号为:
式中, 其中,δτ为可调延迟单元引入的时间延迟。
假设所述的传递链路2引入的是慢变的相位噪声,那么有如下关系:
5)通过对所述的第一微波滤波器9-5、第二微波滤波器9-6选择合适的中心通带频率和通带带宽,可以选择上述两组拍频信号间的不同组合输入至所述的混频器单元9-7来获得第一光学频率信号E1和第二光学频率信号E2之间的相对相位。此外,对于不同的拍频信号的组合,也可以调节所述的可调延迟单元施加不同的时间延迟。因此,可以通过下面三种方式消除所述的传递链路2引入的相位噪声,同时获得第一光学频率信号E1和第二光学频率信号E2之间的相对相位
方法1:
方法2:
方法3:
实际上,即使假设所述的传递链路2引入的是慢变的相位噪声,在使用所述的方法1-3时,所述的传递链路2引入的相位噪声仍有一部分残余。对于所述的方法1-3,所述的传递链路2引入的残余相位噪声的功率谱密度可以表示为:
其中,τ表示光信号在所述的传递链路2中的传播时间,S0(ω)为光信号在所述的传递链路2中单次传播引入的相位噪声功率谱密度。
对于传统的不含有延时(δτ=0)的双向光学频率传递单端频率比对方法,上述三种获得第一光学频率信号E1和第二光学频率信号E2之间的相对相位的方法的残余相位噪声的功率谱密度均为:
6)对于获得第一光学频率信号E1和第二光学频率信号E2之间的相对相位的方法1-3分别施加时间延迟τ/2、τ/2和τ时,可以将所述的传递链路2引入的残余相位噪声的功率谱密度进一步降低为:

Claims (3)

1.一种基于延时的单端频率比对装置,其特征在于,包括本地端(1)、传递链路(2)和远端(3),
所述的本地端(1)由第一光隔离器单元(4)、第一光耦合器(5)、第一法拉第旋转镜(6)、第一声光移频器(7)、第一微波源(8)和光学频率比对单元(9)组成,所述的第一光隔离器单元(4)的输入端为待比对的第一光学频率信号(E1)在本地端的输入端,所述的第一光隔离器单元(4)的输出端与所述的第一光耦合器(5)的1端口相连,所述的第一光耦合器(5)的2、3、4端口分别与所述的光学频率比对单元(9)的输入端、所述的第一法拉第旋转镜(6)、所述的第一声光移频器(7)的1端口相连,所述的第一声光移频器(7)的2端口与所述的第一微波源(8)的输出端相连,所述的第一声光移频器(7)的3端口与所述的传递链路(2)的一端相连;
所述的远端(3)由第二声光移频器(10)、第二微波源(11)、第二光耦合器(12)、第二法拉第旋转镜(13)和第二光隔离器单元(14)组成,所述的第二光隔离器单元(14)的输入端为待比对的第二光学频率信号(E2)在远端的输入端,所述的第二光隔离器单元(14)的输出端与所述的第二光耦合器(12)的2端口相连,所述的第二光耦合器(12)的1、3端口分别与所述的第二声光移频器(10)的3端口、所述的第二法拉第旋转镜(13)相连,所述的第二声光移频器(10)的1、2端口分别与所述的传递链路(2)的另一端、所述的第二微波源(11)的输出端相连;
所述的光学频率比对单元(9)由第三光耦合器(9-1a)、可调光延迟单元(9-2a)、第一光电转换单元(9-3a)、第二光电转换单元(9-3b)、第一微波滤波器(9-5)、第二微波滤波器(9-6)和混频器单元(9-7)组成,所述的第一光耦合器(5)的2端口与所述的第三光耦合器(9-1a)的1端口相连,所述的第三光耦合器(9-1a)的2、3端口分别于所述的可调光延迟单元(9-2a)的输入端、所述的第二光电转换单元(9-3b)的输入端相连,所述的可调光延迟单元(9-2a)的输出端与所述的第一光电转换单元(9-3a)的输入端相连,所述的第一光电转换单元(9-3a)的输出端与所述的第一微波滤波器(9-5)的输入端相连,所述的第一微波滤波器(9-5)的输出端与所述的混频器单元(9-7)的1端口相连,所述的第二光电转换单元(9-3b)的输出端与所述的第二微波滤波器(9-6)的输入端相连,所述的第二微波滤波器(9-6)的输出端与所述的混频器单元(9-7)的2端口相连,所述的混频器单元(9-7)的3端口输出待比对的光学频率信号之间的频率差;
所述的光学频率比对单元(9)或由第三光电转换单元(9-3)、第一电耦合器(9-1b)、可调电延迟单元(9-2b)、第一微波滤波器(9-5)、第二微波滤波器(9-6)和混频器单元(9-7)组成;所述的第一光耦合器(5)的2端口与所述的第三光电转换单元(9-3)的输入端相连,所述的第三光电转换单元(9-3)的输出端与所述的第一电耦合器(9-1b)的1端口相连,所述的第一电耦合器(9-1b)的2端口与所述的可调电延迟单元(9-2b)的输入端相连,所述的可调电延迟单元(9-2b)的输出端与所述的第一微波滤波器(9-5)的输入端相连,所述的第一微波滤波器(9-5)的输出端与所述的混频器单元(9-7)的1端口相连,所述的第一电耦合器(9-1b)的3端口与所述的第二微波滤波器(9-6)的输入端相连,所述的第二微波滤波器(9-6)的输出端与所述的混频器单元(9-7)的2端口相连,所述的混频器单元(9-7)的3端口输出待比对的光学频率信号之间的频率差。
2.根据权利要求1所述的基于延时的单端频率比对装置,其特征在于,所述的传递链路(2)为光纤链路或者自由空间链路。
3.利用权利要求1所述的基于延时的单端频率比对装置进行光学频率信号的比对方法,其特征在于,该方法具体步骤如下:
1)所述的本地端(1)的待比对的第一光学频率信号(E1)经过所述的第一光隔离器单元(4)、所述的第一光耦合器(5)后分为两部分:一部分第一光学频率信号(E1)经所述的第一法拉第旋转镜(6)反射通过所述的第一光耦合器(5)的2端口输入至所述的光学频率比对单元(9)作为本地参考光ELo;另一部分第一光学频率信号(E1)经所述的第一声光移频器(7)后进入所述的传递链路(2),所述的第一微波源(8)输出的微波信号加载到所述的第一声光移频器(7)的微波信号的频率为Ω1;所述的第一光学频率信号(E1)经过所述的传递链路(2)到达所述的远端(3)后,经过所述的第二声光移频器(10)和所述的第二光耦合器(12)后被所述的第二法拉第旋转镜(13)反射沿原路返回至所述的本地端(1),所述的第二微波源(11)输出的微波信号加载到所述的第二声光移频器(10)的微波信号的频率为Ω2到达所述的本地端(1)后,第一光学频率信号(E1)通过所述的第一声光移频器(7)和所述的第一光耦合器(5)的2端口输入至所述的光学频率比对单元(9);
2)输入所述的远端(3)的第二光学频率信号(E2)经过第二光隔离器单元(14)、所述的第二光耦合器(12)、所述的第二声光移频器(10)和所述的传递链路(2)传输至所述的本地端(1),第二光学频率信号(E2)通过所述的第一声光移频器(7)和所述的第一光耦合器(5)的2端口输入至所述的光学频率比对单元(9);
3)所述的光学频率比对单元(9)采用由所述的可调光延迟单元(9-2a)等器件组成的结构,或选择由所述的可调电延迟单元(9-2b)等器件组成的结构,二者达到相同的效果,对于所述的光学频率比对单元(9)的两种结构,其无可调延迟单元一路的由本地参考光ELo、第一光学频率信号(E1)和第二光学频率信号(E2)产生的三种不同频率的微波信号包含以下三种:
式中,其中,为第一光学频率信号(E1)在所述的传递链路(2)中往返传播过程中引入的相位噪声,为第二光学频率信号(E2)在所述的传递链路(2)中向所述的本地端(1)传播过程中引入的相位噪声,为第一光学频率信号(E1)在所述的传递链路(2)中向所述的远端(3)传播过程中引入的相位噪声,为第一光学频率信号(E1)和第二光学频率信号(E2)之间的相对相位;
4)对于所述的光学频率比对单元(9)的两种结构,其有可调延迟单元一路的由本地参考光ELo、第一光学频率信号(E1)和第二光学频率信号(E2)产生的三种不同频率的微波信号包含以下三种:
式中, 其中,δτ为所述的可调光延迟单元(9-2a)或所述的可调电延迟单元(9-2b)引入的时间延迟;
若所述的传递链路(2)引入的是慢变的相位噪声,则有如下关系:
5)通过对第一微波滤波器(9-5)、第二微波滤波器(9-6)选择合适的中心通带频率和通带带宽,选择两组拍频信号间的不同组合输入至混频器单元(9-7)来获得第一光学频率信号(E1)和第二光学频率信号(E2)之间的相对相位;此外,对于不同的拍频信号的组合,调节所述的可调光延迟单元(9-2a)施加不同的时间延迟,因此,通过下面三种方法消除所述的传递链路(2)引入的相位噪声,同时获得第一光学频率信号(E1)和第二光学频率信号(E2)之间的相对相位
方法1:
方法2:
方法3:
实际上,即使当所述的传递链路(2)引入的是慢变的相位噪声,在使用所述的方法1-3时,所述的传递链路(2)引入的相位噪声仍有一部分残余,对于所述的方法1-3,所述的传递链路(2)引入的残余相位噪声的功率谱密度表示为:
其中,τ表示光信号在所述的传递链路(2)中的传播时间,S0(ω)为光信号在所述的传递链路(2)中单次传播引入的相位噪声功率谱密度;
对于传统的不含有延时的双向光学频率传递单端频率比对方法,即δτ=0,上述三种获得第一光学频率信号(E1)和第二光学频率信号(E2)之间的相对相位的方法的残余相位噪声的功率谱密度均为:
6)对于获得第一光学频率信号(E1)和第二光学频率信号(E2)之间的相对相位的方法1-3分别施加时间延迟τ/2、τ/2和τ时,将所述的传递链路(2)引入的残余相位噪声的功率谱密度进一步降低为:
CN202111179372.1A 2021-10-09 2021-10-09 基于延时的单端频率比对装置与比对方法 Active CN114006655B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111179372.1A CN114006655B (zh) 2021-10-09 2021-10-09 基于延时的单端频率比对装置与比对方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111179372.1A CN114006655B (zh) 2021-10-09 2021-10-09 基于延时的单端频率比对装置与比对方法

Publications (2)

Publication Number Publication Date
CN114006655A CN114006655A (zh) 2022-02-01
CN114006655B true CN114006655B (zh) 2023-04-28

Family

ID=79922416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111179372.1A Active CN114006655B (zh) 2021-10-09 2021-10-09 基于延时的单端频率比对装置与比对方法

Country Status (1)

Country Link
CN (1) CN114006655B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147149A (zh) * 2019-12-17 2020-05-12 上海交通大学 基于被动相位补偿的光学频率传递装置与传递方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215104A (zh) * 2011-05-31 2011-10-12 上海交通大学 基于延迟锁相环的微波信号远距离稳相光纤传输装置
CN104901743B (zh) * 2015-05-04 2018-02-23 中国科学院国家授时中心 一种基于远程端补偿的光纤光学频率传递方法
CN106877930B (zh) * 2017-01-11 2019-02-26 中国科学院上海光学精密机械研究所 高精度光纤频率传输***
CN106953692B (zh) * 2017-02-28 2019-07-26 中国科学院国家授时中心 一种基于本地端测量的异地双向光学相位比对方法及装置
CN111147150B (zh) * 2019-12-18 2023-02-07 上海交通大学 基于被动相位补偿的分布式光学频率传递装置与传递方法
CN113098622B (zh) * 2021-03-14 2022-01-28 北京邮电大学 一种基于光学频率梳双向相位抖动补偿的频率传递装置
CN113242039B (zh) * 2021-05-06 2024-02-06 中国科学院国家授时中心 一种用于光纤光学频率传递信号的净化装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147149A (zh) * 2019-12-17 2020-05-12 上海交通大学 基于被动相位补偿的光学频率传递装置与传递方法

Also Published As

Publication number Publication date
CN114006655A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN105591697B (zh) 高精度光纤时频环形组网***和组网方法
CN109039469A (zh) 时频标准信号融合传输***及传输方法
CN103095373A (zh) 基于模分复用的自相干光纤通信***
CN110336612B (zh) 局域光纤环网分布式时间频率联合传递***与传递方法
CN104486026B (zh) 一种多路微波相位稳定传输的方法及装置
CN106788704B (zh) 基于同步序列的少模光纤模间延时的测量***及方法
CN107911173B (zh) 高精度光纤微波频率传递***
WO2021120485A1 (zh) 基于被动相位补偿的光学频率传递装置与传递方法
CN103107853B (zh) 基于数字相干接收机的光通信***及输出信号的处理方法
CN107592168B (zh) 高速相干激光通信大气信道传输性能测试***
CN110166160A (zh) 星形网络时间频率同步***及同步方法
CN111147149A (zh) 基于被动相位补偿的光学频率传递装置与传递方法
CN114244448B (zh) 基于被动相位补偿的光学毫米波/太赫兹传递***和传递方法
JPH0290827A (ja) 分岐挿入型多重変換装置
Pietzsch Scattering matrix analysis of 3* 3 fiber couplers
CN106301576A (zh) 一种基于无源相位校正的多频率多点微波光纤稳相传输方法
CN113259007B (zh) 级联的光学频率传递装置和传递方法
CN114006655B (zh) 基于延时的单端频率比对装置与比对方法
Zuo et al. Multiple-node time synchronization over hybrid star and bus fiber network without requiring link calibration
CN107453836B (zh) 一种级联光纤相位补偿器和光纤传输***
CN105049124A (zh) 适用于ddo-ofdm的双发同收传输***及其发射端
Bian et al. Continuous-variable quantum key distribution over 28.6 km fiber with an integrated silicon photonic receiver chip
WO2023197549A1 (zh) 信号处理设备、***和方法、信号传输子***和***
US5504610A (en) Optical mixer and its use
Chen et al. Integrated dissemination system of frequency, time and data for radio astronomy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant