CN114003654A - 一种信任根签名中提高安全性的方法 - Google Patents

一种信任根签名中提高安全性的方法 Download PDF

Info

Publication number
CN114003654A
CN114003654A CN202011466230.9A CN202011466230A CN114003654A CN 114003654 A CN114003654 A CN 114003654A CN 202011466230 A CN202011466230 A CN 202011466230A CN 114003654 A CN114003654 A CN 114003654A
Authority
CN
China
Prior art keywords
data
hash function
signature
message
way hash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011466230.9A
Other languages
English (en)
Inventor
魏明
阮安邦
果霖
陈旭明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Qiya Blockchain Technology Co ltd
Beijing Octa Innovations Information Technology Co Ltd
Original Assignee
Hangzhou Qiya Blockchain Technology Co ltd
Beijing Octa Innovations Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Qiya Blockchain Technology Co ltd, Beijing Octa Innovations Information Technology Co Ltd filed Critical Hangzhou Qiya Blockchain Technology Co ltd
Priority to CN202011466230.9A priority Critical patent/CN114003654A/zh
Publication of CN114003654A publication Critical patent/CN114003654A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/64Protecting data integrity, e.g. using checksums, certificates or signatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioethics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Storage Device Security (AREA)

Abstract

一种信任根签名中提高安全性的方法。本发明涉及区块链技术领域,且公开了第一步;单向散列函数运算:首先,单向散列函数的输入必须能够是任意长度的消息;其次,无论输入多长的消息,单向散列函数必须都能够生成长度很短的散列值;如果单向散列函数计算出的散列值没有发生变化。本发明通过进行单向散列函数运算,然后得到一个固定bit长度的数据,最后用私钥对这个固定长度的数据签名;这使得签名的安全性同时依赖单项散列函数和签名算法,两者任何一个被破解都会对安全产生威胁;增强签名的安全性,在待签名数据散列之后,再对待签名数据计算出一个checksum(校验和),使用私钥对散列数据和校验和的组合签名;以此增加签名的安全性;提高了使用的安全性。

Description

一种信任根签名中提高安全性的方法
技术领域
本发明涉及区块链技术领域,具体为一种信任根签名中提高安全性的方 法。
背景技术
从科技层面来看,区块链涉及数学、密码学、互联网和计算机编程等很 多科学技术问题。从应用视角来看,简单来说,区块链是一个分布式的共享 账本和数据库,具有去中心化、不可篡改、全程留痕、可以追溯、集体维护、 公开透明等特点。这些特点保证了区块链的“诚实”与“透明”,为区块链创 造信任奠定基础。而区块链丰富的应用场景,基本上都基于区块链能够解决 信息不对称问题,实现多个主体之间的协作信任与一致行动。
单向散列函数运算就是把任意长的输入消息串变化成固定长的输出串且 由输出串难以得到输入串的一种函数。这个输出串称为该消息的散列值。一 般用于产生消息摘要,密钥加密等。
现有的数据签字但多仅仅采用单向散列函数运算,这种方式容易被攻破; 进而对数据的安全造成一定的威胁;或现有的仅仅采用私钥的形式加密;安 全性达不到要求;为此本发明推出一种信任根签名中提高安全性的方法。
发明内容
本发明提供了一种信任根签名中提高安全性的方法,具备使用私钥对散 列数据和校验和的组合签名;以此增加签名的安全性;提高了使用的安全性 的优点,解决了现有的数据签字但多仅仅采用单向散列函数运算,这种方式 容易被攻破;进而对数据的安全造成一定的威胁;或现有的仅仅采用私钥的 形式加密;安全性达不到要求的问题。
本发明提供如下技术方案:一种信任根签名中提高安全性的方法,包括 以下步骤,其特征在于:第一步;单向散列函数运算:
首先,单向散列函数的输入必须能够是任意长度的消息;其次,无论输入多 长的消息,单向散列函数必须都能够生成长度很短的散列值;如果单向散列 函数计算出的散列值没有发生变化,那么消息很容易就会被篡改,这个单向 散列函数就无法用于完整性的检查。两个不同的消息产生同一个散列值的情 况;如果要将单向散列函数用于完整性的检查,则需要确认在事实上不可能 被人为地发现碰撞;单向散列函数必须具备单向性,单向性指的是无法通过 散列值反向算出消息的性质;
第二步;得出数据:
尽管单向散列函数所产生的散列值是和原来的消息完全不同的比特序列,但 是单向散列函数并不是一种加密,因此无法通过解密将散列值还原成原来的 消息;进而得到一个固定bit长度的数据;
第三步;私钥签字:
利用私钥对固定长度的数据进行签字认证;
第四步;数据校验:
为了增强签名的安全性,在待签名数据散列之后,再对待签名数据计算出一 个checksum(校验和);
第五步;验证组合:
利用私钥与数据校验进行组合使用;完成签字
第六步;***识别:
***完全是被该操作为本人操作后方可进入下一步;若未达到要求则直接中 断;
第七步;认证签字:
完成认证后;对数据进行签字。
优选的,所述密码技术中所使用的单向散列函数,不仅要具备弱抗碰撞 性,还必须具备强抗碰撞性。
优选的,所述总和检验码,校验和。在数据处理和数据通信领域中,用 于校验目的的一组数据项的和。这些数据项可以是数字或在计算检验总和过 程中看作数字的其它字符串。
优选的,所述公钥加密***允许任何人在发送信息时使用私钥进行加密, 接收信息时使用公钥解密。当然,接收者不可能百分之百确信发送者的真实 身份,而只能在密码***未被破译的情况下才有理由确信。
优选的,所述输数据的双方都总希望确认消息未在传输的过程中被修改。 加密使得第三方想要读取数据十分困难,然而第三方仍然能采取可行的方法 在传输的过程中修改数据。
优选的,所述附加在数据单元上的一些数据,或是对数据单元所作的密 码变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和 数据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。它是对电 子形式的消息进行签名的一种方法,一个签名消息能在一个通信网络中传输。 基于公钥密码体制和私钥密码体制都可以获得数字签名,主要是基于公钥密 码体制的数字签名。包括普通数字签名和特殊数字签名。
本发明具备以下有益效果:
1、该信任根签名中提高安全性的方法,通过进行单向散列函数运算,然 后得到一个固定bit长度的数据,最后用私钥对这个固定长度的数据签名。 这使得签名的安全性同时依赖单项散列函数和签名算法,两者任何一个被破 解都会对安全产生威胁;增强签名的安全性,在待签名数据散列之后,再对 待签名数据计算出一个checksum(校验和),使用私钥对散列数据和校验和的 组合签名;以此增加签名的安全性;提高了使用的安全性。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描 述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明 中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例,都属于本发明保护的范围。
一种信任根签名中提高安全性的方法,包括以下步骤,
第一步;单向散列函数运算:
首先,单向散列函数的输入必须能够是任意长度的消息;其次,无论输入多 长的消息,单向散列函数必须都能够生成长度很短的散列值;如果单向散列 函数计算出的散列值没有发生变化,那么消息很容易就会被篡改,这个单向 散列函数就无法用于完整性的检查;两个不同的消息产生同一个散列值的情 况;如果要将单向散列函数用于完整性的检查,则需要确认在事实上不可能 被人为地发现碰撞;单向散列函数必须具备单向性,单向性指的是无法通过 散列值反向算出消息的性质;
第二步;得出数据:
尽管单向散列函数所产生的散列值是和原来的消息完全不同的比特序列,但 是单向散列函数并不是一种加密,因此无法通过解密将散列值还原成原来的 消息;进而得到一个固定bit长度的数据;
第三步;私钥签字:
利用私钥对固定长度的数据进行签字认证;
第四步;数据校验:
为了增强签名的安全性,在待签名数据散列之后,再对待签名数据计算出一 个checksum(校验和);
第五步;验证组合:
利用私钥与数据校验进行组合使用;完成签字
第六步;***识别:
***完全是被该操作为本人操作后方可进入下一步;若未达到要求则直接中 断;
第七步;认证签字:
完成认证后;对数据进行签字。
其中;所述密码技术中所使用的单向散列函数,不仅要具备弱抗碰撞性, 还必须具备强抗碰撞性。
其中;所述总和检验码,校验和。在数据处理和数据通信领域中,用于 校验目的的一组数据项的和。这些数据项可以是数字或在计算检验总和过程 中看作数字的其它字符串。
其中;所述公钥加密***允许任何人在发送信息时使用私钥进行加密, 接收信息时使用公钥解密。当然,接收者不可能百分之百确信发送者的真实 身份,而只能在密码***未被破译的情况下才有理由确信。
其中;所述输数据的双方都总希望确认消息未在传输的过程中被修改。 加密使得第三方想要读取数据十分困难,然而第三方仍然能采取可行的方法 在传输的过程中修改数据。
其中;所述附加在数据单元上的一些数据,或是对数据单元所作的密码 变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和数 据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。它是对电子 形式的消息进行签名的一种方法,一个签名消息能在一个通信网络中传输。 基于公钥密码体制和私钥密码体制都可以获得数字签名,主要是基于公钥密 码体制的数字签名。包括普通数字签名和特殊数字签名。
其中;通过进行单向散列函数运算,然后得到一个固定bit长度的数据, 最后用私钥对这个固定长度的数据签名。这使得签名的安全性同时依赖单项 散列函数和签名算法,两者任何一个被破解都会对安全产生威胁;增强签名 的安全性,在待签名数据散列之后,再对待签名数据计算出一个checksum(校 验和),使用私钥对散列数据和校验和的组合签名。以此增加签名的安全性; 提高了使用的安全性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来 将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示 这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包 括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包 括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括 没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备 所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而 言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行 多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限 定。

Claims (6)

1.一种信任根签名中提高安全性的方法,包括以下步骤,其特征在于:
第一步;单向散列函数运算:
首先,单向散列函数的输入必须能够是任意长度的消息;其次,无论输入多长的消息,单向散列函数必须都能够生成长度很短的散列值;如果单向散列函数计算出的散列值没有发生变化,那么消息很容易就会被篡改,这个单向散列函数就无法用于完整性的检查。两个不同的消息产生同一个散列值的情况;如果要将单向散列函数用于完整性的检查,则需要确认在事实上不可能被人为地发现碰撞;单向散列函数必须具备单向性,单向性指的是无法通过散列值反向算出消息的性质;
第二步;得出数据:
尽管单向散列函数所产生的散列值是和原来的消息完全不同的比特序列,但是单向散列函数并不是一种加密,因此无法通过解密将散列值还原成原来的消息;进而得到一个固定bit长度的数据;
第三步;私钥签字:
利用私钥对固定长度的数据进行签字认证;
第四步;数据校验:
为了增强签名的安全性,在待签名数据散列之后,再对待签名数据计算出一个checksum(校验和);
第五步;验证组合:
利用私钥与数据校验进行组合使用;完成签字
第六步;***识别:
***完全是被该操作为本人操作后方可进入下一步;若未达到要求则直接中断;
第七步;认证签字:
完成认证后;对数据进行签字。
2.根据权利要求1所述的一种信任根签名中提高安全性的方法,其特征在于:所述密码技术中所使用的单向散列函数,不仅要具备弱抗碰撞性,还必须具备强抗碰撞性。
3.根据权利要求1所述的一种信任根签名中提高安全性的方法,其特征在于:所述总和检验码,校验和。在数据处理和数据通信领域中,用于校验目的的一组数据项的和。这些数据项可以是数字或在计算检验总和过程中看作数字的其它字符串。
4.根据权利要求1所述的一种信任根签名中提高安全性的方法,其特征在于:所述公钥加密***允许任何人在发送信息时使用私钥进行加密,接收信息时使用公钥解密。当然,接收者不可能百分之百确信发送者的真实身份,而只能在密码***未被破译的情况下才有理由确信。
5.根据权利要求1所述的一种信任根签名中提高安全性的方法,其特征在于:所述输数据的双方都总希望确认消息未在传输的过程中被修改。加密使得第三方想要读取数据十分困难,然而第三方仍然能采取可行的方法在传输的过程中修改数据。
6.根据权利要求1所述的一种信任根签名中提高安全性的方法,其特征在于:所述附加在数据单元上的一些数据,或是对数据单元所作的密码变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和数据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。它是对电子形式的消息进行签名的一种方法,一个签名消息能在一个通信网络中传输。基于公钥密码体制和私钥密码体制都可以获得数字签名,主要是基于公钥密码体制的数字签名。包括普通数字签名和特殊数字签名。
CN202011466230.9A 2020-12-14 2020-12-14 一种信任根签名中提高安全性的方法 Pending CN114003654A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011466230.9A CN114003654A (zh) 2020-12-14 2020-12-14 一种信任根签名中提高安全性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011466230.9A CN114003654A (zh) 2020-12-14 2020-12-14 一种信任根签名中提高安全性的方法

Publications (1)

Publication Number Publication Date
CN114003654A true CN114003654A (zh) 2022-02-01

Family

ID=79920741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011466230.9A Pending CN114003654A (zh) 2020-12-14 2020-12-14 一种信任根签名中提高安全性的方法

Country Status (1)

Country Link
CN (1) CN114003654A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147225A (zh) * 2018-11-02 2020-05-12 中国科学院沈阳自动化研究所 基于双密值和混沌加密的可信测控网络认证方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111147225A (zh) * 2018-11-02 2020-05-12 中国科学院沈阳自动化研究所 基于双密值和混沌加密的可信测控网络认证方法

Similar Documents

Publication Publication Date Title
US11356280B2 (en) Personal device security using cryptocurrency wallets
US10944575B2 (en) Implicitly certified digital signatures
CA2838322C (en) Secure implicit certificate chaining
CN110933045A (zh) 一种基于承诺的区块链数字资产隐私保护方法
CN105635070B (zh) 一种数字文件的防伪方法及***
CN110414193A (zh) 一种国密pdf文档电子***的安全加密方法和***
CN108768975A (zh) 支持密钥更新和第三方隐私保护的数据完整性验证方法
CN110417555A (zh) 一种个人电子签名的安全加密方法和***
CN102857487B (zh) 一种远程招标方法及***
CN110034936B (zh) 一种可刺穿的数字签名方法
CN116506134B (zh) 数字证书管理方法、装置、设备、***及可读存储介质
CN113761578A (zh) 一种基于区块链的文书验真方法
CN113014394A (zh) 基于联盟链的电子数据存证方法及***
JP5378702B2 (ja) 秘匿認証システム
CN114003654A (zh) 一种信任根签名中提高安全性的方法
JP2513169B2 (ja) 利用者認証方法
Murthy et al. Elliptic curve based signature method to control fake paper based certificates
Rahouma Reviewing and applying security services with non-english letter coding to secure software applications in light of software trade-offs
Sejfuli-Ramadanı The Role and the Impact of Digital Certificate and Digital Signature in Improving Security During Data Transmittion
JP5159752B2 (ja) 通信データの検証装置及びそのコンピュータプログラム
Singh et al. Electronic Transactions Mechanism for Messaging Privacy
CN116388972A (zh) 一种基于双向认证的电子合同加解密方法和***
Dworkin Block Cipher Modes of Operation: The RMAC Authentication Mode Methods and Techniques
Toolkit UPDATED DIGITAL SIGNATURE STANDARD APPROVED AS FEDERAL INFORMATION PROCESSING STANDARD (FIPS) 186-3
Cruz et al. Cryptography: Algorithms and Security Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination