CN113990969A - 一种基于硫化亚锡/氧化镓异质pn结紫外探测器及制备方法 - Google Patents

一种基于硫化亚锡/氧化镓异质pn结紫外探测器及制备方法 Download PDF

Info

Publication number
CN113990969A
CN113990969A CN202111232033.5A CN202111232033A CN113990969A CN 113990969 A CN113990969 A CN 113990969A CN 202111232033 A CN202111232033 A CN 202111232033A CN 113990969 A CN113990969 A CN 113990969A
Authority
CN
China
Prior art keywords
thin film
sns
film layer
substrate
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111232033.5A
Other languages
English (en)
Inventor
吕斌
吴慧珊
张涛
潘新花
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202111232033.5A priority Critical patent/CN113990969A/zh
Publication of CN113990969A publication Critical patent/CN113990969A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种基于硫化亚锡(SnS)/氧化镓(Ga2O3)异质pn结紫外探测器及其制备方法,该紫外探测器的结构自下而上依次为c面蓝宝石(Al2O3)层、Ga2O3:N薄膜层、SnS薄膜层和Au/Ti电极对。该异质结结构采用脉冲激光沉积(PLD)方法制备,具体如下:在c‑Al2O3衬底上采用PLD方法制备Ga2O3:N薄膜,然后再外延一层SnS薄膜,形成SnS/Ga2O3:N异质pn结,最后在薄膜表面镀上Au/Ti电极完成异质pn结紫外探测器的制作。本发明的紫外探测器通过N2O掺杂,在Ga2O3薄膜中掺入N元素,大幅降低器件的暗电流;且制备方法简单、响应速度快。

Description

一种基于硫化亚锡/氧化镓异质PN结紫外探测器及制备方法
技术领域
本发明涉及一种基于异质PN结紫外探测器的制备方法,属于半导体光电器件技术领域。
背景技术
氧化镓(Ga2O3)是一种直接带隙超宽禁带半导体,禁带宽度高达4.5-4.9 eV,化学和热稳定性优良、紫外可见光透过率高,是研制深紫外探测器的理想材料。Ga2O3对应的光吸收波长在250 nm左右,属于日盲光波段(200-280 nm),不受太阳光背景噪声影响,是天然的制备日盲紫外探测器的材料。使用Ga2O3制备的光电探测器在导弹追踪、深空探测成像、火险预警等领域有重要的应用前景。而且Ga2O3器件的击穿场强高、能耗低、噪声小、耐高温等特性使其在高温、高频、抗辐射、大功率器件领域也有广泛的应用。
但是在作为日盲紫外探测器应用方面,由于目前基于Ga2O3材料的紫外探测器综合性能还比较低,特别存在暗电流大、光响应时间长等技术问题。另外,本征β-Ga2O3通常表现出n型导电,并由于氧空位等缺陷的自补偿效应,Ga2O3材料难以实现高效的p型掺杂,限制了其同质pn结在半导体光电器件领域的发展,需要寻找其他p型材料与之形成异质pn结。因此,这几方面的原因,限制了Ga2O3材料在日盲紫外探测器的应用。
发明内容
为了解决紫外探测器暗电流大、光响应时间长等问题,本发明拟提供一种异质pn结紫外探测器,具有光暗比大、暗电流低、光响应速度快的性能,且制备方法简单成本低廉。
为实现上述发明目的,本发明提供如下技术方案。
本发明采用N2O掺杂技术,明显补偿Ga2O3薄膜中的氧空位,而且首次将脉冲激光沉积(PLD)法在c-Al2O3衬底上制备的高质量硫化亚锡(SnS)/氧化镓(Ga2O3)异质pn结,将其应用在日盲紫外探测器中,该制备方法简单、成本低廉,且制得的且硫化亚锡(SnS)/氧化镓(Ga2O3)异质pn结光暗比大、暗电流低、光响应速度快。
具体的,本发明提供了一种基于硫化亚锡/氧化镓异质pn结紫外探测器,所述基于硫化亚锡/氧化镓异质pn结紫外探测器,包括c-Al2O3层、Ga2O3:N薄膜层、SnS薄膜层和Au/Ti电极对,其中c-Al2O3层作为衬底,Ga2O3:N薄膜层设置于衬底c-Al2O3层上,SnS薄膜层设置于Ga2O3:N薄膜层上且覆盖Ga2O3:N薄膜层的部分区域形成异质pn结区,Au/Ti电极对包括两个Au/Ti电极,一个设置于pn结区即SnS薄膜层上,另一个设置于Ga2O3:N薄膜层上。
硫化亚锡(SnS)作为一种新颖的p型材料,禁带宽度在1.3-1.5 eV左右,光吸收系数高达104cm-1,可以有效吸收紫外光。本发明引入SnS与Ga2O3构建异质pn结,可以利用两种材料界面处因载流子扩散产生的内建电场,加速分离光生电子-空穴对,有效提高紫外探测器的响应度、响应速度、灵敏度等器件性能。另外,本发明在Ga2O3薄膜中掺入N元素形成Ga2O3:N薄膜层,N3-离子半径与O2-离子半径相近,N掺产生晶格畸变少、缺陷较少,而且N掺可以有效补偿本征Ga2O3薄膜的氧空位,减少本征薄膜的载流子浓度,提高Ga2O3薄膜的结晶质量,从而大幅降低器件的暗电流。
本发明还提供了上述基于硫化亚锡/氧化镓异质pn结紫外探测器的制备方法。具体制备步骤如下:
1)清洗c-Al2O3衬底,获得表面洁净且无氧化物吸附的c-Al2O3层:
将c-Al2O3衬底分别使用丙酮、乙醇和去离子水超声清洗,清洗结束后用N2吹干表面水分,并放入等离子体清洗器中用等离子体清洗,以去除衬底表面的杂质与吸附的有机物,获得洁净的表面;
将清洗后的c-Al2O3衬底放入真空腔室内,加热并保温,获得无杂质且无氧吸附的c-Al2O3层。
2)采用PLD方法在c-Al2O3衬底表面沉积Ga2O3:N薄膜层:
将Ga2O3靶材固定在腔体内的靶台上,将清洗好的c-Al2O3衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0 cm;
依次关好放气阀和腔门,依次打开机械泵和分子泵,约2h后达到所需的10-5Pa真空度;然后将c-Al2O3衬底加热至650℃,维持温度的稳定;往真空腔内通入N2O,调节压强,使腔内压强保持在0.1Pa;
打开激光器,预热10min后调整激光能量为200 mJ/cm2,激光频率为3Hz;使激光束聚焦在Ga2O3靶面并烧蚀靶材,形成羽辉;先进行预沉积5 min,去除靶材表面Ga、O比例不均匀层,然后打开靶材与衬底之间的挡板,在c-Al2O3衬底表面沉积Ga2O3:N薄膜,获得Ga2O3:N薄膜层;
将获得的Ga2O3:N薄膜层在N2氛围下进行800℃退火处理30 min,消除薄膜中的部分应力,提升Ga2O3:N薄膜层质量。
3)采用PLD方法在Ga2O3:N薄膜层的部分区域沉积SnS薄膜层,形成异质pn结区:
将SnS靶材固定在腔体内的靶台上,在步骤2)制备好的Ga2O3:N薄膜层上贴上掩模板,将其固定在样品台上,用挡板将靶材和Ga2O3:N薄膜层隔开,调整好靶材到Ga2O3:N薄膜层的距离为6.0 cm;
依次关好放气阀和腔门,依次打开机械泵和分子泵,约2h后腔体内达到所需的10-5Pa真空度;然后将Ga2O3:N薄膜层加热至200℃,维持温度的稳定;
打开激光器,调整激光能量为200 mJ/cm2,激光频率为1Hz;激光束聚焦在SnS靶面并烧蚀靶材,形成羽辉;先进行预沉积5 min,去除靶材表面SnS氧化层,然后打开靶材与Ga2O3:N薄膜层之间的挡板,在Ga2O3:N薄膜层未贴上掩膜版的区域沉积SnS薄膜,获得SnS/Ga2O3异质pn结。
其中步骤2)及3)中,Ga2O3:N薄膜和SnS薄膜的PLD沉积时间分别可在30min-90min、300s-1500s范围调整,可分别获得100-300 nm厚度的Ga2O3:N薄膜层及10-50nm厚度的SnS薄膜。
4)采用电子束蒸发技术在SnS/Ga2O3异质pn结区以及Ga2O3:N薄膜层表面蒸镀厚度为50 nm/20 nm的Au/Ti电极,完成SnS/Ga2O3异质pn结紫外探测器的制备。
本发明的SnS/Ga2O3异质pn结紫外探测器的工作原理是:利用SnS/Ga2O3异质pn结界面因载流子扩散形成内建电场的特性,有效分离光生电子-空穴对。当电极两端加上一定偏压后,在探测器内部会出现一个微弱的电流响应,此时黑暗环境下电流在pA量级;使用254nm日盲光照射该器件后,Ga2O3:N薄膜层产生大量的光生电子-空穴对,在内建电场作用下被加速分离,导致光电流增大。
本发明的有益效果在于:
1)本发明Ga2O3:N薄膜和SnS薄膜均采用PLD技术制备,两种异质层的结晶质量好,制备工艺简单、制备过程安全无毒,SnS/Ga2O3异质结对254 nm波长光有明显的响应,属于日盲紫外范围,不受到太阳光的影响,可全天候使用。
2)本发明将PLD技术制备的SnS/Ga2O3异质pn结成功应用在紫外探测器中,且光响应度、光响应时间、灵敏度等性能优异。
3)本发明通过简单的N2O掺杂技术在Ga2O3薄膜中掺入N元素,N3-离子半径与O2-离子半径相近,N掺产生晶格畸变小、缺陷较少,薄膜粗糙度低、平整度高,薄膜质量高;而且N掺杂可以补偿本征Ga2O3薄膜的氧空位,减少本征薄膜的载流子浓度,提高Ga2O3薄膜的结晶质量,从而大幅降低器件的暗电流。且较少的氧空位可以抑制光生载流子被捕获,促进其分离,从而提升器件的响应速度。
而且在254 nm光照下,N在Ga2O3薄膜中还作为电子-空穴对释放中心,可以增加电子-空穴对的数量从而明显提升器件的光响应度。
4)相比传统的单层Ga2O3基紫外探测器,本发明的SnS/Ga2O3异质pn结紫外探测器通过两种材料间产生的内建电场,有效分离光生电子空穴对,可以有效提高器件的光响应速度。
附图说明
图1是本发明的SnS/Ga2O3异质pn结紫外探测器的正视结构示意图。
图2是本发明的SnS/Ga2O3异质pn结紫外探测器的俯视结构示意图。
图3是实施例1制得的SnS/Ga2O3异质pn结紫外探测器的IV曲线,使用光照波长为254 nm、功率为182 μW/cm2的紫外光。
图4是实施例1制得的SnS/Ga2O3异质pn结紫外探测器的光响应时间曲线放大图,在5 V偏压下,使用光照波长为254 nm、功率为182 μW/cm2的紫外光。
图5是实施例2制得的SnS/Ga2O3异质pn结紫外探测器的IV曲线,使用光照波长为254 nm、功率为182 μW/cm2的紫外光。
图6是实施例2制得的SnS/Ga2O3异质pn结紫外探测器的光响应时间曲线放大图,在5 V偏压下,使用光照波长为254 nm、功率为182 μW/cm2的紫外光。
具体实施方式
以下结合附图及具体实施例对本发明做进一步阐述。
如图1、图2,分别为本发明的SnS/Ga2O3异质pn结紫外探测器的正视结构示意图及俯视结构示意图。根据图1及2,本发明的SnS/Ga2O3异质pn结紫外探测器的结构自下而上依次为c-Al2O3层、Ga2O3:N薄膜层、SnS薄膜层和Au/Ti电极对。
实施例1
1)将2英寸的c-Al2O3片切割成1.0 cm x1.0 cm的小片;分别使用丙酮、乙醇和去离子水超声清洗10 min,然后用N2吹干残留在c-Al2O3衬底表面的水分,然后放入等离子体清洗器中使用等离子体清洗5 min。最后将清洗后的c-Al2O3衬底放入真空腔室内使用200 ℃烘烤10 min,完成对衬底的预处理。
2)将纯度99.99%的Ga2O3靶材固定在腔室内的靶台上,将清洗好的c-Al2O3衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0 cm。依次关好放气阀和腔门,依次打开机械泵和分子泵,约2 h后达到所需的10-5 Pa真空度。将c-Al2O3衬底加热至650℃,维持温度的稳定;往真空腔室内通入N2O,调节压强,使腔内气压保持在0.1 Pa。然后打开激光器,预热10 min后将激光能量调整为200 mJ/cm2,激光频率调整为3Hz,使激光束聚焦在Ga2O3靶面并烧蚀靶材,形成羽辉。预沉积5 min后打开靶材与衬底之间的挡板,在c-Al2O3衬底表面沉积Ga2O3:N薄膜60 min。沉积结束后,关闭激光器,在650 ℃下保温30min。关闭加热器,自然降温至室温后关闭真空***,获得200 nm厚度的Ga2O3:N多晶薄膜。最后在N2氛围下800℃快速热退火30 min。
3)将99.99%的SnS靶材固定在腔室内的靶台上,在步骤(2)制备好的Ga2O3:N薄膜层上贴上掩模板,将其固定在样品台上,用挡板将靶材和Ga2O3:N薄膜层隔开,调整靶材到衬底的距离为6.0 cm。依次关好放气阀和腔门,依次打开机械泵和分子泵,约2 h后达到所需的10-5 Pa真空度。将Ga2O3:N薄膜层加热至200℃,维持温度的稳定。打开激光器,预热10 min后将激光能量调整为200 mJ/cm2,激光频率调整为1 Hz,使激光束聚焦在SnS靶面并烧蚀靶材,形成羽辉。预沉积5 min后打开靶材与Ga2O3:N薄膜层之间的挡板,在Ga2O3:N薄膜的部分区域沉积SnS薄膜1200s。沉积结束后,关闭激光器,继续升温至300℃,在300 ℃下原位退火60min。关闭加热器,自然降温至室温后关闭真空***,获得40 nm厚度的SnS多晶薄膜。
4)在SnS/Ga2O3异质pn结表面采用电子束蒸发技术蒸镀50 nm/20 nm的Au/Ti电极对,获得SnS/Ga2O3异质pn结紫外探测器。
如图3是本实施例制得的SnS/Ga2O3异质pn结紫外探测器的IV曲线、图4是本实施例制得的SnS/Ga2O3异质pn结紫外探测器在5 V偏压下的光响应时间曲线放大图,均在光照波长为254 nm、功率为182 μW/cm2的紫外光下测试。如图可以看到,本例制得的SnS/Ga2O3异质pn结紫外探测器在5 V偏压下,具有非常小的暗电流2.512 pA,响应度为59.78 mA/W,响应时间相应常数为τr=1.52s;τd=0.095s。
实施例2
1)将2英寸的c-Al2O3片切割成1.0 cm x1.0 cm的小片;分别使用丙酮、乙醇和去离子水超声清洗10 min,然后用N2吹干残留在c-Al2O3衬底表面的水分,然后放入等离子体清洗器中使用等离子体清洗5 min。最后将清洗后的c-Al2O3衬底放入真空腔室内使用200 ℃烘烤10 min,完成对衬底的预处理。
2)将纯度99.99%的Ga2O3靶材固定在腔室内的靶台上,将清洗好的c-Al2O3衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0 cm。依次关好放气阀和腔门,依次打开机械泵和分子泵,约2 h后达到所需的10-5 Pa真空度。将c-Al2O3衬底加热至650℃,维持温度的稳定;往真空腔室内通入O2,调节压强,使腔内气压保持在0.1 Pa。然后打开激光器,预热10 min后将激光能量调整为200 mJ/cm2,激光频率调整为3Hz,使激光束聚焦在Ga2O3靶面并烧蚀靶材,形成羽辉。预沉积5 min后打开靶材与衬底之间的挡板,在c-Al2O3衬底表面沉积Ga2O3:N薄膜60 min。沉积结束后,关闭激光器,在650 ℃下保温30min。关闭加热器,自然降温至室温后关闭真空***,获得200 nm厚度的Ga2O3:N多晶薄膜。最后在N2氛围下800℃快速热退火30 min。
3)将纯度99.99%的SnS靶材固定在腔室内的靶台上,在步骤(2)制备好的Ga2O3:N薄膜层上贴上掩模板,将其固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0 cm。依次关好放气阀和腔门,依次打开机械泵和分子泵,约2 h后达到实验所需的10-5 Pa真空度。将Ga2O3:N薄膜层加热至200℃,维持温度的稳定。打开激光器,预热10 min后将激光能量调整为200 mJ/cm2,激光频率调整为1 Hz,使激光束聚焦在SnS靶面并烧蚀靶材,形成羽辉。预沉积5 min后打开靶材与衬底之间的挡板,在Ga2O3薄膜的部分区域沉积SnS薄膜1300 s。沉积结束后,关闭激光器,继续升温至300℃,在300 ℃下原位退火60min。关闭加热器,自然降温至室温后关闭真空***,获得45 nm的SnS多晶薄膜。
4)在SnS/Ga2O3异质pn结表面采用电子束蒸发技术蒸镀50 nm/20 nm的Au/Ti电极对,获得SnS/Ga2O3异质pn结紫外探测器。
如图5是本实施例制得的SnS/Ga2O3异质pn结紫外探测器的IV曲线、图6是本实施例制得的SnS/Ga2O3异质pn结紫外探测器在5 V偏压下的光响应时间曲线放大图,均在光照波长为254 nm、功率为182 μW/cm2的紫外光下测试。如图可以看到,本例制得的SnS/Ga2O3异质pn结紫外探测器在5 V偏压下,暗电流为3.437 pA,响应度为45.78 mA/W,响应时间相应常数为τr=1.29s;τd=0.086 s。
在上述实施例的基础上,分别调整Ga2O3:N薄膜和SnS薄膜的PLD沉积时间30min-90min及300s-1500s,可分别获得100-300 nm厚度的Ga2O3:N薄膜层及10-50nm厚度的SnS薄膜,在这个厚度范围Ga2O3:N薄膜层和SnS薄膜层形成的异质pn结,均可获得上述实施例的技术效果,满足本发明的发明目的。

Claims (8)

1.一种基于硫化亚锡/氧化镓异质pn结紫外探测器,其特征在于:所述基于硫化亚锡/氧化镓异质pn结紫外探测器,包括c-Al2O3层、Ga2O3:N薄膜层、SnS薄膜层和Au/Ti电极对,其中c-Al2O3层作为衬底,Ga2O3:N薄膜层设置于衬底c-Al2O3层上,SnS薄膜层设置于Ga2O3:N薄膜层上且覆盖Ga2O3:N薄膜层的部分区域形成异质pn结区,Au/Ti电极对包括两个Au/Ti电极,一个设置于pn结区即SnS薄膜层上,另一个设置于Ga2O3:N薄膜层上。
2.根据权利要求1所述一种基于硫化亚锡/氧化镓异质pn结紫外探测器,其特征在于:所述Ga2O3:N薄膜层厚度100-300 nm。
3.根据权利要求1所述一种基于硫化亚锡/氧化镓异质pn结紫外探测器,其特征在于:所述SnS薄膜层厚度10-50 nm。
4.根据权利要求1-3任一项所述一种基于硫化亚锡/氧化镓异质pn结紫外探测器的制备方法,其特征在于,包括以下步骤:
1)清洗c-Al2O3衬底,获得表面洁净无杂质且无氧吸附的衬底c-Al2O3层;
2)采用PLD方法在衬底c-Al2O3层表面沉积Ga2O3:N薄膜层;
3)采用PLD方法在Ga2O3:N薄膜层的部分区域沉积SnS薄膜层;
4)在SnS/Ga2O3异质pn结区以及Ga2O3:N薄膜层表面蒸镀Au/Ti电极,形成Au/Ti电极对,完成所述硫化亚锡/氧化镓质异质pn结紫外探测器的制备。
5.根据权利要求4所述的基于硫化亚锡/氧化镓异质pn结紫外探测器的制备方法,其特征在于,所述的步骤1)具体为:
将c-Al2O3衬底分别使用丙酮、乙醇和去离子水超声清洗,清洗结束后用N2吹干表面水分,并放入等离子体清洗机中用等离子体清洗,去除衬底表面吸附的有机物,获得洁净无杂质的表面;
将清洗后的c-Al2O3衬底放入真空腔室内,加热至200℃并保温10 min,获得无杂质且无氧吸附的c-Al2O3层。
6.根据权利要求4所述的基于硫化亚锡/氧化镓异质pn结紫外探测器的制备方法,其特征在于,所述的步骤2)具体为:
将Ga2O3靶材固定在PLD腔体内的靶台上,将步骤1)清洗好的c-Al2O3衬底固定在样品台上,用挡板将靶材和衬底隔开,调整好靶材到衬底的距离为6.0 cm;
依次关好放气阀和腔门,依次打开机械泵和分子泵,使腔体内达到10-5 Pa真空度;然后将c-Al2O3衬底加热至650℃,维持温度的稳定;往真空腔内通入N2O,调节压强,使腔内压强保持在0.1Pa;
打开激光器,预热10min后调整激光能量为200 mJ/cm2,激光频率为3Hz;激光束聚焦在Ga2O3靶面并烧蚀靶材,形成羽辉;先进行预沉积5 min,去除靶材表面Ga、O比例不均匀层,然后打开靶材与衬底之间的挡板,在c-Al2O3衬底表面沉积Ga2O3:N薄膜,沉积时间30min-90min,获得Ga2O3:N薄膜层;
Ga2O3:N薄膜层在N2氛围下进行800℃退火处理30 min。
7.根据权利要求4所述的基于硫化亚锡/氧化镓异质pn结紫外探测器的制备方法,其特征在于,所述的步骤3)具体为:
将SnS靶材固定在PLD腔体内的靶台上,在步骤2)制备好的Ga2O3:N薄膜层上部分区域贴上掩模板,将其固定在样品台上,用挡板将靶材和Ga2O3:N薄膜层隔开,调整好靶材到衬底的距离为6.0 cm;
依次关好放气阀和腔门,依次打开机械泵和分子泵,使腔体内达到10-5 Pa真空度;然后将Ga2O3:N薄膜层加热至200℃,维持温度的稳定;
打开激光器,调整激光能量为200 mJ/cm2,激光频率为1Hz;激光束聚焦在SnS靶面并烧蚀靶材,形成羽辉;先进行预沉积5 min,去除靶材表面SnS氧化层,然后打开靶材与衬底之间的挡板,在Ga2O3:N薄膜层未贴掩膜板的区域沉积SnS薄膜,沉积时间300s-1500s,形成SnS/Ga2O3异质结区。
8.根据权利要求4所述的基于硫化亚锡/氧化镓异质pn结紫外探测器的制备方法,其特征在于,所述的步骤4)具体为:
在SnS/Ga2O3异质pn结区以及Ga2O3:N薄膜层表面,采用电子束蒸发技术蒸镀厚度为50nm/20 nm的Au/Ti电极,形成Au/Ti电极对。
CN202111232033.5A 2021-10-22 2021-10-22 一种基于硫化亚锡/氧化镓异质pn结紫外探测器及制备方法 Pending CN113990969A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111232033.5A CN113990969A (zh) 2021-10-22 2021-10-22 一种基于硫化亚锡/氧化镓异质pn结紫外探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111232033.5A CN113990969A (zh) 2021-10-22 2021-10-22 一种基于硫化亚锡/氧化镓异质pn结紫外探测器及制备方法

Publications (1)

Publication Number Publication Date
CN113990969A true CN113990969A (zh) 2022-01-28

Family

ID=79740285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111232033.5A Pending CN113990969A (zh) 2021-10-22 2021-10-22 一种基于硫化亚锡/氧化镓异质pn结紫外探测器及制备方法

Country Status (1)

Country Link
CN (1) CN113990969A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420815A (zh) * 2016-01-07 2016-03-23 中国科学院理化技术研究所 一种可控制备正交相硫化亚锡二维单晶纳米片的方法
US20200287067A1 (en) * 2019-04-22 2020-09-10 Hubei University (GaMe)2O3 ternary alloy material, its preparation method and application in solar-blind ultraviolet photodetector
CN111864005A (zh) * 2020-06-16 2020-10-30 张香丽 氧化镓基pn结光电探测器、远程电晕监测***及制作方法
CN113278948A (zh) * 2021-04-16 2021-08-20 中国计量大学 一种硫化锡/二硫化锡异质结材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105420815A (zh) * 2016-01-07 2016-03-23 中国科学院理化技术研究所 一种可控制备正交相硫化亚锡二维单晶纳米片的方法
US20200287067A1 (en) * 2019-04-22 2020-09-10 Hubei University (GaMe)2O3 ternary alloy material, its preparation method and application in solar-blind ultraviolet photodetector
CN111864005A (zh) * 2020-06-16 2020-10-30 张香丽 氧化镓基pn结光电探测器、远程电晕监测***及制作方法
CN113278948A (zh) * 2021-04-16 2021-08-20 中国计量大学 一种硫化锡/二硫化锡异质结材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曾升等: "二维ReS2/TiO2异质结薄膜的制备及其光电催化性能", 材料科学与工程学报, vol. 39, no. 5, 20 October 2021 (2021-10-20), pages 731 - 735 *
李辰旸等: "TiO2/SrTiO3光子晶体薄膜的制备及光电催化性能", 材料科学与工程学报, vol. 37, no. 3, 20 June 2019 (2019-06-20), pages 352 - 356 *

Similar Documents

Publication Publication Date Title
Wen et al. Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells
CN103650170B (zh) 异质结光电池的处理方法
CN106340551B (zh) 一种基于Mg:β-Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
KR101628312B1 (ko) CZTSSe계 박막 태양전지의 제조방법 및 이에 의해 제조된 CZTSSe계 박막 태양전지
CN111293181B (zh) 一种MSM型α-Ga2O3基日盲紫外光探测器
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法
CN105655419B (zh) 一种制备黑硅材料的方法
KR101870236B1 (ko) 투명 전도 산화막 기판을 이용한 양면 czts계 태양전지의 제조방법 및 이로부터 제조된 태양전지
Park et al. Effect on the reduction of the barrier height in rear-emitter silicon heterojunction solar cells using Ar plasma-treated ITO film
CN112038443B (zh) 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法
Shirakata et al. Characterization of Cu (In, Ga) Se2 solar cell fabrication process by photoluminescence
CN113990969A (zh) 一种基于硫化亚锡/氧化镓异质pn结紫外探测器及制备方法
CN109755341B (zh) 基于β-Ga2O3/FTO异质结的日盲紫外光电探测器及其制备
KR20140066964A (ko) 태양전지 및 이의 제조방법
CN113990960A (zh) 一种具有缓冲层的氧化镓基异质结紫外探测器及其制备方法
EP2738818A2 (en) Solar call and method of manufacturing the same
CN113410330B (zh) 一种石墨烯非晶氧化镓薄膜的日盲紫外探测器
CN111276573B (zh) 基于非晶(GaLu)2O3薄膜的日盲紫外光探测器
KR101439240B1 (ko) 박막 태양전지 광흡수층의 저온 제조방법
CN113054050A (zh) 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法
US9012256B2 (en) Process for producing photovoltaic device
Nishi et al. High-efficiency Cu 2 O-based heterojunction solar cells fabricated on thermally oxidized copper sheets
Ore et al. MoOx hole collection layer for a-Si: H based photovoltaic cells
Romeo et al. High efficiency CdTe/CdS thin film solar cells prepared by treating CdTe Films with a Freon gas in substitution of CdCl2
CN109950336A (zh) 一种黑硅材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination